Skip to main content

Cancer Stem Cells

  • Chapter
  • First Online:
  • 964 Accesses

Abstract

The most attractive targets in cancer research include telomere territory and cancer stem cells (CSCs). Both paradigms reflect an interactive manner, involvement of genes and functions. Telomeres have the key role in genetic instability, cell cycle regulation, and cellular senescence. By focusing on the signaling cascade and cell cycle regulation in normal cells and cancer cells, interaction between telomere, telomerase in stem cells seems to be rather complicated. This could predict the fate of cellular proliferation. By considering aging, the timing and speed are the key elements for telomere shortening, and ever-lasting proliferative capacity of cancer stem cells. In embryonic stem cells (ESCs), telomerase is activated and maintains telomere length and cellular immortality. While the telomere and telomerase findings are promising, the genomic reprogramming cells using induced pluripotent stem (iPS) cells in regenerative medicine is extremely vital. This chapter will give an update on current knowledge of telomere function and telomerase activity in stem cells during cancer formation. A network of ‘telomere-telomerase- cancer stem cells’ may translate the required facts for a fundamental cancer drug development in future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akiyoshi T, Nakamura M, Koga K, Nakashima H, Yao T, Tsuneyoshi M, Tanaka M, Katano M (2006) Gli1, down regulated in colorectal cancers, inhibits proliferation of colon cancer cells involving Wnt signalling activation. Gut 55:991–999

    Article  PubMed  CAS  Google Scholar 

  • Al-Hajj M, Clarke MF (2004) Self-renewal and solid tumor stem cells. Oncogene 23:7274–7282

    Article  PubMed  CAS  Google Scholar 

  • Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988

    Article  PubMed  CAS  Google Scholar 

  • Allan AL, Vantyghem SA, Tuck AB, Chambers AF (2007) Tumor dormancy and cancer stem cells: implications for the biology and treatment of breast cancer metastasis. Breast Dis 26:87–98

    Google Scholar 

  • Allsopp RC, Morin GB, DePinho R, Harley CB, Weissman IL (2003) Telomerase is required to slow telomere shortening and extend replicative lifespan of HSCs during serial transplantation. Blood 102:517–520

    Article  PubMed  CAS  Google Scholar 

  • Aoudjit F, Vuori K (2001) Integrin signaling inhibits paclitaxelinduced apoptosis in breast cancer cells. Oncogene 20:4995–5004

    Article  PubMed  CAS  Google Scholar 

  • Armanios M, Greider CW (2005) Telomerase and cancer stem cells. Cold Spring Harb Symp Quant Biol 70:205–208

    Article  PubMed  CAS  Google Scholar 

  • Armanios MY, Chen JJ, Cogan JD, Alder JK, Ingersoll RG, Markin C, Lawson WE, et al (2007) Telomerase mutations in families with idiopathic pulmonary fibrosis. New Engl J Med 356:1317–1326

    Article  PubMed  CAS  Google Scholar 

  • Armstrong L, Saretzki G, Peters H, Wappler I, Evans J, Hole N, von Zglinicki T, Lako M (2005) Overexpression of telomerase confers growth advantage, stress resistance and enhanced differentiation of ESCs toward the hematopoietic lineage. Stem Cells 23:516–529

    Article  PubMed  CAS  Google Scholar 

  • Bapat SA (2007) Evolution of cancer stem cells. Semin Cancer Biol 17:204–213

    Article  PubMed  CAS  Google Scholar 

  • Baumann P, Cremers N, Kroese F, Orend G, Chiquet-Ehrismann R, Uede T, Yagita H, Sleeman JP (2005) CD24 expression causes the acquisition of multiple cellular properties associated with tumor growth and metastasis. Cancer Res 65:10783-10793

    Article  PubMed  CAS  Google Scholar 

  • Begus-Nahrmann Y et al (2009) P53 deletion impairs clearance of chromosomal-instable stem cells in aging telomere-dysfunctional mice. Nat Genet 41:1138–1143

    Article  PubMed  CAS  Google Scholar 

  • Blasco MA (2005) Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet 6:611–622

    Article  PubMed  CAS  Google Scholar 

  • Bollmann FM (2008). The many faces of telomerase: emerging extratelomeric effects. Bioessays 30:728–732

    Google Scholar 

  • Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737

    Article  PubMed  CAS  Google Scholar 

  • Brennan SK, Wang Q, Tressler R, Harley C, Go N, et al (2010) Telomerase inhibition targets clonogenic multiple myeloma cells through telomere length-dependent and independent mechanisms. PLoS ONE 5(9):e12487. doi:10.1371/journal.pone.0012487

    Article  Google Scholar 

  • Chin SE, Artandi Q, Shen A et al (1999) P53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 97:527–538

    Article  PubMed  CAS  Google Scholar 

  • Clarke MF, Fuller M (2006) Stem cells and cancer: two faces of eve. Cell 124:1111–1115

    Article  PubMed  CAS  Google Scholar 

  • Collins AT, Berry PA, Hyde C, Stower MJ, Maitland MJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65:10946–10951

    Article  PubMed  CAS  Google Scholar 

  • Cooke HJ, Smith BA (1986). Variability at the telomeres of the human X/Y pseudoautosomal region. Cold Spring Harb Symp Quant Biol 51:213–219

    Google Scholar 

  • Diévart A, Beaulieu N, Jolicoeur P (1999) “Involvement of Notch1 in the development of mouse mammary tumors”. Oncogene 18(44):5973–5981

    Article  PubMed  Google Scholar 

  • Discovery (2011) Overactive breast cancer genes. J Clin Invest (www.ivanhoe.com)

    Google Scholar 

  • Dontu G, Jackson KW, McNicholas E, Kawamura MJ, Abdallah WM, Wicha MS (2004) Role of notch signaling in cell-fate determination of human mammary stem/progenitor cells. Brest Cancer Research 6:R605–R615

    Article  CAS  Google Scholar 

  • Ferron SR, Marques-Torrejon MA, Mira H et al (2009) Telomere shortening in neural stem cells disrupts neuronal differentiation and neuritogenesis J. Neurosci 29:14394–14407

    Article  CAS  Google Scholar 

  • Fillmore CM, Kuperwasser C (2008) Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res 10:R25

    Article  Google Scholar 

  • Flores MA, Blasco A (2009) p53-dependent response limits epidermal stem cell functionality and organismal size in mice with short telomeres. PLoS ONE 4:4934

    Article  Google Scholar 

  • Galli, R. et al (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64:7011–7021

    Article  PubMed  CAS  Google Scholar 

  • Gibbs CP et al (2005) Stem-like cells in bone sarcomas: implications for tumorigenesis. Neoplasia 7:967–976

    Article  PubMed  CAS  Google Scholar 

  • Greenberg P, Cox C, LeBeau MM et al (1997) International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 89:2079–2088

    PubMed  CAS  Google Scholar 

  • Haik S, Gauthier LR, Granotier C, Peyrin JM, Lages CS, Dormont D, Boussin FD (2000) Fibroblast growth factor 2 up regulates telomerase activity in neural precursor cells. Oncogene 19:2957–2966

    Article  PubMed  CAS  Google Scholar 

  • Harrington L (2004) Does the reservoir for self-renewal stem from the ends? Oncogene 23:7283–7289

    Article  PubMed  CAS  Google Scholar 

  • Haupt Y, Bath ML, Harris AW, Adams JM (1993) “bmi-1 transgene induces lymphomas and collaborates with myc in tumorigenesis”. Oncogene 8:3161–3164

    PubMed  CAS  Google Scholar 

  • Hemmati HD Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH et al (2003) Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA 100:15178–15183

    Article  PubMed  CAS  Google Scholar 

  • Herrera E, Samper E, Martín-Caballero J, Flores JM, Lee HW, Blasco MA (1999) Disease states associated with telomerase deficiency appear earlier in mice with short telomeres. EMBO J 18:2950–2960

    Article  PubMed  CAS  Google Scholar 

  • Hiyama E, Hiyama K (2007) Telomere and telomerase in stem cells. British j cancer 96:1020–1024

    Article  CAS  Google Scholar 

  • Hiyama E, Hiyama K, Tatsumoto N, Kodama T, Shay JW, Yokoyama T (1996) Telomerase activity in human intestine. Int J Oncol 9:453–458

    PubMed  CAS  Google Scholar 

  • Hiyama K, Hirai Y, Kyoizumi S, Akiyama M, Hiyama E, Piatyszek MA et al (1995) Activation of telomerase in human lymphocytes and hematopoietic progenitor cells. J Immunol 155:3711–3715

    PubMed  CAS  Google Scholar 

  • Horiguchi K, Toi M, Horiguchi SI, Sugimoto M, Naito Y, Hayashi Y, Ueno T, et al (2010) Predictive value of CD24 and CD44 for neoadjuvant chemotherapy response and prognosis in primary breast cancer patients. J Med Dent Sci 57:165–175

    PubMed  Google Scholar 

  • Hough MR, Rosten PM, Sexton TL, Kay R, Humphries RK (1994) Mapping of CD24 and homologous sequences to multiple chromosomal loci. Genomics 22:154–161 (http://www.genomeweb.com/problem-cd24 http://www.genecards.org/cgi-bin/carddisp.pl?gene=CD44. http://www.ncbi.nlm.nih.gov/gene/934)

    Article  PubMed  CAS  Google Scholar 

  • Ignatova TN et al (2002) Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia 39:193–206

    Article  PubMed  Google Scholar 

  • Joseph I, Tressler R, Bassett E, Harley C, Buseman CM et al (2010) The telomerase inhibitor imetelstat depletes cancer stem cells in breast and pancreatic cancer cell lines. Cancer Res 70:9494–9504

    Article  PubMed  CAS  Google Scholar 

  • Jothy S (2003) CD44 and its partners in metastasis. Clin Exp Metastas 20:195–201

    Article  CAS  Google Scholar 

  • Kim H, Kim M Ahn S, Son B, Kim S, Jung K, et al (2009) Do stem cell markers have significant implication in breast cancer? Immunohistochemical study for CD44 and CD24. Cancer Research 69(2) (Supplement 1 Abstract nr 5058)

    Google Scholar 

  • Kim HJ, Kim MJ, Ahn SH, Son BH, Kim SB, Ahn JH, Noh WC, Gong G (2011) Different prognostic significance of CD24 and CD44 expression in breast cancer according to hormone receptor status. Breast 20:78–85

    Article  PubMed  Google Scholar 

  • Kristiansen G, Winzer KJ, Mayordomo E, Bellach J, Schlüns K, Denkert C, Dahl E, Pilarsky C, Altevogt P, Guski H, Dietel M (2003a) CD24 expression is a new prognostic marker in breast cancer. Clin Cancer Res 9:4906–4913

    CAS  Google Scholar 

  • Kristiansen G, Schlüns K, Yongwei Y, Denkert C, Dietel M, Petersen I (2003b) CD24 is an independent prognostic marker of survival in nonsmall cell lung cancer patients. Br J Cancer 88:231–236

    Article  CAS  Google Scholar 

  • Lafferty-Whyte K, Cairney CJ, Will MB, Serakinci N, Daidone MG, Zaffaroni N, Bilsland A, Keith WN (2009) A gene expression signature classifying telomerase and ALT immortalization reveals an hTERT regulatory network and suggests a mesenchymal stem cell origin for ALT. Oncogene 28:3765–3774

    Article  PubMed  CAS  Google Scholar 

  • Lapidot T, Sirard C, Vormoor J et al (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367:645–648

    Article  PubMed  CAS  Google Scholar 

  • Lee HE, Kim JH, Kim YJ, Choi SY, Kim SW, Kang E, Chunget I Y, et al (2011) An increase in cancer stem cell population after primary systemic therapy is a poor prognostic factor in breast cancer. British J Cancer 104:1730–1738

    Article  CAS  Google Scholar 

  • Lee HW, Blasco MA, Gottlieb GJ, Horner JW 2nd, Greider CW, DePinho RA (1998) Essential role of mouse telomerase in highly proliferative organs. Nature 392:569–574

    Article  PubMed  CAS  Google Scholar 

  • Levings PP et al(2009) Expression of an exogenous human Oct-4 promoter identifies tumor-initiating cells in osteosarcoma. Cancer Res 69, 5648–5655

    Article  PubMed  CAS  Google Scholar 

  • Liu L, DiGirolamo CM, Navarro PA, Blasco MA, Keefe DL (2004) Telomerase deficiency impairs differentiation of mesenchymal stem cells. Exp Cell Res 294:1–8

    Article  PubMed  CAS  Google Scholar 

  • Lü XQ, Suo Z, Ma CL, Xu KJ, Liu YS, Li HX (2009) Quantity and distribution of CD44+ /CD24 cells in breast cancer tissue and the cell lines 38:441–444

    Google Scholar 

  • Ma T, Nolan KF, Walsh LA, Tone Y, Thompson SAJ, Waldmann H (1999) Structure and chromosomal location of mouse and human CD52 genes. Biochimica et Biophysica Acta 1446:334–340

    Article  Google Scholar 

  • Marhaba R, Zöller M (2004) CD44 in cancer progression: adhesion, migration and growth regulation. J Mol Histol 35:211–231

    Article  PubMed  CAS  Google Scholar 

  • Mason PJ, Wilson DB, Bessler M (2005) Dyskeratosis congenita—a disease of dysfunctional telomere maintenance. Curr Mol Med 5:159–170

    Article  PubMed  CAS  Google Scholar 

  • McEachern MJ, Krauskopf A, Blackburn EH (2000) Telomeres and their control. Annu Rev Genet 34:331–358

    Article  PubMed  CAS  Google Scholar 

  • Meirelles Lda S, Nardi NB.(2003) Murine marrow-derived mesenchymal stem cell: isolation, in vitro expansion, and characterization. Br J Haematol 123:702–711

    Article  Google Scholar 

  • Merlo LMF, Maley CC (2010) The role of genetic diversity in cancer. J Clin Invest 120:401–403

    Article  PubMed  CAS  Google Scholar 

  • Molofsky AV, Pardal R, Iwashita T, Park IK, Clarke MF, Morrison SJ (2003) Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 425:962–967

    Article  PubMed  CAS  Google Scholar 

  • Morrison SJ, Prowse KR, Ho P, Weissman IL (1996) Telomerase activity in hematopoietic cells is associated with self-renewal potential. Immunity 5:207–216

    Article  PubMed  CAS  Google Scholar 

  • Nagano O, Saya H (2004) Mechanism and biological significance of CD44 cleavage. Cancer Sci 95:930–935

    Article  PubMed  CAS  Google Scholar 

  • Nakshatri H, Srour EF, Badve S (2009) Breast cancer stem cell and intrinsic subtypes: contraversis rage on. Curr Stem Cell Res Ther 4:50–60

    Article  PubMed  CAS  Google Scholar 

  • Naor D, Sionov RV, Ish-Shalom D (1997) CD44: structure, function, and association with the malignant process. Adv Cancer Res 71:241–319

    Article  PubMed  CAS  Google Scholar 

  • Naor D, Nedvetzki S, MelnikIG L, Faitelson Y (2002) CD44 in cancer. Clin Lab Sci 39:527–579

    Article  CAS  Google Scholar 

  • National Institutes of Health (2012) U.S. department of health and human services. Available at http://stemcells.nih.gov/info/basics/basics10.2012

    Google Scholar 

  • Norman ES, RA DePinho (2004) Telomeres stem cells, senescence, and cancer. J Clin Invest 113:160–168

    Google Scholar 

  • Ohyashiki JH, Sashida G, Tauchi T, Ohyashiki K (2002) Telomeres and telomerase in hematologic neoplasia. Oncogene 21:680–687

    Article  PubMed  CAS  Google Scholar 

  • Park IK, Qian D, Kiel M, Becker MW, Pihalja M, Weissman IL et al (2003) Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423:302–305

    Article  PubMed  CAS  Google Scholar 

  • Park SY, Gönen M, Kim HJ, Michor F, Polyak K (2010) Cellular and genetic diversity in the progression of in situ human breast carcinomas to an invasive phenotype. J Clin Inves 120:636–644

    Article  CAS  Google Scholar 

  • Pathak S, Multani AS, Furlong CL, Sohn SH (2002) Telomere dynamics, aneuploidy, stem cells, and cancer. Int J Oncol 20:637–641

    PubMed  CAS  Google Scholar 

  • Patrawala L, Calhoun T, Schneider-Broussard R, et al (2006) Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 25:1696–1708

    Article  PubMed  CAS  Google Scholar 

  • Polyak K, Weinberg R A (2009) Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 9:265–273

    Article  PubMed  CAS  Google Scholar 

  • Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74

    Article  PubMed  CAS  Google Scholar 

  • Reid R, Muslimani A, Downing L, Wills SM, Fennell T, Marples B, Decker D, et al (2010) Expression of CD24 and CD44 tumor cells in breast cancer patients who received neoadjuvant therapy. J Clin Oncol 28 (Suppl; Abstract e21051)

    Google Scholar 

  • Rudolph KL Chang S, Lee HW, Blasco M, Gottlieb GJ, Greider C, DePinho RA (1999) Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96:701–712

    Article  PubMed  CAS  Google Scholar 

  • Sagiv E, Arber N (2008) The novel oncogene CD24 and its arising role in the carcinogenesis of the GI tract: from research to therapy. Expert Rev Gastroenterol Hepato 2:125–33

    Article  CAS  Google Scholar 

  • Shackleton M, Quintana E, Fearon ER, Morrison SJ (2009) Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell 138:822–829

    Article  PubMed  CAS  Google Scholar 

  • Shammas MA, Koley H, Bertheau RC, Neri P, Fulciniti M, et al (2008) Telomerase inhibitor GRN163L inhibits myeloma cell growth in vitro and in vivo. Leukemia 22:1410

    Article  PubMed  CAS  Google Scholar 

  • She M, Chen X (2009) Targeting signal pathways active in cancer stem cells to overcome drug resistance. Chin J Lung Cancer 12:3–7

    CAS  Google Scholar 

  • Sheridan C, H Kishimoto, Fuchs RK, Mehrotra S, Bhat-Nakshatri P, Turner CH, Goulet Jr R, Badve S, Nakshatri H (2006) CD44+ /CD24 breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Research 8:R59

    Article  Google Scholar 

  • Silvestre DC, Pineda JR, Hoffschir F, Studler JM, Mouthon MA, Pflumio F, Junier MP, Chneiweiss H, Boussin FD (2011) Alternative lengthening of telomeres in human glioma stem cells. Stem cell 29:440–451

    Article  CAS  Google Scholar 

  • Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828

    PubMed  CAS  Google Scholar 

  • Suer S, Nechiporchik N, Burger A (2011) Targeting the self-renewal capacity of cancer stem cells with the telomere eradicating agent KML001. 2011 world stem cell summit. The Pasadena Convention Center, Pasadena, CA. Poster #: 12

    Google Scholar 

  • Tanei T, Morimoto K, Shimazu K, Kim SJ, Tanji Y, Taguchi T, Tamaki Y, Noguchi S (2009) Association of breast cancer stem cells identified by aldehyde dehydrogenase 1 expression with resistance to sequential Paclitaxel and epirubicin-based chemotherapy for breast cancers. Clin Cancer Res 15:4234–4241

    Article  PubMed  CAS  Google Scholar 

  • Thomson T, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS et al (1998) Blastocysts embryonic stem cell lines derived from human. Science 282:1145–1147

    Article  PubMed  CAS  Google Scholar 

  • Vaziri H, Schachter F, Uchida I, Wei L, Zhu X, Effros R, Cohen D, Harley CB (1993) Loss of telomeric DNA during aging of normal and trisomy 21 human lymphocytes. Am J Hum Genet 52:661–667

    PubMed  CAS  Google Scholar 

  • Vilborg A, Bersani C, Wilhelm MT, Wiman KG (2011) The p53 target Wig-1: A regulator of mRNA stability and stem cell fate? Cell Death Differ 18:1434–1440

    Article  PubMed  CAS  Google Scholar 

  • Wang KH, Kao AP, Chang CC, Lee JN, Chai CY, Hou MF, Liu CM and Tsai EM (2010) Modulation of tumorigenesis and oestrogen receptor-α expression by cell culture conditions in a stem cell-derived breast epithelial cell line. Biology of the Cell 102:159–172

    Article  PubMed  CAS  Google Scholar 

  • Wong KK Maser RS, Bachoo RM, Menon J, Carrasco DR, Gu Y, Alt FW, DePinho RA (2003) Telomere dysfunction and Atm deficiency compromises organ homeostasis and accelerates ageing. Nature 421:643–648

    Article  PubMed  CAS  Google Scholar 

  • Wright MH, Calcagno AM, Salcido CD, Carlson MD, Ambudkar SV, Varticovski L (2008) Brca1 breast tumors contain distinct CD44+ /CD24 and CD133+ cells with cancer stem cell characteristics. Breast Cancer Research 10:R10 (http://breast-cancer research.com/content/10/1/R10)

    Google Scholar 

  • Wright WE, Shay JW (2005) Telomere biology in aging and cancer. J Am Geriatr Soc 53:S292–S294

    Article  PubMed  Google Scholar 

  • Yin H, Glass J (2011) The phenotypic radiation resistance of CD44+/CD24 or low breast cancer Cells Is mediated through the enhanced activation of ATM signaling. PLoS ONE 6:e24080. doi:10.1371/journal.pone.0024080

    Google Scholar 

  • Ying NJ, Chambers I, Smith A (2003) BMP induction of Id proteins Suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115:281–292

    Article  PubMed  CAS  Google Scholar 

  • Yu, J et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  PubMed  CAS  Google Scholar 

  • Zglinicki T, Lako M (2005) Overexpression of telomerase confers growth advantage, stress resistance, and enhanced differentiation of ESCs toward the hematopoietic lineage. Stem Cells 23:516–529

    Article  Google Scholar 

  • Zhang J, Ju Z (2010) Telomere, DNA damage, and oxidative stress in stem cell aging. Birth Defects Res C Embry Today 90:297–307

    Article  CAS  Google Scholar 

  • Zwaka JA, Thompson T(2010). Homologous recombination in human embryonic stem cells. Nature Biotechnology 21: 319–32

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Mehdipour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mehdipour, P., Parsa, N. (2013). Cancer Stem Cells. In: Mehdipour, P. (eds) Telomere Territory and Cancer. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4632-9_7

Download citation

Publish with us

Policies and ethics