Effect of Chronic Caffeine Intake on Carotid Body Catecholamine Dynamics in Control and Chronically Hypoxic Rats

  • Silvia V. CondeEmail author
  • Ana Obeso
  • Emília C. Monteiro
  • Constancio Gonzalez
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 758)


Caffeine is the most commonly psychoactive drug, an habitual drink in high altitude sporting, and when acutely taken, it causes profound alterations in carotid body (CB) function and ventilation via adenosine receptors antagonism. In the present work we have investigated the effects of chronic caffeine ingestion in catecholamine (CA) dynamics in the carotid body of control and chronic hypoxic rats. Four groups of animals were used: normoxic (N), caffeine-treated normoxic (1 mg/mL in drinking water 15 days; CafN), chronic hypoxic (CH, 12%O2, 15 days) and chronically hypoxic-caffeine-treated (CafH).. Caffeine intake in controls rats did not modify CA content, synthesizing, and releasing responses, and the expression of tyrosine hydroxylase. CH increased dopamine content, synthesis, and basal and acute hypoxia-induced release; chronic caffeine ingestion augmented CH effects. Findings indicate that chronic caffeine ingestion in normoxic rats did not modify dopamine dynamics at the CB, but increases dopaminergic system during chronic hypoxia.


Catecholamines Carotid body Caffeine Chronic hypoxia 



We want to thank Mª de los Llanos Bravo for technical assistance. The work was supported by BFU2007-61848 (DGICYT), JCyL-GR242, CIBER (FISS-ICiii) and Spanish MEC/Portugal CRUP 2009–0172.


  1. Aranda JV, Turmen T (1979) Metylxanthines in apnea of prematurity. Clin Prerinatol 6:87–108Google Scholar
  2. Bairam A, Boutroy MJ, Badonnel Y, Vert P (1987) Theophylline versus caffeine: comparative effects in treatment of idiophatic apnea in the preterm infant. J Pediatr 110:636–639PubMedCrossRefGoogle Scholar
  3. Conde SV, Obeso A, Vicario I, Rigual R, Rocher A, Gonzalez C (2006a) Caffeine inhibition of rat carotid body chemoreceptors is mediated by A2A and A2B adenosine receptors. J Neurochem 98:616–628PubMedCrossRefGoogle Scholar
  4. Conde SV, Obeso A, Rigual R, Monteiro EC, Gonzalez C (2006b) Function of rat carotid body chemoreceptors in ageing. J Neurochem 99:711–723PubMedCrossRefGoogle Scholar
  5. Conde SV, Gonzalez C, Batuca JR, Monteiro EC, Obeso A (2008) An antagonistic interaction between A2B adenosine and D2 dopamine receptors modulates the function of rat carotid body chemoreceptor cells. J Neurochem 107:1369–1381PubMedCrossRefGoogle Scholar
  6. Conde SV, Nunes da Silva T, Gonzalez C, Mota CM, Monteiro EC, Guarino MP (2012) Chronic caffeine intake decreases circulating catecholamines and prevents diet induced insulin resistance and hypertension in rats. Br J Nutr 107:86–95Google Scholar
  7. Eldridge FL, Milhorn DE, Waldrop TG, Kiley JP (1983) Mechanism of respiratory effects of methylxanthines. Respir Physiol 53:239–261PubMedCrossRefGoogle Scholar
  8. Fredholm BB, Battig K, Holemn J, Nehlig A, Zvartau EE (1999) Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 51:83–133PubMedGoogle Scholar
  9. Gasior M, Jaszyma M, Munzar P, Witkin J, Goldberg SR (2002) Caffeine potentiates the discriminative–stimulus effects of nicotine in rats. Psycopharmacol 162:385–395CrossRefGoogle Scholar
  10. Gauda EB, Northington FJ, Linden J, Rosin DL (2000) Differential expression of a(2a), A(1)-adenosine and D(2)-dopamine receptor genes in rat peripheral arterial chemoreceptors during postnatal development. Brain Res 872:1–10PubMedCrossRefGoogle Scholar
  11. Howell LL, Landrum AM (1995) Attenuation of hypoxia-induced increases in ventilation by adenosine antagonists in rhesus monkeys. Life Sci 57:773–783PubMedCrossRefGoogle Scholar
  12. Jacobson KA, Von Lubitz DKJE, Daly JW, Fredholm BB (1996) Adenosine receptor ligands: differences with acute versus chronic treatment. TIPS 17:108–113PubMedGoogle Scholar
  13. Julien CA, Joseph V, Bairam A (2011) Alteration of carotid body chemoreflexes after neonatal intermittent hypoxia and caffeine treatment in rat pups. Respir Physiol Neurobiol 177:301–312PubMedCrossRefGoogle Scholar
  14. Kobayashi S, Millhorn DE (1999) Stimulation of expression for the adenosine A2A receptor gene by hypoxia in PC12 cells. J Biol Chem 274:20358–20365PubMedCrossRefGoogle Scholar
  15. McQueen DS, Ribeiro JA (1983) On the specificity and type of receptor involved in carotid body chemoreceptor activation by adenosine in the cat. Br J Pharmacol 80:347–354PubMedCrossRefGoogle Scholar
  16. Monteiro EC, Ribeiro JA (1987) Ventilatory effects of adenosine mediated by carotid body chemoreceptors in the rat. Naunyn-Schmiedeberg’s Arch Pharmacol 335:143–148CrossRefGoogle Scholar
  17. Quarta D, Ferré S, Solinas M, You ZB, Hockemeyer J, Popoli P, Goldberg SR (2004) Opposite modulatory roles for adenosine A1 and A2A receptors on glutamate and dopamine release in the shell of the nucleus accumbens effects of chronic caffeine exposure. J Neurochem 88:1151–1158PubMedCrossRefGoogle Scholar
  18. Sawynok J (1995) Pharmacological rationale for the clinical use of caffeine. Drugs 49:37–50PubMedCrossRefGoogle Scholar
  19. Vicario I, Rigual R, Obeso A, Gonzalez C (2000) Characterization of the synthesis and release of catecholamine in the rat carotid body in vitro. Am J Physiol Cell Physiol 278:C490–C499PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Silvia V. Conde
    • 1
    Email author
  • Ana Obeso
    • 2
  • Emília C. Monteiro
    • 1
  • Constancio Gonzalez
    • 2
  1. 1.CEDOC, Departamento de Farmacologia, Faculdade de Ciências MédicasUniversidade Nova de LisboaLisbonPortugal
  2. 2.Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Facultad de Medicina, Instituto de Biología y Genética MolecularCSIC. Ciber de Enfermedades Respiratorias, CIBERES, Instituto de Salud Carlos IIIValladolidSpain

Personalised recommendations