Skip to main content

Genetic Diversity in Latvian Spring Barley Association Mapping Population

  • Conference paper
  • First Online:

Abstract

Certified organic crop area is continuously increasing in European Union and in Latvia (Eurostat data), despite somewhat lower yield and higher potential for disease damage in organic farming. It is increasingly recognized that breeding varieties for organic farming requires focus on specific traits that may be less important under conventional agriculture. Molecular markers are becoming essential tools for plant breeding allowing reducing time and cost of development of new varieties by early selection of progeny with desired traits. However, there is lack of information on molecular markers for traits that may be important for organic farming, such as plant morphological traits ensuring competitive ability with weeds, yield and yield stability under organic growing conditions, nutrient use efficiency, and resistance to diseases. We have selected 145 Latvian varieties and breeding lines along with 46 foreign accessions for association mapping panel and genotyped those with 1,536 single-nucleotide polymorphism (SNP) markers using Illumina GoldenGate platform and barley oligo pooled array 1. In parallel to genotyping, 154 of the 191 spring barley genotypes contrasting for traits that are important for organic farming are currently in field trials under conventional and organic management. The success of association mapping in structured natural populations depends on the extent of linkage disequilibrium (LD) and ability to control for the population structure during statistical analyses. Preliminary results based on principal component and phylogenetic analyses of 1,003 SNP markers with average polymorphism information content (PIC) of 0.394 suggested that the set of germplasm is relatively uniform with the exception of a few six-row varieties. STRUCTURE analysis based on the ΔK value suggested that the population could be partitioned into two clusters. The mean LD (r 2 > 0.1) extended over 10-cM distance suggesting that the available marker density may be sufficient for association mapping. Plots of pairwise LD along the chromosomes indicated uneven distribution of LD blocks in barley genome.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ardlie, K. G., Kruglyak, L., & Seielstad, M. (2002). Patterns of linkage disequilibrium in the human genome. Nature Reviews. Genetics, 3, 299–309.

    Article  PubMed  CAS  Google Scholar 

  • Ball, R. D. (2007). Statistical analysis and experimental design. In N. C. Oraguzie, E. H. A. Rikkerink, S. Gardiner, & H. N. De Silva (Eds.), Association mapping in plants (pp. 133–196). New York: Springer.

    Chapter  Google Scholar 

  • Bradbury, P. J., Zhang, Z., Kroon, D. E., Casstevens, T. M., Ramdoss, Y., & Buckler, E. S. (2007). TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics, 23, 2633–2635.

    Article  PubMed  CAS  Google Scholar 

  • Close, T., Bhat, P., Lonardi, S., Wu, Y., Rostoks, N., Ramsay, L., Druka, A., Stein, N., Svensson, J., Wanamaker, S., Bozdag, S., Roose, M., Moscou, M., Chao, S., Varshney, R., Szucs, P., Sato, K., Hayes, P., Matthews, D., Kleinhofs, A., Muehlbauer, G., DeYoung, J., Marshall, D., Madishetty, K., Fenton, R., Condamine, P., Graner, A., & Waugh, R. (2009). Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics, 10, 582.

    Article  PubMed  Google Scholar 

  • Cockram, J., White, J., Zuluaga, D. L., Smith, D., Comadran, J., Macaulay, M., Luo, Z., Kearsey, M. J., Werner, P., Harrap, D., Tapsell, C., Liu, H., Hedley, P. E., Stein, N., Schulte, D., Steuernagel, B., Marshall, D. F., Thomas, W. T., Ramsay, L., Mackay, I., Balding, D. J., Consortium, T. A., Waugh, R., & O’Sullivan, D. M. (2010). Genome-wide association mapping to candidate polymorphism resolution in the unsequenced barley genome. Proceedings of the National Academy of Sciences of the United States of America, 107, 21611–21616.

    Article  PubMed  CAS  Google Scholar 

  • Comadran, J., Ramsay, L., MacKenzie, K., Hayes, P., Close, T. J., Muehlbauer, G., Stein, N., & Waugh, R. (2011). Patterns of polymorphism and linkage disequilibrium in cultivated barley. Theoretical and Applied Genetics, 122, 523–531.

    Article  PubMed  Google Scholar 

  • Cuesta-Marcos, A., Szucs, P., Close, T., Filichkin, T., Muehlbauer, G., Smith, K., & Hayes, P. (2010). Genome-wide SNPs and re-sequencing of growth habit and inflorescence genes in barley: implications for association mapping in germplasm arrays varying in size and structure. BMC Genomics, 11, 707.

    Article  PubMed  CAS  Google Scholar 

  • Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software structure: A simulation study. Molecular Ecology, 14, 2611–2620.

    Article  PubMed  CAS  Google Scholar 

  • Falush, D., Stephens, M., & Pritchard, J. K. (2003). Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics, 164, 1567–1587.

    PubMed  CAS  Google Scholar 

  • Feuillet, C., Langridge, P., & Waugh, R. (2008). Cereal breeding takes a walk on the wild side. Trends in Genetics, 24, 24–32.

    Article  PubMed  CAS  Google Scholar 

  • Gaike, M. (1992). Spring barley. In I. Holms (Ed.), Field crop breeding in Latvia (in Latvian) (pp. 53–63). Riga: Avots.

    Google Scholar 

  • Hajjar, R., & Hodgkin, T. (2007). The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica, 156, 1–13.

    Article  Google Scholar 

  • Hamblin, M. T., Close, T. J., Bhat, P. R., Chao, S., Kling, J. G., Abraham, K. J., Blake, T., Brooks, W. S., Cooper, B., Griffey, C. A., Hayes, P. M., Hole, D. J., Horsley, R. D., Obert, D. E., Smith, K. P., Ullrich, S. E., Muehlbauer, G. J., & Jannink, J. L. (2010). Population structure and linkage disequilibrium in U.S. barley germplasm: implications for association mapping. Crop Science, 50, 556–566.

    Article  CAS  Google Scholar 

  • Jin, L., Lu, Y., Xiao, P., Sun, M., Corke, H., & Bao, J. (2010). Genetic diversity and population structure of a diverse set of rice germplasm for association mapping. Theoretical and Applied Genetics, 121, 475–487.

    Article  PubMed  Google Scholar 

  • Kokina, A., & Rostoks, N. (2008). Genome-wide and Mla locus-specific characterization of Latvian barley varieties. Proceedings of the Latvian Academy of Sciences, 62, 103–109.

    Google Scholar 

  • Kota, R., Varshney, R., Prasad, M., Zhang, H., Stein, N., & Graner, A. (2008). EST-derived single nucleotide polymorphism markers for assembling genetic and physical maps of the barley genome. Functional & Integrative Genomics, 8, 223–233.

    Article  CAS  Google Scholar 

  • Kruglyak, L. (1997). The use of a genetic map of biallelic markers in linkage studies. Nature Genetics, 17, 21–24.

    Article  PubMed  CAS  Google Scholar 

  • Kruglyak, L. (2005). Power tools for human genetics. Nature Genetics, 37, 1299–1300.

    Article  PubMed  CAS  Google Scholar 

  • Le Couviour, F., Faure, S., Poupard, B., Flodrops, Y., Dubreuil, P., & Praud, S. (2011). Analysis of genetic structure in a panel of elite wheat varieties and relevance for association mapping. Theoretical and Applied Genetics, 123, 715–727.

    Article  PubMed  Google Scholar 

  • Lorenz, A. J., Hamblin, M. T., & Jannink, J. L. (2010). Performance of single nucleotide polymorphisms versus haplotypes for genome-wide association analysis in barley. PLoS One, 5, e14079.

    Article  PubMed  Google Scholar 

  • Mezaka, I., Bleidere, M., Legzdina, L., & Rostoks, N. (in press). Whole genome association mapping identifies naked grain locus NUD as determinant of β-glucan content in barley. Zemdirbyste – Agriculture.

    Google Scholar 

  • Neumann, K., Kobiljski, B., Denčić, S., Varshney, R., & Börner, A. (2011). Genome-wide association mapping: a case study in bread wheat (Triticum aestivum L.). Molecular Breeding, 27, 37–58.

    Article  Google Scholar 

  • Newell, M. A., Cook, D., Tinker, N. A., & Jannink, J. L. (2011). Population structure and linkage disequilibrium in oat (Avena sativa L.): implications for genome-wide association studies. Theoretical and Applied Genetics, 122, 623.

    Article  PubMed  CAS  Google Scholar 

  • Pourkheirandish, M., & Komatsuda, T. (2007). The importance of barley genetics and domestication in a global perspective. Annals of Botany London, 100, 999–1008.

    Article  Google Scholar 

  • Pritchard, J. K., Stephens, M., Rosenberg, N. A., & Donnelly, P. (2000). Association mapping in structured populations. The American Journal of Human Genetics, 67, 170–181.

    Article  CAS  Google Scholar 

  • Rafalski, A. (2002). Applications of single nucleotide polymorphisms in crop genetics. Current Opinion in Plant Biology, 5, 94–100.

    Article  PubMed  CAS  Google Scholar 

  • Ramsay, L., Comadran, J., Druka, A., Marshall, D. F., Thomas, W. T., Macaulay, M., MacKenzie, K., Simpson, C., Fuller, J., Bonar, N., Hayes, P. M., Lundqvist, U., Franckowiak, J. D., Close, T. J., Muehlbauer, G. J., & Waugh, R. (2011). INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1. Nature Genetics, 43, 169–172.

    Article  PubMed  CAS  Google Scholar 

  • Rostoks, N. (2008, September 9–12) High throughput genotyping for characterization of barley germplasm. Proceedings of the EUCARPIA 18th General Congress, Valencia, Spain.

    Google Scholar 

  • Rostoks, N., Mudie, S., Cardle, L., Russell, J., Ramsay, L., Booth, A., Svensson, J. T., Wanamaker, S. I., Walia, H., Rodriguez, E. M., Hedley, P. E., Liu, H., Morris, J., Close, T. J., Marshall, D. F., & Waugh, R. (2005). Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress. Molecular Genetics and Genomics, 274, 515–527.

    Article  PubMed  CAS  Google Scholar 

  • Rostoks, N., Ramsay, L., MacKenzie, K., Cardle, L., Bhat, P. R., Roose, M. L., Svensson, J. T., Stein, N., Varshney, R. K., Marshall, D. F., Graner, A., Close, T. J., & Waugh, R. (2006). Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. Proceedings of the National Academy of Sciences of the United States of America, 103, 18656–18661.

    Article  PubMed  CAS  Google Scholar 

  • Sarath, G., Mitchell, R. B., Sattler, S. E., Funnell, D., Pedersen, J. F., Graybosch, R. A., & Vogel, K. P. (2008). Opportunities and roadblocks in utilizing forages and small grains for liquid fuels. Journal of Industrial Microbiology & Biotechnology, 35, 343–354.

    Article  CAS  Google Scholar 

  • Sjakste, T. G., Rashal, I., & Roder, M. S. (2003). Inheritance of microsatellite alleles in pedigrees of Latvian barley varieties and related European ancestors. Theoretical and Applied Genetics, 106, 539–549.

    PubMed  CAS  Google Scholar 

  • Slatkin, M. (2008). Linkage disequilibrium – Understanding the evolutionary past and mapping the medical future. Nature Reviews. Genetics, 9, 477–485.

    Article  PubMed  CAS  Google Scholar 

  • Stein, N., Prasad, M., Scholz, U., Thiel, T., Zhang, H., Wolf, M., Kota, R., Varshney, R. K., Perovic, D., Grosse, I., & Graner, A. (2007). A 1,000-loci transcript map of the barley genome: New anchoring points for integrative grass genomics. Theoretical and Applied Genetics, 114, 823–839.

    Article  PubMed  CAS  Google Scholar 

  • Sticklen, M. B. (2008). Plant genetic engineering for biofuel production: Towards affordable cellulosic ethanol. Nature Reviews. Genetics, 9, 433–443.

    Article  PubMed  CAS  Google Scholar 

  • Varshney, R. K., Graner, A., & Sorrells, M. E. (2005). Genomics-assisted breeding for crop improvement. Trends in Plant Science, 10, 621–630.

    Article  PubMed  CAS  Google Scholar 

  • Waugh, R., Jannink, J. L., Muehlbauer, G. J., & Ramsay, L. (2009). The emergence of whole genome association scans in barley. Current Opinion in Plant Biology, 12, 1–5.

    Article  Google Scholar 

  • Wolfe, M., Baresel, J., Desclaux, D., Goldringer, I., Hoad, S., Kovacs, G., Loeschenberger, F., Miedaner, T., Ostergard, H., & Lammerts van Bueren, E. (2008). Developments in breeding cereals for organic agriculture. Euphytica, 163, 323–346.

    Article  Google Scholar 

  • Zhang, L. Y., Marchand, S., Tinker, N. A., & Belzile, F. (2009). Population structure and linkage disequilibrium in barley assessed by DArT markers. Theoretical and Applied Genetics, 119, 43–52.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The study is funded by the European Social Fund cofinanced project 2009/0218/1DP/1.1.1.2.0/09/APIA/VIAA/099 and the Latvian Council of Science grant Z-956-090.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils Rostoks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Zhejiang University Press and Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Mezaka, I., Legzdina, L., Waugh, R., Close, T.J., Rostoks, N. (2013). Genetic Diversity in Latvian Spring Barley Association Mapping Population. In: Zhang, G., Li, C., Liu, X. (eds) Advance in Barley Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4682-4_2

Download citation

Publish with us

Policies and ethics