Some Reflections on Intermittent Hypoxia. Does it Constitute the Translational Niche for Carotid Body Chemoreceptor Researchers?

  • Constancio GonzalezEmail author
  • Sara Yubero
  • M. Angela Gomez-Niño
  • Teresa Agapito
  • Asuncion Rocher
  • Ricardo Rigual
  • Ana Obeso
  • Jose M. Montserrat
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 758)


The views presented in this article are the fruit of reflections and discussion with my colleagues at Valladolid and with the members of the Sleep Apnea Hypopnea Syndrome Group of the CIBERES (Spain). We have assembled the article in three sections. In the first one we provide a mechanistic description of obstructive sleep apnea (OSA) and all of its components, including the repetitive episodes of upper airways (UA) obstruction and accompanying hypoxic hypoxia, the respiratory efforts to fight and overcome the obstruction, and the sleep fragmentation due to the hypoxia-triggered arousal reactions, all events occurring during sleep hours with frequencies that might reach up >40–50 episodes/sleep hour. When OSA is accompanied by some of the elements of a big cohort of associated pathologies (vascular, metabolic, and neuropsychiatric) it conforms the obstructive sleep apnea syndrome (OSAS). The high frequency of OSAS in adults (>35 years old) and the costs in every regard of the treatment makes the syndrome a primary importance socio-sanitary problem. In the second section, we describe the experimental models of OSAS, basically the episodic repetitive hypoxic model described by Fletcher and coworkers in 1992, today named in short intermittent hypoxia (IH). From these lines, we want to call for some kind of consensus among researchers to lessen the dispersion of IH protocols. Finally, in the last section we intend to share our optimism with all ISAC members. The optimism is based on the recognition that carotid body (CB) chemoreceptors are critical elements of one of the main pathophysiologic loops in the genesis of OSAS. Therefore, we believe that all of us, as ISAC members, are well qualified to contribute in multidisciplinary research teams with well defined translational interests.


Carotid body Intermittent hypoxia Obstructive sleep apnea Obstructive sleep apnea syndrome Translational research 



Supported by the MICINN grant (BFU2007-61848) and Accion Integrada PT2009-0172 and ICiii-CIBERES CB06/06/0050.


  1. Almendros I, Montserrat JM, Torres M, Gonzalez C, Navajas D, Farré R (2010) Changes in oxygen partial pressure of brain tissue in an animal model of obstructive apnea. Respir Res 11:3CrossRefPubMedGoogle Scholar
  2. Almendros I, Farré R, Planas AM, Torres M, Bonsignore MR, Navajas D, Montserrat JM (2011) Tissue oxygenation in brain, muscle, and fat in a rat model of sleep apnea: differential effect of obstructive apneas and intermittent hypoxia. Sleep 34:1127–1133PubMedGoogle Scholar
  3. Banno K, Ramsey C, Walld R, Kryger MH (2009) Expenditure on health care in obese women with and without sleep apnea. Sleep 32(2):247–252PubMedGoogle Scholar
  4. Bao G, Randhawa PM, Fletcher EC (1997) Acute blood pressure elevation during repetitive hypocapnic and eucapnic hypoxia in rats. J Appl Physiol 82(4):1071–1078PubMedGoogle Scholar
  5. Bickelmann AG, Burwell CS, Robin ED, Whaley RD (1956) Extreme obesity associated with alveolar hypoventilation; a pickwickian syndrome. Am J Med 21:811–818CrossRefPubMedGoogle Scholar
  6. Chasens ER, Weaver TE, Umlauf MG (2003) Insulin resistance and obstructive sleep apnea: is increased sympathetic stimulation the link? Biol Res Nurs 5(2):87–96CrossRefPubMedGoogle Scholar
  7. Chaudhary B, Dasti S, Park Y, Brown T, Davis H, Akhtar B (1998) Hour-to-hour variability of oxygen saturation in sleep apnea. Chest 113(3):719–722CrossRefPubMedGoogle Scholar
  8. Costes F, Court-Fortune I, Fournel P, Vergnon JM, Emonot A, Geyssant A (1995) Study of chemosensitivity in patients believed to have sleep apnea syndrome. Rev Mal Respir 12:359–364PubMedGoogle Scholar
  9. Del Rio R, Moya EA, Iturriaga R (2010) Carotid body and cardiorespiratory alterations in intermittent hypoxia: the oxidative link. Eur Respir J 361:143–150Google Scholar
  10. Dempsey JA, Harms CA, Morgan BJ, Badr MS, Skatrud JB (1997) Sleep effects on breathing and breathing stability. In: Crystal RG, West JB, Weibel ER, Barnes PJ (eds) The lung: scientific foundations. Philadelphia, Lippincott-Raven, pp 2063–2072Google Scholar
  11. Eisele DW, Schwartz AR, Smith PL (2003) Tongue neuromuscular and direct hypoglossal nerve stimulation for obstructive sleep apnea. Otolaryngol Clin North Am 36(3):501–510CrossRefPubMedGoogle Scholar
  12. Fletcher EC (2003) Sympathetic over activity in the etiology of hypertension of obstructive sleep apnea. Sleep 26(1):15–19PubMedGoogle Scholar
  13. Fletcher EC, Lesske J, Behm R, Miller CC 3rd, Stauss H, Unger T (1992a) Carotid chemoreceptors, systemic blood pressure, and chronic episodic hypoxia mimicking sleep apnea. J Appl Physiol 72:1978–1984PubMedGoogle Scholar
  14. Fletcher EC, Lesske J, Qian W, Miller CC 3rd, Unger T (1992b) Repetitive, episodic hypoxia causes diurnal elevation of blood pressure in rats. Hypertension 19:555–561CrossRefPubMedGoogle Scholar
  15. Fletcher EC, Bao G, Miller CC 3rd (1995) Effect of recurrent episodic hypocapnic, eucapnic, and hypercapnic hypoxia on systemic blood pressure. J Appl Physiol 78(4):1516–1521PubMedGoogle Scholar
  16. García-Río F, Racionero MA, Pino JM, Martínez I, Ortuño F, Villasante C, Villamor J (2000) Sleep apnea and hypertension. Chest 117:1417–1425CrossRefPubMedGoogle Scholar
  17. Gastaut H, Tassinari CA, Duron B (1965) Polygraphic study of diurnal and nocturnal (hypnic and respiratory) episodal manifestations of Pickwick syndrome. Rev Neurol (Paris) 112(6):568–579Google Scholar
  18. Gonzalez C, Almaraz L, Obeso A, Rigual R (1994) Carotid body chemoreceptors: from natural stimuli to sensory discharges. Physiol Rev 74:829–898PubMedGoogle Scholar
  19. Gonzalez-Martín MC, Vega-Agapito V, Prieto-Lloret J, Agapito MT, Castañeda J, Gonzalez C (2009) Effects of intermittent hypoxia on blood gases plasma catecholamine and blood pressure. Adv Exp Med Biol 648:319–328CrossRefPubMedGoogle Scholar
  20. Gonzalez-Martín MC, Vega-Agapito MV, Conde SV, Castañeda J, Bustamante R, Olea E, Perez-Vizcaino F, Gonzalez C, Obeso A (2011) Carotid body function and ventilatory responses in intermittent hypoxia evidence for anomalous brainstem integration of arterial chemoreceptor input. J Cell Physiol 226(8):1961–1969CrossRefPubMedGoogle Scholar
  21. Greenberg HE, Sica A, Batson D, Scharf SM (1999) Chronic intermittent hypoxia increases sympathetic responsiveness to hypoxia and hypercapnia. J Appl Physiol 86:298–305PubMedGoogle Scholar
  22. Guilleminault C, Eldridge FL, Dement WC (1973) Insomnia with sleep apnea: a new syndrome. Science 181(102):856–858CrossRefPubMedGoogle Scholar
  23. Hamrahi H, Stephenson R, Mahamed S, Liao KS, Horner RL (2001) Selected contribution: regulation of sleep-wake states in response to intermittent hypoxic stimuli applied only in sleep. J Appl Physiol 90(6):2490–2501PubMedGoogle Scholar
  24. Kimoff RJ, Brooks D, Horner RL, Kozar LF, Render-Teixeira CL, Champagne V, Mayer P, Phillipson EA (1997) Ventilatory and arousal responses to hypoxia and hypercapnia in a canine model of obstructive sleep apnea. Am J Respir Crit Care Med 156:886–894PubMedGoogle Scholar
  25. Kline DD (2010) Chronic intermittent hypoxia affects integration of sensory input by neurons in the nucleus tractus solitarii. Respir Physiol Neurobiol 174(1–2):29–36CrossRefPubMedGoogle Scholar
  26. Kubin L, Davies RO, Pack AI (1998) Control of upper airway motoneurons during REM sleep. News Physiol Sci 13:91–97PubMedGoogle Scholar
  27. Lesske J, Fletcher EC, Bao G, Unger T (1997) Hypertension caused by chronic intermittent hypoxia–influence of chemoreceptors and sympathetic nervous system. J Hypertens 15:1593–1603CrossRefPubMedGoogle Scholar
  28. Ling L, Fuller DD, Bach KB, Kinkead R, Olson EB Jr, Mitchell GS (2001) Chronic intermittent hypoxia elicits serotonin-dependent plasticity in the central neural control of breathing. J Neurosci 21:5381–5388PubMedGoogle Scholar
  29. Marcus CL, Gozal D, Arens R, Basinski DJ, Omlin KJ, Keens TG, Ward SL (1994) Ventilatory responses during wakefulness in children with obstructive sleep apnea. Am J Respir Crit Care Med 149:715–721PubMedGoogle Scholar
  30. Martínez-García MA, Durán-Cantolla J, Montserrat JM (2010) Sleep apnea-hypopnea syndrome in the elderly. Arch Bronconeumol 46(9):479–488CrossRefPubMedGoogle Scholar
  31. Montserrat JM, Kosmas EN, Cosio MG, Kimoff RJ (1996) Mechanism of apnea lengthening across the night in obstructive sleep apnea. Am J Respir Crit Care Med 154:988–993PubMedGoogle Scholar
  32. Morrison DL, Launois SH, Isono S, Feroah TR, Whitelaw WA, Remmers JE (1993) Pharyngeal narrowing and closing pressures in patients with obstructive sleep apnea. Am Rev Respir Dis 148(3):606–611CrossRefPubMedGoogle Scholar
  33. O’Halloran KD, McGuire M, Bradford A (2007) Respiratory plasticity following chronic intermittent hypercapnic hypoxia in conscious rats. In: Strbak V (ed) Medimond SRl Proceedings of the Joint Meeting of the Slovak Physiological Society the Physiological Society and the Federation of European Physiological Societies, Italy, pp 99–103Google Scholar
  34. Osanai S, Akiba Y, Fujiuchi S, Nakano H, Matsumoto H, Ohsaki Y, Kikuchi K (1999) Depression of peripheral chemosensitivity by a dopaminergic mechanism in patients with obstructive sleep apnoea syndrome. Eur Respir J 13:418–423CrossRefPubMedGoogle Scholar
  35. Peng YJ, Overholt JL, Kline D, Kumar GK, Prabhakar NR (2003) Induction of sensory long-term facilitation in the carotid body by intermittent hypoxia: implications for recurrent apneas. Proc Natl Acad Sci U S A 100:10073–10078CrossRefPubMedGoogle Scholar
  36. Peng YJ, Yuan G, Ramakrishnan D, Sharma SD, Bosch-Marce M, Kumar GK, Semenza GL, Prabhakar NR (2006) Heterozygous HIF-1alpha deficiency impairs carotid body-mediated systemic responses and reactive oxygen species generation in mice exposed to intermittent hypoxia. J Physiol 577:705–716CrossRefPubMedGoogle Scholar
  37. Rey S, Del Rio R, Alcayaga J, Iturriaga R (2004) Chronic intermittent hypoxia enhances cat chemosensory and ventilatory responses to hypoxia. J Physiol 560 (Pt 2):577–586Google Scholar
  38. Row BW, Kheirandish L, Neville JJ, Gozal D (2002) Impaired spatial learning and hyperactivity in developing rats exposed to intermittent hypoxia. Pediatr Res 52(3):449–453CrossRefPubMedGoogle Scholar
  39. Row BW, Goldbart A, Gozal E, Gozal D (2003) Spatial pre-training attenuates hippocampal impairments in rats exposed to intermittent hypoxia. Neurosci Lett 339(1):67–71CrossRefPubMedGoogle Scholar
  40. Ryan CM, Bradley TD (2005) Pathogenesis of obstructive sleep apnea. J Appl Physiol 99(6):2440–2450CrossRefPubMedGoogle Scholar
  41. Sateia MJ (2003) Neuropsychological impairment and quality of life in obstructive sleep apnea. Clin Chest Med 24(2):249–259CrossRefPubMedGoogle Scholar
  42. Teran-Santos J, Jimenez-Gomez A, Cordero-Guevara J (1999) The association between sleep apnea and the risk of traffic accidents cooperative group Burgos-Santander. N Engl J Med 340(11):847–851CrossRefPubMedGoogle Scholar
  43. Torre-Bouscoulet L, Castorena-Maldonado A, Baños-Flores R, Vázquez-García JC, Meza-Vargas MS, Pérez-Padilla R (2007) Agreement between oxygen desaturation index and apnea-hypopnea index in adults with suspected obstructive sleep apnea at an altitude of 2240 m. Arch Bronconeumol 43(12):649–654CrossRefPubMedGoogle Scholar
  44. Van Lunteren E (1997) Upper airway effects on breathing. In: Crystal RG, West JB, Weibel ER, Barnes PJ (eds) The lung: scientific foundations. Philadelphia, Lippincott-Raven, pp 2073–2084Google Scholar
  45. Wilcox I, McNamara SG, Dodd MJ, Sullivan CE (1998) Ventilatory control in patients with sleep apnoea and left ventricular dysfunction: comparison of obstructive and central sleep apnoea. Eur Respir J 11:7–13CrossRefPubMedGoogle Scholar
  46. Zoccal DB, Simms AE, Bonagamba LG, Braga VA, Pickering AE, Paton JF, Machado BH (2008) Increased sympathetic outflow in juvenile rats submitted to chronic intermittent hypoxia correlates with enhanced expiratory activity. J Physiol 586:3253–3265CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Constancio Gonzalez
    • 1
    • 2
    Email author
  • Sara Yubero
    • 1
    • 2
  • M. Angela Gomez-Niño
    • 1
    • 2
  • Teresa Agapito
    • 1
    • 2
  • Asuncion Rocher
    • 1
    • 2
  • Ricardo Rigual
    • 1
    • 2
  • Ana Obeso
    • 1
    • 2
  • Jose M. Montserrat
    • 1
    • 3
  1. 1.CIBER Enfermedades RespiratoriasValladolidSpain
  2. 2.Department of Biochemistry and Molecular Biology and Physiology, and IBGMUniversidad de Valladolid and CSICValladolidSpain
  3. 3.Laboratori de la SonPneumologia Hospital Clínic-IDIBAPSBarcelonaSpain

Personalised recommendations