Skip to main content

Genes Controlling Low Phytic Acid in Plants: Identifying Targets for Barley Breeding

  • Conference paper
  • First Online:
Advance in Barley Sciences

Abstract

Phytic acid (myo-inositol 1, 2, 3, 4, 5, 6-hexakisphosphate) is the most abundant form of phosphorus in plant seeds. It is indigestible by both humans and nonruminant livestock and can contribute to human mineral deficiencies. The degradation of phytic acid in animal diets is necessary to overcome both environmental and nutritional issues. The development of plant cultivars with low phytic acid content is therefore an important priority. More than 25 low-phytic acid mutants have been developed in rice, maize, soybean, barley, wheat, and bean, from which 11 genes, belonging to six gene families, have been isolated and sequenced from maize, soybean, rice, and Arabidopsis. Forty-one members of the six gene families were identified in the rice genome sequence. A survey of genes coding for enzymes involved in the synthesis of phytic acid identified candidate genes for the six barley mutants with low phytic acid through comparison with syntenic regions in sequenced genomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Brinch-Pedersen, H., Sørensen, L. D., & Holm, P. B. (2002). Engineering crop plant getting a handle on phosphate. Trends in Plant Science, 7, 118–125.

    Article  PubMed  CAS  Google Scholar 

  • Buchner, P., Takahashi, H., & Hawkesford, M. J. (2004). Plant sulphate transporters: Co-ordination of uptake, intracellular and long-distance transport. Journal of Experimental Botany, 55, 1765–1773. doi:10.1093/Jxb/Erh206.

    Article  PubMed  CAS  Google Scholar 

  • Dai, F., Wang, J. M., Zhang, S. H., Xu, Z. Z., & Zhang, G. P. (2007). Genotypic and environmental variation in phytic acid content and its relation to protein content and malt quality in barley. Food Chemistry, 105, 606–611. doi:10.1016/j.foodchem.2007.04.019.

    Article  CAS  Google Scholar 

  • Dorsch, J. A., Cook, A., Young, K. A., Anderson, J. M., Bauman, A. T., Volkmann, C. J., Murthy, P. P. N., & Raboy, V. (2003). Seed phosphorus and inositol phosphate phenotype of barley low phytic acid genotypes. Phytochemistry, 62, 691–706.

    Article  PubMed  CAS  Google Scholar 

  • Fu, J. M., Peterson, K., Guttieri, M., Souza, E., & Raboy, V. (2008). Barley (Hordeum vulgare L.) inositol monophosphatase: gene structure and enzyme characteristics. Plant Molecular Biology, 67, 629–642.

    Article  PubMed  CAS  Google Scholar 

  • Gillman, J. D., Pantalone, V. R., & Bilyeu, K. (2009). The low phytic acid phenotype in soybean line CX1834 is due to mutations in two homologs of the maize low phytic acid gene. The Plant Genome, 2, 179–190.

    Article  CAS  Google Scholar 

  • Guttieri, M., Bowen, D., Dorsch, J. A., Raboy, V., & Souza, E. (2003). Identification and characterization of a low phytic acid wheat. Crop Science, 44, 418–424.

    Article  Google Scholar 

  • Hanakahi, L. A., & West, S. C. (2002). Specific interaction of IP6 with human Ku70/80, the DNA-binding subunit of DNA-PK. EMBO Journal, 21, 2038–2044.

    Article  PubMed  CAS  Google Scholar 

  • Hitz, W. D., Carlson, T. J., Kerr, P. S., & Sebastian, S. A. (2002). Biochemical and molecular characterization of a mutation that confers a decreased raffinosaccharide and phytic acid phenotype on soybean seeds. Plant Physiology, 128, 650–660. doi:10.1104/Pp. 010585.

    Article  PubMed  CAS  Google Scholar 

  • Hotz, C., & Gibson, R. S. (2007). Traditional food-processing and preparation practices to enhance the bioavailability of micronutrients in plant-based diets. Journal of Nutrition, 137, 1097–1100.

    PubMed  CAS  Google Scholar 

  • Josefsen, L., Bohn, L., Sorensen, M. B., & Rasmussen, S. K. (2007). Characterization of a multifunctional inositol phosphate kinase from rice and barley belonging to the ATP-grasp superfamily. Gene, 397, 114–125.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S. I., Andaya, C. B., Goyal, S. S., & Tai, T. H. (2008a). The rice OsLpa1 gene encodes a novel protein involved in phytic acid metabolism. Theoretical and Applied Genetics, 117, 769–779.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S. I., Andaya, C. B., Newman, J. W., Goyal, S. S., & Tai, T. H. (2008b). Isolation and characterization of a low phytic acid rice mutant reveals a mutation in the rice orthologue of maize MIK. Theoretical and Applied Genetics, 117, 1291–1301.

    Article  PubMed  CAS  Google Scholar 

  • Klein, M., Burla, B., & Martinoia, E. (2006). The multidrug resistance-associated protein (MRP/ABCC) subfamily of ATP-binding cassette transporters in plants. FEBS Letters, 580, 1112–1122. doi:10.1016/j.febslet.2005.11.056.

    Article  PubMed  CAS  Google Scholar 

  • Kuwano, M., Ohyama, A., Tanaka, Y., Mimura, T., Takaiwa, F., & Yoshida, K. T. (2006). Molecular breeding for transgenic rice with low-phytic-acid phenotype through manipulating myo-inositol 3-phosphate synthase gene. Molecular Breeding, 18, 263–272.

    Article  CAS  Google Scholar 

  • Kuwano, M., Mimura, T., Takaiwa, F., & Yoshida, K. T. (2009). Generation of stable ‘low phytic acid’ transgenic rice through antisense repression of the 1d-myo-inositol 3-phosphate synthase gene (RINO1) using the 18-kDa oleosin promoter. Plant Biotechnology Journal, 7, 96–105.

    Article  PubMed  Google Scholar 

  • Larson, S. R., Young, K. A., Cook, A., Blake, T. K., & Raboy, V. (1998). Linkage mapping of two mutations that reduce phytic acid content of barley grain. Theoretical and Applied Genetics, 97, 141–146.

    Article  CAS  Google Scholar 

  • Larson, S. R., Rutger, J. N., Young, K. A., & Raboy, V. (2000). Isolation and genetic mapping of a non-lethal rice (Oryza sativa L.) low phytic acid 1 mutation. Crop Science, 40, 1397–1405.

    Article  CAS  Google Scholar 

  • Li, Y. C., Ledoux, D. R., & Veum, T. L. (2001a). Low phytic acid barley improves performance, bone mineralization, and phosphorus retention in turkey poults. Journal of Applied Poultry Research, 10, 178–185.

    Google Scholar 

  • Li, Y. C., Ledoux, D. R., Veum, T. L., Raboy, V., Zyla, K., & Wikiera, A. (2001b). Bioavailability of phosphorus in low phytic acid barley. Journal of Applied Poultry Research, 10, 86–91.

    Google Scholar 

  • Loewus, F. A., & Murthy, P. P. N. (2000). Myo-inositol metabolism in plants. Plant Science, 150, 1–19.

    Article  CAS  Google Scholar 

  • Lott, J. N. A., Ockenden, I., Raboy, V., & Batten, G. D. (2000). Phytic acid and phosphorus in crop seeds and fruits: a global estimate. Seed Science Research, 10, 11–33.

    CAS  Google Scholar 

  • Mendoza, C., Viteri, F. E., Lonnerdal, B., Young, K. A., Raboy, V., & Brown, K. H. (1998). Effect of genetically modified, low-phytic acid maize on absorption of iron from tortillas. American Journal of Clinical Nutrition, 68, 1123–1127.

    PubMed  CAS  Google Scholar 

  • Oliver, R. E., Yang, C., Hu, G., Raboy, V., & Zhang, M. (2009). Identification of PCR-based DNA markers flanking three low phytic acid mutant loci in barley. Journal of Plant Breeding and Crop Science, 1, 087–093.

    CAS  Google Scholar 

  • Oltmans, S. E., Fehr, W. R., Welke, G. A., & Cianzio, S. R. (2003). Inheritance of low-phytate phosphorus in soybean. Crop Science, 44, 433–435.

    Article  Google Scholar 

  • Overturf, K., Raboy, V., Cheng, Z. J., & Hardy, R. W. (2003). Mineral availability from barley low phytic acid grains in rainbow trout (Oncorhynchus mykiss) diets. Aquaculture Nutrition, 9, 239–246.

    Article  CAS  Google Scholar 

  • Raboy, A. (1997). Accumulation and storage of phosphate and minerals. In B. A. Larkins & I. K. Vasil (Eds.), Cellular and molecular biology of plant seed development (pp. 441–477). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Raboy, V. (2003). Myo-Inositol-1,2,3,4,5,6-hexakisphosphate. Phytochemistry, 64, 1033–1043.

    Article  PubMed  CAS  Google Scholar 

  • Raboy, V. (2007). The ABCs of low-phytate crops. Nature Biotechnology, 25, 874–875.

    Article  PubMed  CAS  Google Scholar 

  • Raboy, V. (2009). Approaches and challenges to engineering seed phytate and total phosphorus. Plant Science, 177, 281–296.

    Article  CAS  Google Scholar 

  • Raboy, V., Young, K. A., Dorsch, J. A., & Cook, A. (2001). Genetics and breeding of seed phosphorus and phytic acid. Journal of Plant Physiology, 158, 489–497.

    Article  CAS  Google Scholar 

  • Rasmussen, S. K., & Hatzack, F. (1998). Identification of two low-phytate barley (Hordeum vulgare L.) grain mutants by TLC and genetic analysis. Hereditas, 129, 107–112.

    Article  CAS  Google Scholar 

  • Roslinsky, V., Eckstein, P. E., Raboy, V., Rossnagel, B. G., & Scoles, G. J. (2007). Molecular marker development and linkage analysis in three low phytic acid barley (Hordeum vulgare) mutant lines. Molecular Breeding, 20, 323–330.

    Article  CAS  Google Scholar 

  • Safrany, S. T., Caffrey, J. J., Yang, X. N., & Shears, S. B. (1999). Diphosphoinositol polyphosphates: The final frontier for inositide research? Biological Chemistry, 380, 945–951.

    Article  PubMed  CAS  Google Scholar 

  • Saiardi, A., Sciambi, C., McCaffery, J. M., Wendland, B., & Snyder, S. H. (2002). Inositol pyrophosphates regulate endocytic trafficking. Proceedings of the National Academy of Sciences of the United States of America, 99, 14206–14211.

    Article  PubMed  CAS  Google Scholar 

  • Sasakawa, N., Sharif, M., & Hanley, M. R. (1995). Metabolism and biological-activities of inositol pentakisphosphate and inositol hexakisphosphate. Biochemical Pharmacology, 50, 137–146.

    Article  PubMed  CAS  Google Scholar 

  • Shi, J. R., Wang, H. Y., Wu, Y. S., Hazebroek, J., Meeley, R. B., & Ertl, D. S. (2003). The maize low-phytic acid mutant 1pa2 is caused by mutation in an inositol phosphate kinase gene. Plant Physiology, 131, 507–515.

    Article  PubMed  CAS  Google Scholar 

  • Shi, J. R., Wang, H. Y., Hazebroek, J., Ertl, D. S., & Harp, T. (2005). The maize low-phytic acid 3 encodes a myo-inositol kinase that plays a role in phytic acid biosynthesis in developing seeds. The Plant Journal, 42, 708–719.

    Article  PubMed  CAS  Google Scholar 

  • Shi, J. R., Wang, H. Y., Schellin, K., Li, B. L., Faller, M., Stoop, J. M., Meeley, R. B., Ertl, D. S., Ranch, J. P., & Glassman, K. (2007). Embryo-specific silencing of a transporter reduces phytic acid content of maize and soybean seeds. Nature Biotechnology, 25, 930–937.

    Article  PubMed  CAS  Google Scholar 

  • Stevenson-Paulik, J., Bastidas, R. J., Chiou, S. T., Frye, R. A., & York, J. D. (2005). Generation of phytate-free seeds in Arabidopsis through disruption of inositol polyphosphate kinases. Proceedings of the National Academy of Sciences of the United States of America, 102, 12612–12617.

    Article  PubMed  CAS  Google Scholar 

  • Strother, S. (1980). Homeostasis in germinating-seeds. Annals of Botany, 45, 217–218.

    CAS  Google Scholar 

  • Suzuki, M., Tanaka, K., Kuwano, M., & Yoshida, K. T. (2007). Expression pattern of inositol phosphate-related enzymes in rice (Oryza sartiva L.): Implications for the phytic acid biosynthetic pathway. Gene, 405, 55–64.

    Article  PubMed  CAS  Google Scholar 

  • Torabinejad, J., & Gillaspy, G. (2006). Functional genomics of inositol metabolism. In B. B. Biswas & A. L. Majumder (Eds.), Biology of inositols and phosphoinositides. New York: Springer.

    Google Scholar 

  • Xu, X. H., Zhao, H. J., Liu, Q. L., Frank, T., Engel, K. H., An, G. H., & Shu, Q. Y. (2009). Mutations of the multi-drug resistance-associated protein ABC transporter gene 5 result in reduction of phytic acid in rice seeds. Theoretical and Applied Genetics, 119, 75–83.

    Article  PubMed  CAS  Google Scholar 

  • York, J. D., Odom, A. R., Murphy, R., Ives, E. B., & Wente, S. R. (1999). A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science, 285, 96–100.

    Article  PubMed  CAS  Google Scholar 

  • Yuan, F. J., Zhao, H. J., Ren, X. L., Zhu, S. L., Fu, X. J., & Shu, Q. Y. (2007). Generation and characterization of two novel low phytate mutations in soybean (Glycine max L. Merr.). Theoretical and Applied Genetics, 115, 945–957.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, H. J., Liu, Q. L., Ren, X. L., Wu, D. X., & Shu, Q. Y. (2008). Gene identification and allele-specific marker development for two allelic low phytic acid mutations in rice (Oryza sativa L.). Molecular Breeding, 22, 603–612.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This project is supported by the Australian Grain Research and Development Corporation and DAFWA Australia-China Fund. Valuable suggestion from Professor Rudi Appels is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengdao Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Zhejiang University Press and Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Ye, H., Li, C., Bellgard, M., Lance, R., Wu, D. (2013). Genes Controlling Low Phytic Acid in Plants: Identifying Targets for Barley Breeding. In: Zhang, G., Li, C., Liu, X. (eds) Advance in Barley Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4682-4_16

Download citation

Publish with us

Policies and ethics