Advertisement

Hydrogen Sulfide Acting at the Carotid Body and Elsewhere in the Organism

  • Robert S. FitzgeraldEmail author
  • Machiko Shirahata
  • Irene Chang
  • Eric W. Kostuk
  • Samara Kiihl
Conference paper
  • 3.5k Downloads
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 758)

Abstract

H2S, the most recently explored gasotransmitter, has been found to have actions in at least three types of tissues.

Keywords

Carotid Body Smooth Muscle Hydrogen Sulfide Neuroprotection Data Disparity Causes Neural Tissue 

Notes

Acknowledgements

The authors gratefully acknowledge the support of the U.S. National Institutes of Health (National Heart Lung Blood Institute) HL-50712, HL-61596, HL-72293.

References

  1. Chen YH, Wu R, Geng B, Qi YF, Wang PP, Yao WZ, Tang CS (2009) Endogenous hydrogen sulfide reduces airway inflammation and remodeling in a rat model of asthma. Cytokine 45:117–123PubMedCrossRefGoogle Scholar
  2. Chou CL, Shirahata M (1996) Two types of voltage-gated K channels in carotid body cells of adult cats. Brain Res 74:34–42CrossRefGoogle Scholar
  3. Fitzgerald RS, Shirahata M, Chang I, Kostuk E (2010) Hypoxia vs hydrogen sulfide (H2S) acting at the carotid body (CB) and elsewhere systemically. FASEB J 24:1026.22Google Scholar
  4. Fitzgerald RS, Shirahata M, Chang I, Kostuk E, Kiihl S (2011) The impact of hydrogen sulfide (H2S) on neurotransmitter release from the cat carotid body. Respir Physiol Neurobiol 176:80–89PubMedCrossRefGoogle Scholar
  5. Garcia-Bereguiain MA, Samhan-Arias AK, Martin-Romero FJ, Gutierrez-Merino C (2008) Hydrogen sulfide raises cytosolic calcium in neurons through activation of L-type Ca2+channels. Antioxid Redox Signal 10:31–41PubMedCrossRefGoogle Scholar
  6. Kimura H (2002) Hydrogen sulfide as a neuromodulator. Mol Neurobiol 26:13–19PubMedCrossRefGoogle Scholar
  7. Kimura H (2005) Hydrogen sulfide as a biological mediator. Antioxid Redox Signal 7:778–780PubMedCrossRefGoogle Scholar
  8. Kimura H (2009) Hydrogen sulfide: from brain to gut. Antioxid Redox Signal 12:1111–1123CrossRefGoogle Scholar
  9. Kimura H, Nagai Y, Umemura K, Kimura Y (2005) Physiological roles of hydrogen sulfide: synaptic modulation, neuroprotection, and smooth muscle relaxation. Antioxid Redox Signal 7:795–803PubMedCrossRefGoogle Scholar
  10. Li Q, Sun B, Wang X, Jin Z, Zhou Y, Dong L, Jiang L-H, Rong R (2010) A crucial role of hydrogen sulfide in oxygen sensing is modulating large conductance calcium-activated potassium channels. Antioxid Redox Signal 12:1179–1189PubMedCrossRefGoogle Scholar
  11. Lim JJ, Liu Y-H, Sandar E, Khin W, Bian J-S (2008) Vasoconstrictive effect of hydrogen sulfide involves down regulation of cAMP in vascular smooth muscle cells. Am J Physiol Cell Physiol 295:1261–1270CrossRefGoogle Scholar
  12. Olson KR, Dombkowski RA, Russell MJ, Doellman MM, Head SK, Whitfield NL, Madden JA (2006) Hydrogen sulfide as an oxygen sensor/transducer in vertebrate hypoxic vasoconstriction and hypoxic vasodilation. J Exp Biol 209:4011–4023PubMedCrossRefGoogle Scholar
  13. Peng Y-H, Nanduri J, Raghuraman G, Souvannakitti D, Gadalla MM, Kumar GK, Snyder SH, Prabhakar NR (2010) H2S mediates O2 sensing in the carotid body. Proc Natl Acad Sci USA 107:10719–10724PubMedCrossRefGoogle Scholar
  14. Sitdikova GF, Weiger TM, Hermann A (2010) Hydrogen sulfide increases calcium-activated potassium (BK) channel activity of rat pituitary tumor cells. Pflugers Arch Eur J Physiol 459:389–397CrossRefGoogle Scholar
  15. Tang G, Wu L, Wang R (2010) Interaction of hydrogen sulfide with ion channels. Clin Exp Pharmacol Physiol 37:753–763PubMedCrossRefGoogle Scholar
  16. Telezhkin V, Brazier SP, Cayzac S, Muller CT, Riccardi D, Kemp PJ (2009) Hydrogen sulfide inhibits human BKCa channels. Adv Exp Med Biol 648:65–72PubMedCrossRefGoogle Scholar
  17. Zhao W, Wang R (2002) H2S-induced vasorelaxation and underlying cellular and molecular mechanisms. Am J Physiol Heart Circ Physiol 283:H474–H480PubMedGoogle Scholar
  18. Zhao W, Zhang J, Lu Y, Wang R (2001) The vasorelaxant effect of H2S as a novel endogenous gaseous KATP channel opener. EMBO J 20:6008–6016PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Robert S. Fitzgerald
    • 1
    Email author
  • Machiko Shirahata
    • 2
  • Irene Chang
    • 3
  • Eric W. Kostuk
    • 3
  • Samara Kiihl
    • 4
  1. 1.Departments of Environmental Health Sciences, of Physiology, and of MedicineThe Johns Hopkins Medical InstitutionsBaltimoreUSA
  2. 2.Departments of Environmental Health Sciences, and of Anesthesiology/Critical Care MedicineThe Johns Hopkins Medical InstitutionsBaltimoreUSA
  3. 3.Department of Environmental Health Sciences, Bloomberg School of Public HealthThe Johns Hopkins UniversityBaltimoreUSA
  4. 4.Department of Biostatistics, Bloomberg School of Public HealthThe Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations