Advertisement

MicroRNAs in Cancer Stem Cells

  • Alexander SwarbrickEmail author
Chapter
  • 1.1k Downloads

Abstract

This chapter will address the emerging role for microRNAs in the control of cancer stem cell (CSC) biology. The concept of cancer stem cells is revolutionising our understanding of cancer cell biology. There is increasing evidence for a central role of microRNAs in control of the normal and malignant stem cell phenotype. This new understanding promises to open new avenues in cancer prognosis and therapy.

Keywords

Cancer Stem Cell Mouse Embryonic Stem Cell Normal Stem Cell Cancer Stem Cell Marker Stem Cell Phenotype 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Alex Swarbrick is the recipient of an Early Career Fellowship from the National Breast Cancer Foundation Australia.

References

  1. 1.
    Allan AL, Vantyghem SA, Tuck AB, Chambers AF (2006) Tumor dormancy and cancer stem cells: implications for the biology and treatment of breast cancer metastasis. Breast Dis 26:87–98PubMedGoogle Scholar
  2. 2.
    Boiko AD, Razorenova OV, van de Rijn M, Swetter SM, Johnson DL, Ly DP, Butler PD, Yang GP, Joshua B, Kaplan MJ, et al (2010) Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271. Nature 466:133–137PubMedCrossRefGoogle Scholar
  3. 3.
    Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737PubMedCrossRefGoogle Scholar
  4. 4.
    Chang T-C, Yu D, Lee Y-S, Wentzel EA, Arking DE, West KM, Dang CV, Thomas-Tikhonenko A, Mendell JT (2008) Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 40:43–50PubMedCrossRefGoogle Scholar
  5. 5.
    Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, Feldmann G, Yamakuchi M, Ferlito M, Lowenstein CJ, et al (2007) Transactivation of miR-34a by p53 Broadly Influences Gene Expression and Promotes Apoptosis. Mol Cell 26:745–752PubMedCrossRefGoogle Scholar
  6. 6.
    Charafe-Jauffret E, Ginestier C, Birnbaum D (2009) Breast cancer stem cells: tools and models to rely on. BMC Cancer 9:202PubMedCrossRefGoogle Scholar
  7. 7.
    Chen CR, Kang Y, Massague J (2001) Defective repression of c-myc in breast cancer cells: A loss at the core of the transforming growth factor beta growth arrest program. Proceedings of the National Academy of Sciences of the United States of America 98, pp 992–999Google Scholar
  8. 8.
    Chen CZ, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303:83–86PubMedCrossRefGoogle Scholar
  9. 9.
    Cicalese A, Bonizzi G, Pasi CE, Faretta M, Ronzoni S, Giulini B, Brisken C, Minucci S, Di Fiore PP, Pelicci PG (2009) The Tumor Suppressor p53 Regulates Polarity of Self-Renewing Divisions in Mammary Stem Cells. Cell 138:1083–1095PubMedCrossRefGoogle Scholar
  10. 10.
    Dalerba P, Clarke MF (2007) Cancer stem cells and tumor metastasis: first steps into uncharted territory. Cell Stem Cell 1:241–242PubMedCrossRefGoogle Scholar
  11. 11.
    Dean M, Levine RA, Ran W, Kindy MS, Sonenshein GE, Campisi J (1986) Regulation of c-myc transcription and mRNA abundance by serum growth factors and cell contact. J Biol Chem 261:9161–9166PubMedGoogle Scholar
  12. 12.
    Dykxhoorn DM, Wu Y, Xie H, Yu F, Lal A, Petrocca F, Martinvalet D, Song E, Lim B, Lieberman J (2009) miR-200 enhances mouse breast cancer cell colonization to form distant metastases. PLoS ONE 4:e7181PubMedCrossRefGoogle Scholar
  13. 13.
    Elenbaas B, Spirio L, Koerner F, Fleming MD, Zimonjic DB, Donaher JL, Popescu NC, Hahn WC, Weinberg RA (2001) Human breast cancer cells generated by oncogenic transformation of primary mammary epithelial cells. Genes Dev 15:50–65PubMedCrossRefGoogle Scholar
  14. 14.
    Eminli S, Foudi A, Stadtfeld M, Maherali N, Ahfeldt T, Mostoslavsky G, Hock H, Hochedlinger K (2009) Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells. Nat Genet 41:968–976PubMedCrossRefGoogle Scholar
  15. 15.
    Ferretti E, De Smaele E, Miele E, Laneve P, Po A, Pelloni M, Paganelli A, Di Marcotullio L, Caffarelli E, Screpanti I, et al (2008) Concerted microRNA control of Hedgehog signalling in cerebellar neuronal progenitor and tumour cells. EMBO J 27:2616–2627PubMedCrossRefGoogle Scholar
  16. 16.
    Fusco A, Fedele M (2007) Roles of HMGA proteins in cancer. Nat Rev Cancer 7:899–910PubMedCrossRefGoogle Scholar
  17. 17.
    Garzia L, Andolfo I, Cusanelli E, Marino N, Petrosino G, De Martino D, Esposito V, Galeone A, Navas L, Esposito S, et al (2009) MicroRNA-199b-5p impairs cancer stem cells through negative regulation of HES1 in medulloblastoma. PLoS ONE 4:e4998PubMedCrossRefGoogle Scholar
  18. 18.
    Godlewski J, Nowicki MO, Bronisz A, Williams S, Otsuki A, Nuovo G, Raychaudhury A, Newton HB, Chiocca EA, Lawler S (2008) Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res 68:9125–9130PubMedCrossRefGoogle Scholar
  19. 19.
    Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10:593–601PubMedCrossRefGoogle Scholar
  20. 20.
    Hallahan AR, Pritchard JI, Hansen S, Benson M, Stoeck J, Hatton BA, Russell TL, Ellenbogen RG, Bernstein ID, Beachy PA, et al (2004) The SmoA1 mouse model reveals that notch signaling is critical for the growth and survival of sonic hedgehog-induced medulloblastomas. Cancer Res 64:7794–7800PubMedCrossRefGoogle Scholar
  21. 21.
    Harrison H, Farnie G, Brennan KR, Clarke RB (2010) Breast cancer stem cells: something out of notching? Cancer Res 70:8973–8976PubMedCrossRefGoogle Scholar
  22. 22.
    Heo I, Joo C, Cho J, Ha M, Han J, Kim VN (2008) Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. Mol Cell 32: 276–284PubMedCrossRefGoogle Scholar
  23. 23.
    Heo I, Joo C, Kim Y-K, Ha M, Yoon M-J, Cho J, Yeom K-H, Han J, Kim VN (2009) TUT4 in Concert with Lin28 Suppresses MicroRNA Biogenesis through Pre-MicroRNA Uridylation. Cell 138:696–708PubMedCrossRefGoogle Scholar
  24. 24.
    Hong H, Takahashi K, Ichisaka T, Aoi T, Kanagawa O, Nakagawa M, Okita K, Yamanaka S (2009) Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature 460:1132–1135PubMedCrossRefGoogle Scholar
  25. 25.
    Houbaviy HB, Murray MF, Sharp PA (2003) Embryonic stem cell-specific MicroRNAs. Dev Cell 5:351–358PubMedCrossRefGoogle Scholar
  26. 26.
    Ibarra I, Erlich Y, Muthuswamy SK, Sachidanandam R, Hannon GJ (2007) A role for microRNAs in maintenance of mouse mammary epithelial progenitor cells. Genes Dev 21:3238–3243PubMedCrossRefGoogle Scholar
  27. 27.
    Iliopoulos D, Hirsch HA, Struhl K (2009) An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell 139:693–706PubMedCrossRefGoogle Scholar
  28. 28.
    Ivey KN, Muth A, Arnold J, King FW, Yeh RF, Fish JE, Hsiao EC, Schwartz RJ, Conklin BR, Bernstein HS, et al (2008) MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell Stem Cell 2:219–229PubMedCrossRefGoogle Scholar
  29. 29.
    Ji J, Yamashita T, Budhu A, Forgues M, Jia HL, Li C, Deng C, Wauthier E, Reid LM, Ye QH, et al (2009a) Identification of microRNA-181 by genome-wide screening as a critical player in EpCAM-positive hepatic cancer stem cells. Hepatology 50:472–480CrossRefGoogle Scholar
  30. 30.
    Ji Q, Hao X, Meng Y, Zhang M, Desano J, Fan D, Xu L (2008) Restoration of tumor suppressor miR-34 inhibits human p53-mutant gastric cancer tumorspheres. BMC Cancer 8:266PubMedCrossRefGoogle Scholar
  31. 31.
    Ji Q, Hao X, Zhang M, Tang W, Yang M, Li L, Xiang D, Desano JT, Bommer GT, Fan D, et al (2009b) MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS ONE 4:e6816CrossRefGoogle Scholar
  32. 32.
    Jiang J, Hui CC (2008) Hedgehog signaling in development and cancer. Dev Cell 15:801–812PubMedCrossRefGoogle Scholar
  33. 33.
    Kanellopoulou C, Muljo SA, Kung AL, Ganesan S, Drapkin R, Jenuwein T, Livingston DM, Rajewsky K (2005) Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev 19:489–501PubMedCrossRefGoogle Scholar
  34. 34.
    Kawamura T, Suzuki J, Wang YV, Menendez S, Morera LB, Raya A, Wahl GM, Belmonte JC (2009) Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature 460:1140–1144PubMedCrossRefGoogle Scholar
  35. 35.
    Korpal M, Lee ES, Hu G, Kang Y (2008) The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 283:14910–14914PubMedCrossRefGoogle Scholar
  36. 36.
    Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T (2007) Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 39:673–677PubMedCrossRefGoogle Scholar
  37. 37.
    Kumar MS, Pester RE, Chen CY, Lane K, Chin C, Lu J, Kirsch DG, Golub TR, Jacks T (2009) Dicer1 functions as a haploinsufficient tumor suppressor. Genes Dev 23:2700–2704PubMedCrossRefGoogle Scholar
  38. 38.
    Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367:645–648PubMedCrossRefGoogle Scholar
  39. 39.
    Li Y, VandenBoom TG, 2nd Kong D, Wang Z, Ali S, Philip PA, Sarkar FH (2009) Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer Res 69:6704–6712PubMedCrossRefGoogle Scholar
  40. 40.
    Lindeman GJ, Visvader JE (2010) Insights into the cell of origin in breast cancer and breast cancer stem cells. Asia Pac J Clin Oncol 6:89–97PubMedCrossRefGoogle Scholar
  41. 41.
    Liu S, Dontu G, Mantle ID, Patel S, Ahn N-s, Jackson KW, Suri P, Wicha MS (2006) Hedgehog Signaling and Bmi-1 Regulate Self-renewal of Normal and Malignant Human Mammary Stem Cells. Cancer Res 66:6063–6071PubMedCrossRefGoogle Scholar
  42. 42.
    Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, et al (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838PubMedCrossRefGoogle Scholar
  43. 43.
    Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, et al (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715PubMedCrossRefGoogle Scholar
  44. 44.
    Melton C, Judson RL, Blelloch R (2010) Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature 463:621–626PubMedCrossRefGoogle Scholar
  45. 45.
    Mendell JT (2005) MicroRNAs: critical regulators of development, cellular physiology and malignancy. Cell Cycle 4:1179–1184PubMedCrossRefGoogle Scholar
  46. 46.
    Meyer M, Fleming J, Ali M, Pesesky M, Ginsburg E, Vonderhaar B (2009) Dynamic regulation of CD24 and the invasive, CD44posCD24neg phenotype in breast cancer cell lines. Breast Cancer Res 11:R82PubMedCrossRefGoogle Scholar
  47. 47.
    Morel AP, Lievre M, Thomas C, Hinkal G, Ansieau S, Puisieux A (2008) Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS ONE 3:e2888PubMedCrossRefGoogle Scholar
  48. 48.
    Murchison EP, Partridge JF, Tam OH, Cheloufi S, Hannon GJ (2005). Characterization of Dicer-deficient murine embryonic stem cells. PNAS 102:12135–12140PubMedCrossRefGoogle Scholar
  49. 49.
    O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435:839–843PubMedCrossRefGoogle Scholar
  50. 50.
    Park IK, Morrison SJ, Clarke MF (2004) Bmi1, stem cells, and senescence regulation. J Clin Invest 113:175–179PubMedGoogle Scholar
  51. 51.
    Park SM, Gaur AB, Lengyel E, Peter ME (2008) The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev 22:894–907PubMedCrossRefGoogle Scholar
  52. 52.
    Polyak K. Haviv I, Campbell IG (2009) Co-evolution of tumor cells and their microenvironment. Trends in Genetics 25:30–38PubMedCrossRefGoogle Scholar
  53. 53.
    Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ (2008) Efficient tumour formation by single human melanoma cells. Nature 456:593–598PubMedCrossRefGoogle Scholar
  54. 54.
    Rajasekhar VK, Begemann M (2007) Concise review: roles of polycomb group proteins in development and disease: a stem cell perspective. Stem Cells 25:2498–2510PubMedCrossRefGoogle Scholar
  55. 55.
    Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N, Bentwich Z, Oren M (2007) Transcriptional Activation of miR-34a Contributes to p53-Mediated Apoptosis. Mol Cell 26:731–743PubMedCrossRefGoogle Scholar
  56. 56.
    Roesch A, Fukunaga-Kalabis M, Schmidt EC, Zabierowski SE, Brafford PA, Vultur A, Basu D, Gimotty P, Vogt T, Herlyn M (2010) A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell 141:583–594PubMedCrossRefGoogle Scholar
  57. 57.
    Seitz H, Royo H, Bortolin M-L, Lin S-P, Ferguson-Smith AC, Cavaille J (2004) A Large Imprinted microRNA Gene Cluster at the Mouse Dlk1-Gtl2 Domain. Genome Res 14:1741–1748PubMedCrossRefGoogle Scholar
  58. 58.
    Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P, Qian D, Diehn M, Liu H, Panula SP, Chiao E, et al (2009) Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 138:592–603PubMedCrossRefGoogle Scholar
  59. 59.
    Shipitsin M, Campbell LL, Argani P, Weremowicz S, Bloushtain-Qimron N, Yao J, Nikolskaya T, Serebryiskaya T, Beroukhim R, Hu M, et al (2007) Molecular definition of breast tumor heterogeneity. Cancer Cell 11:259–273PubMedCrossRefGoogle Scholar
  60. 60.
    Singh A, Settleman J (2010) EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29:4741–4751PubMedCrossRefGoogle Scholar
  61. 61.
    Somervaille TC, Matheny CJ, Spencer GJ, Iwasaki M, Rinn JL, Witten DM, Chang HY, Shurtleff SA, Downing JR, Cleary ML (2009) Hierarchical maintenance of MLL myeloid leukemia stem cells employs a transcriptional program shared with embryonic rather than adult stem cells. Cell Stem Cell 4:129–140PubMedCrossRefGoogle Scholar
  62. 62.
    Stadtfeld M, Apostolou E, Akutsu H, Fukuda A, Follett P, Natesan S, Kono T, Shioda T, Hochedlinger K (2010) Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature 465:175–181PubMedCrossRefGoogle Scholar
  63. 63.
    Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K (2008) Induced pluripotent stem cells generated without viral integration. Science 322:945–949PubMedCrossRefGoogle Scholar
  64. 64.
    Suh N, Baehner L, Moltzahn F, Melton C, Shenoy A, Chen J, Blelloch R (2010) MicroRNA Function Is Globally Suppressed in Mouse Oocytes and Early Embryos. Current Biol 20:271–277CrossRefGoogle Scholar
  65. 65.
    Swarbrick A, Woods SL, Shaw A, Balakrishnan A, Phua Y, Nguyen A, Chanthery Y, Lim L, Ashton LJ, Judson RL, et al (2010). miR-380-5p represses p53 to control cellular survival and is associated with poor outcome in MYCN-amplified neuroblastoma. Nat Med 16:1134–1140CrossRefGoogle Scholar
  66. 66.
    Taipale J, Beachy PA (2001) The Hedgehog and Wnt signalling pathways in cancer. Nature 411:349–354PubMedCrossRefGoogle Scholar
  67. 67.
    Thiery JP, Acloque H, Huang RY, Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139:871–890PubMedCrossRefGoogle Scholar
  68. 68.
    Varambally S, Cao Q, Mani RS, Shankar S, Wang X, Ateeq B, Laxman B, Cao X, Jing X, Ramnarayanan K, et al (2008) Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 322:1695–1699PubMedCrossRefGoogle Scholar
  69. 69.
    Viswanathan SR, Daley GQ, Gregory RI (2008) Selective blockade of microRNA processing by Lin28. Science 320:97–100PubMedCrossRefGoogle Scholar
  70. 70.
    Wang Y, Baskerville S, Shenoy A, Babiarz JE, Baehner L, Blelloch R (2008) Embryonic stem cell-specific microRNAs regulate the G1-S transition and promote rapid proliferation. Nat Genet 40:1478–1483PubMedCrossRefGoogle Scholar
  71. 71.
    Wang Y, Medvid R, Melton C, Jaenisch R, Blelloch R (2007) DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat Genet 39:380–385PubMedCrossRefGoogle Scholar
  72. 72.
    Wellner U, Schubert J, Burk UC, Schmalhofer O, Zhu F, Sonntag A, Waldvogel B, Vannier C, Darling D, zur Hausen A, et al (2009) The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol 11:1487–1495PubMedCrossRefGoogle Scholar
  73. 73.
    Wong P, Iwasaki M, Somervaille TC, Ficara F, Carico C, Arnold C, Chen CZ, Cleary ML (2010) The miR-17–92 microRNA polycistron regulates MLL leukemia stem cell potential by modulating p21 expression. Cancer Res 70:3833–3842PubMedCrossRefGoogle Scholar
  74. 74.
    Yin G, Chen R, Alvero AB, Fu HH, Holmberg J, Glackin C, Rutherford T, Mor G (2010) TWISTing stemness, inflammation and proliferation of epithelial ovarian cancer cells through MIR199A2/214. Oncogene 29:3545–3553PubMedCrossRefGoogle Scholar
  75. 75.
    Yu F, Deng H, Yao H, Liu Q, Su F, Song E (2010) Mir-30 reduction maintains self-renewal and inhibits apoptosis in breast tumor-initiating cells. Oncogene 29:4194–4204PubMedCrossRefGoogle Scholar
  76. 76.
    Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, Huang Y, Hu X, Su F, Lieberman J, et al (2007) let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131:1109–1123PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Garvan Institute of Medical Research,DarlinghurstAustralia

Personalised recommendations