MicroRNAs and Other Non-Coding RNAs: Implications for Cancer Patients

  • Reinhold Munker
  • George A. CalinEmail author


The discovery of microRNAs (miRNAs) has shed new light on the role of RNA in gene regulation. MiRNAs are small molecules (size, 19–22 nucleotides) that do not encode proteins but interfere with translation and transcription, thereby regulating gene expression. Multiple miRNAs are dysregulated in human cancer, supporting the hypothesis that miRNAs are involved in the initiation and progression of cancer. Prototypic malignancies in which a role for miRNAs has been demonstrated include chronic lymphocytic leukemia, multiple myeloma, cutaneous T-cell lymphoma and mantle cell lymphoma. More research is necessary, but miRNAs have already improved our understanding of the pathogenesis of cancer. MiRNAs measured in bodily fluids, especially plasma, may be useful as biomarkers for cancer. Beyond miRNAs, several thousand other non-coding (also called ultraconserved) RNAs may be important in the pathogenesis and prognosis of cancer. Some ultraconserved non-coding RNAs interfere with signal transduction by modifying chromatin structures, but most are not yet well characterized. MiRNAs and other non-coding RNAs may be useful for the gene therapy of cancer.


Multiple Myeloma Chronic Lymphocytic Leukemia Mantle Cell Lymphoma Myeloma Cell Line miRNA Signature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



G.A.C. is supported as a Fellow at The University of Texas MD Anderson Research Trust, as a Fellow of The University of Texas System Regents Research Scholar program and by the CLL Global Research Foundation. Work in Dr Calin’s laboratory is supported in part by the National Institutes of Health (including MD Anderson’s Cancer Center Support Grant, CA016672), by a Department of Defense Breast Cancer Idea Award, by Developmental Research Awards in Breast Cancer, Ovarian Cancer and Leukemia Specialized Programs of Research Excellence, by a CTT/3I-TD grant and by a 2009 Seena Magowitz—Pancreatic Cancer Action Network—AACR Pilot Grant. R.M. is supported by Louisiana State University, Shreveport (sabbatical leave). Sunita C. Patterson helped with editing.


  1. 1.
    Calin GA, Dumitru C, Shimizu M, et al (2002) Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99:15524–15529PubMedCrossRefGoogle Scholar
  2. 2.
    Lu J, Getz G, Miska EA, et al (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838PubMedCrossRefGoogle Scholar
  3. 3.
    Volinia S, Calin GA, Liu CG, et al (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103:2257–2261PubMedCrossRefGoogle Scholar
  4. 4.
    Calin GA, Sevignani C, Dumitru CD, et al (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101:2999–3004PubMedCrossRefGoogle Scholar
  5. 5.
    Munker R, Calin GA (2011) MicroRNAs and Cancer. Encyclopedia of Life Science. doi: 10.1002/9780470015902.a0023161Google Scholar
  6. 6.
    Zhou H, Huang X, Cui H, et al (2010) miR-155 and its star form partner miR-155* cooperatively regulate type I interferon production by human plasmacytoid dendritic cells. Blood 116:5885–5894PubMedCrossRefGoogle Scholar
  7. 7.
    Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of MicroRNA biogenesis, function and decay. Nature Rev Genet 11:597–610PubMedGoogle Scholar
  8. 8.
    Calin GA, Dumitru C, Shimizu M, et al (2002) Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99:15524–15529PubMedCrossRefGoogle Scholar
  9. 9.
    Calin GA, Ferracin M, Cimmino A, et al (2005) MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353:1793–1801PubMedCrossRefGoogle Scholar
  10. 10.
    Scalione BJ, Salerno E, Balan M, et al (2007) Murine models of chronic lymphocytic leukaemia: role of microRNA-16 in the New Zealand black mouse model. Br J Haematol 139: 645–657CrossRefGoogle Scholar
  11. 11.
    Klein U, Lia M, Crespo M, et al (2010) The DLEU2/miR-15a/16-1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell 17:28–40PubMedCrossRefGoogle Scholar
  12. 12.
    Santanam U, Zanesi N, Efanov A, et al (2010) Chronic lymphocytic leukemia modeled in mouse by targeted miR-29 expression. Proc Natl Acad Sci USA 107:12210–12215PubMedCrossRefGoogle Scholar
  13. 13.
    Ferracin M, Zagatti B, Rizotto L, et al (2010) MicroRNAs involvement in fludarabine refractory chronic lymphocytic leukemia. Molecular Cancer 9:123PubMedCrossRefGoogle Scholar
  14. 14.
    Fabbri M, Bottoni A, Shimizu M, et al (2011) Association of a microRNA/TP53 feedback circuitry with the pathogenesis and outcome of B-chronic lymphocytic leukemia. J Am Med Assoc 305:59–67CrossRefGoogle Scholar
  15. 15.
    Calin GA, Croce CM (2009) Chronic lymphocytic leukemia: interplay between noncoding RNAs and protein-coding genes. Blood 114:4761–4770PubMedCrossRefGoogle Scholar
  16. 16.
    Lőffler D, Brocke-Heidrich K, Pfeifer G, et al (2007) Interleukin-6 dependent survival of multiple myeloma cells involves the Stat3-mediated induction of micro-RNA-21 through a highly-conserved enhancer. Blood 110:1330–1333PubMedCrossRefGoogle Scholar
  17. 17.
    Pichiorri F, Su SS, Ladetto M, et al (2008) MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis. Proc Natl Acad Sci USA 105:12885–12890PubMedCrossRefGoogle Scholar
  18. 18.
    Pichiorri F, Su SS, Rocci A, et al (2010) Downregulation of p53-inducible microRNAs 192, 194, and 215 impairs the p53/MDM2 autoregulatory loop in multiple myeloma development. Cancer Cell 18:367–381PubMedCrossRefGoogle Scholar
  19. 19.
    Lionetti L, Agnelli L, Mosca L, et al (2009) Integrative high-resolution microarray analysis of human myeloma cell lines reveals deregulated miRNA expression associated with allelic imbalances and gene expression profiles. Genes Chromosom Cancer 48:521–531PubMedCrossRefGoogle Scholar
  20. 20.
    Todoerti K, Barbui V, Pedrini O, et al (2010) Pleiotropic antimyeloma activity of ITF2355; inhibition of interleukin-6 receptor signaling and repression of miR-19a and miR-19b. Haematologica 95:260–269PubMedCrossRefGoogle Scholar
  21. 21.
    Roccaro AM, Sacco A, Thompson B, et al (2009) MicroRNAs 15a and 16 regulate tumor proliferation in multiple myeloma. Blood 113:6669–6680PubMedCrossRefGoogle Scholar
  22. 22.
    Zhou Y, Chen L, Barlogie B, et al (2010) High-risk myeloma is associated with global elevation of miRNAs and overexpression of EIF2C2/AGO2. Proc Natl Acad Sci USA 107:7904–7909PubMedCrossRefGoogle Scholar
  23. 23.
    Ballabio E, Mitchell T, van Kester MS, et al (2010) MicroRNA expression in Sézary syndrome: identification, function and diagnostic potential. Blood 116:1105–1113PubMedCrossRefGoogle Scholar
  24. 24.
    Zhao JJ, Lin J, Lwin T, et al (2010) microRNA expression profile and identification of miR-29 as a prognostic marker and pathogenetic factor by targeting CDK6 in mantle cell lymphoma. Blood 115:2630–2639PubMedCrossRefGoogle Scholar
  25. 25.
    Di Lisio L, Gómez-López G, Sanchez-Beato M, et al (2010) Mantle cell lymphoma: transcriptional regulation by microRNAs. Leukemia 24:1335–1342PubMedCrossRefGoogle Scholar
  26. 26.
    Mitchell PS, Parkin RK, Kroh EM, et al (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 105:10513–10518PubMedCrossRefGoogle Scholar
  27. 27.
    Ng EKO, Chong WWS, Jin H, et al (2009) Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening. Gut 58:1375–1381PubMedCrossRefGoogle Scholar
  28. 28.
    Silva J, Garcỉa V, Zaballos Ấ, et al (2010) Vesicle-related microRNAs in plasma of NSCLC patients and correlation with survival. Eur Resp J Express E-pub. (July 2010) doi:10.1183/09031936.00029610Google Scholar
  29. 29.
    Li A, Omura N, Hong SM, et al (2010) Pancreatic cancers epigenetically silence SIP1 and hypomethylate and overexpress miR-200a/200b in association with elevated circulating miR-200a and miR-200b levels. Cancer Res 70:5226–5237PubMedCrossRefGoogle Scholar
  30. 30.
    Heneghan HM, Miller N, Kelly R, et al (2010) Systemic miRNA-195 differentiates breast cancer from other malignancies and is a potential biomarker for detecting noninvasive and early stage disease. Oncologist 15:673–682PubMedCrossRefGoogle Scholar
  31. 31.
    Weber JA, Baxter DH, Zhang S, et al (2010) The MicroRNA spectrum in 12 body fluids. Clin Chem 56:1733–1741PubMedCrossRefGoogle Scholar
  32. 33.
    Malecová B, Morris KV (2010) Transcriptional gene silencing mediated by non-coding RNAs. Curr Opin Mol Ther 12:214–222PubMedGoogle Scholar
  33. 33.
    Calin GA, Liu CG, Ferracin M, et al (2007) Ultraconserved regions encoding ncRNAs are altered in human leukemias and carcinomas. Cancer Cell 12:215–229PubMedCrossRefGoogle Scholar
  34. 34.
    Lujambio A, Portela A, Liz J, et al (2010) CpG island hypermethylation-associated silencing of non-coding RNAs transcribed from ultraconserved regions in human cancer. Oncog 29:6390–6401CrossRefGoogle Scholar
  35. 35.
    Huarte M, Rinn JL (2010) Large non-coding RNAs: missing links in cancer? Hum Molec Genetics 19:R152–R161CrossRefGoogle Scholar
  36. 36.
    Ji P, Diederichs S, Wang W, et al (2003) MALAT-1, a novel noncoding RNA, and thymosin β4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncog 22:8031–8041CrossRefGoogle Scholar
  37. 37.
    Lin R, Maeda S, Liu C, et al (2007) A large noncoding RNA is a marker for murine hepatocellular carcinomas and a spectrum of human carcinomas. Oncog 26:851–858CrossRefGoogle Scholar
  38. 38.
    Fellenberg J, Barnd L, Delling G, et al (2007) Prognostic significance of drug-related genes in high-grade osteosarcoma. Modern Pathol 20:1085–1094CrossRefGoogle Scholar
  39. 39.
    Tano K, Mizuno R, Okada T, et al (2010) MALAT-1 enhances cell motility of lung adenocarcinoma cells by influencing the expression of motility-related genes. FEBS Lett 584:4575–4580PubMedCrossRefGoogle Scholar
  40. 40.
    Gupta RA, Shah N, Wang KC, et al (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464:1071–1076PubMedCrossRefGoogle Scholar
  41. 41.
    Yoshimizu T, Miroglio A, Ripoche MA, et al (2008) The H19 locus acts in vivo as a tumor suppressor. Proc Natl Acad Sci USA 105:12417–12422PubMedCrossRefGoogle Scholar
  42. 42.
    Sirchia SM, Tabano S, Monti L, et al (2009) Misbehaviour of XIST RNA in breast cancer cells. PLoS 4:5559Google Scholar
  43. 43.
    Parrott AM, Tsai M, Batchu P, et al (2010) The evolution and expression of the snaR family of small non-coding RNAs. Nucl Ac Res E-pub 39: 1485–1500 Google Scholar
  44. 44.
    Mestdagh P, Fredlund E, Pattyn F, et al (2010) An integrative genomics screen uncovers ncRNA T-UCR functions in neuroblastoma tumours. Oncogene 29:3583–3592PubMedCrossRefGoogle Scholar
  45. 45.
    Chung S, Nakagawa H, Uemura M, et al (2011) Association of a novel long non-coding RNA in 8q24 with prostate cancer susceptibility. Cancer Sci 102:245–252PubMedCrossRefGoogle Scholar
  46. 46.
    Matouk IJ, Abbasi I, Hochberg A, et al (2009) Highly upregulated in liver cancer noncoding RNA is overexpressed in hepatic colorectal metastasis. Eur J Gastroenterol Hepatol 21:688–692PubMedCrossRefGoogle Scholar
  47. 47.
    Romanuik TL, Wang G, Morozowa O, et al (2010) LNCaP atlas: gene expression associated with in vivo progression to castration-recurrent prostate cancer. BMC Medical Genomics 3:43PubMedCrossRefGoogle Scholar
  48. 48.
    Braconi C, Valeri N, Kogure T, et al (2011) Expression and functional role of a transcribed noncoding RNA with an ultraconserved element in hepatocellular carcinoma. Proc Natl Acad Sci USA 108:786–791PubMedCrossRefGoogle Scholar
  49. 49.
    Li Y, Guessous F, Zhang Y, et al (2009) MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes. Cancer Res 69:7569–7576PubMedCrossRefGoogle Scholar
  50. 50.
    Wiggins JF, Ruffino L, Kelnar K, et al (2010) Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res 70:5923–5930PubMedCrossRefGoogle Scholar
  51. 51.
    Elyakim E, Sitbon E, Faerman A, et al (2010) hsa-miR-191 is a candidate oncogene target for hepotocellular carcinoma therapy. Cancer Res 70:8077–8087PubMedCrossRefGoogle Scholar
  52. 52.
    Lanford RE, Hildebrandt-Eriksen ES, Petri A, et al (2010) Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 327:198–201PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.The University of Texas MD Anderson Cancer CenterHoustonUSA
  2. 2.Louisiana State UniversityShreveportUSA

Personalised recommendations