Skip to main content

The CC-NB-LRR-type Rdg2a Resistance Gene Evolved Through Recombination and Confers Immunity to the Seed-Borne Barley Leaf Stripe Pathogen in the Absence of Hypersensitive Cell Death

  • Conference paper
  • First Online:
Advance in Barley Sciences

Abstract

Leaf stripe disease on barley is caused by the seed-transmitted hemi-biotrophic fungus Pyrenophora graminea. Race-specific resistance to leaf stripe is controlled by two known Rdg (resistance to Drechslera graminea) genes: the H. spontaneum-derived Rdg1a, mapped to chromosome 2HL and Rdg2a, identified in H. vulgare, mapped on chromosome 7HS. Both resistance genes have been extensively used in classical breeding. The positional cloning and molecular characterization of the Rdg2a locus is described here. BAC and cosmid libraries, respectively, derived from barley cvs. Morex (susceptible to leaf stripe) and Thibaut (the donor of the Rdg2a allele) were used for physical mapping of Rdg2a. At the Rdg2a locus, three sequence-related coiled-coil, nucleotide-binding site and leucine-rich repeat (CC-NB-LRR) encoding genes were identified. Sequence comparisons suggested that paralogs of this resistance locus evolved through recent gene duplication and were subjected to frequent sequence exchange. Transformation of the leaf stripe susceptible cv. Golden Promise with two Rdg2a candidates identified a member of the CC-NB-LRR gene family that conferred resistance against the Dg2 leaf stripe isolate, towards which the Rdg2a gene is effective. Histological analysis demonstrated that Rdg2a-mediated leaf stripe resistance prevents pathogen colonisation in the embryos without any detectable hypersensitive cell death response, indicating an unusual resistance mechanism for a CC-NB-LRR protein.

*Presenting author, Antonio Michele Stanca

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bendahmane, A., Kanyuka, K., & Baulcombe, D. C. (1999). The Rx gene from potato controls separate virus resistance and cell death responses. The Plant Cell, 11, 781–791.

    PubMed  CAS  Google Scholar 

  • Bieri, S., Mauch, S., Shen, Q. H., Peart, J., Devoto, A., Casais, C., Ceron, F., Schulze, S., Steinbiß, H. H., Shirasu, K., & Schulze-Lefert, P. (2004). RAR1 positively controls steady state levels of barley MLA resistance proteins and enables sufficient MLA6 accumulation for effective resistance. The Plant Cell, 16, 3480–3495.

    Article  PubMed  CAS  Google Scholar 

  • Biselli, C., Urso, S., Bernardo, L., Tondelli, A., Tacconi, G., Martino, V., Grando, S., & Valè, G. (2010). Identification and mapping of the leaf stripe resistance gene Rdg1a in Hordeum spontaneum. Theoretical and Applied Genetics, 120, 1207–1218.

    Article  PubMed  CAS  Google Scholar 

  • Bulgarelli, D., Collins, N. C., Tacconi, G., Dall’Aglio, E., Brueggeman, R., Kleinhofs, A., Stanca, A. M., & Valè, G. (2004). High-resolution genetic mapping of the leaf stripe resistance gene Rdg2a in barley. Theoretical and Applied Genetics, 108, 1401–1408.

    Article  PubMed  CAS  Google Scholar 

  • Bulgarelli, D., Biselli, C., Collin, N. C., Consonni, G., Stanca, A. M., Schulze-Lefert, P., & Valè, G. (2010). The CC-NB-LRR-Type Rdg2a Resistance gene confers immunity to the seed-borne barley leaf stripe pathogen in the absence of hypersensitive cell death. PLoS One, 5, e12599.

    Article  PubMed  Google Scholar 

  • Delogu, G., Porta-Puglia, A., Stanca, A. M., & Vannacci, G. (1995). Interaction between barley and Pyrenophora graminea: An overview of research in Italy. Rachis, 14, 29–34.

    Google Scholar 

  • DeYoung, B. J., & Innes, R. W. (2006). Plants NBS-LRR proteins in pathogen sensing and host defense. Nature Immunology, 7, 1243–1249.

    Article  PubMed  CAS  Google Scholar 

  • Freialdenhoven, A., Scherag, B., Hollricher, K., Collinge, D. B., Thordal-Christensen, H., & Schulze-Lefert, P. (1994). Nar-1 and Nar-2, two loci required for Mla12-specified race-specific resistance to powdery mildew in barley. The Plant Cell, 6, 983–994.

    PubMed  CAS  Google Scholar 

  • Gassmann, W. (2005). Natural variation in the Arabidopsis response to the avirulence gene hopPsyA uncouples the hypersensitive response from disease resistance. Molecular Plant-Microbe Interactions, 18, 1054–1060.

    Article  PubMed  CAS  Google Scholar 

  • Gatti, A., Rizza, F., Delogu, G., Terzi, V., Porta-Puglia, A., & Vannacci, G. (1992). Physiological and biochemical variability in a population of Drechslera graminea. Journal of Genetics and Breeding, 46, 179–186.

    CAS  Google Scholar 

  • Görg, R., Hollricher, K., & Schulze-Lefert, P. (1993). Functional analysis and RFLP-mediated mapping of the Mlg resistance locus in barley. The Plant Journal, 3, 857–866.

    Article  Google Scholar 

  • Haegi, A., & Porta-Puglia, A. (1995). Purification and partial characterization of a toxic compound produced by Pyrenophora graminea. Physiological and Molecular Plant Pathology, 46, 429–444.

    Article  CAS  Google Scholar 

  • Haegi, A., Bonardi, V., Dall’Aglio, E., Glissant, D., Tumino, G., Collins, N. C., Bulgarelli, D., Infantino, A., Stanca, A. M., Delledonne, M., & Valè, G. (2008). Histological and molecular analysis of Rdg2a barley resistance to leaf stripe. Molecular Plant Pathology, 9, 463–478.

    Article  PubMed  CAS  Google Scholar 

  • Hammouda, A. M. (1988). Variability of Drechslera graminea, the causal fungus of leaf stripe of barley. Acta Phytopathologica Academiae Scientiarum Hungaricae, 23, 73–80.

    Google Scholar 

  • Hückelhoven, R., Fodor, J., Preis, C., & Kogel, K. H. (1999). Hypersensitive cell death and papilla formation in barley attacked by the powdery mildew fungus are associated with hydrogen peroxide but not with salicylic acid accumulation. Plant Physiology, 119, 1251–1260.

    Article  PubMed  Google Scholar 

  • Leister, D. (2004). Tandem and segmental gene duplication and recombination in the evolution of plant disease resistance genes. Trends in Genetics, 20, 116–122.

    Article  PubMed  CAS  Google Scholar 

  • Meyers, B. C., Dickerman, A. W., Michelmore, R. W., Sivaramakrishnan, S., Sobral, B. W., & Young, N. D. (1999). Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. The Plant Journal, 20, 317–332.

    Article  PubMed  CAS  Google Scholar 

  • Meyers, B. C., Kozik, A., Griego, A., Kuang, H., & Michelmore, R. W. (2003). Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. The Plant Cell, 15, 809–834.

    Article  PubMed  CAS  Google Scholar 

  • Michelmore, R. W., & Meyers, B. C. (1998). Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Research, 8, 1113–1130.

    PubMed  CAS  Google Scholar 

  • Mueller, K. J., Valè, G., & Enneking, D. (2003). Selection of resistant spring barley accessions after natural infection with leaf stripe (Pyrenophora graminea) under organic farming conditions in Germany and by sandwich test. Journal of Plant Pathology, 85, 9–14.

    Google Scholar 

  • Pecchioni, N., Faccioli, P., Toubia-Rahme, H., Valè, G., & Terzi, V. (1996). Quantitative resistance to barley leaf stripe (Pyrenophora graminea) is dominated by one major locus. Theoretical and Applied Genetics, 93, 97–101.

    Article  Google Scholar 

  • Platenkamp, R. (1976). Investigations on the infections pathway of Drechslera graminea in germinating barley. In Royal Veterinary and Agricultural University, Yearbook. pp. 49–64.

    Google Scholar 

  • Tacconi, G., Cattivelli, L., Faccini, N., Pecchioni, N., Stanca, A. M., & Valè, G. (2001). Identification and mapping of a new leaf stripe resistance gene in barley (Hordeum vulgare L.). Theoretical and Applied Genetics, 102, 1286–1291.

    Article  CAS  Google Scholar 

  • Tian, D., Traw, M. B., Chen, J. Q., Kreitman, M., & Bergelson, J. (2003). Fitness costs of R-gene-mediated resistance in Arabidopsis thaliana. Nature, 423, 74–77.

    Article  PubMed  CAS  Google Scholar 

  • Yu, Y., Tomkins, J. P., Waugh, R., Frisch, D. A., Kudrna, D., Kleinhofs, A., Brueggeman, R. S., Muehlbauer, G. J., Wise, R. P., & Wing, R. A. (2000). A bacterial artificial chromosome library for barley (Hordeum vulgare L.) and the identification of clones containing putative resistance genes. Theoretical and Applied Genetics, 101, 1093–1099.

    Article  CAS  Google Scholar 

  • Zhou, F., Kurth, J., Wei, F., Elliot, C., Valè, G., Yahiaoui, N., Keller, B., Somerville, S., Wise, R., & Schulze-Lefert, P. (2001). Cell-autonomous expression of barley Mla1 confers race-specific resistance to the powdery mildew fungus via a Rar1-independent signaling pathway. The Plant Cell, 13, 337–350.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Sabine Haigis (Max Planck Institute für Züchtungsforschung) and Donata Pagani (CRA-GPG) for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giampiero Valè .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Zhejiang University Press and Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Biselli, C. et al. (2013). The CC-NB-LRR-type Rdg2a Resistance Gene Evolved Through Recombination and Confers Immunity to the Seed-Borne Barley Leaf Stripe Pathogen in the Absence of Hypersensitive Cell Death. In: Zhang, G., Li, C., Liu, X. (eds) Advance in Barley Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4682-4_19

Download citation

Publish with us

Policies and ethics