Advertisement

Brain-Derived Neurotrophic Factor in the Nucleus Tractus Solitarii Modulates Glucose Homeostasis After Carotid Chemoreceptor Stimulation in Rats

  • Sergio Montero
  • Ricardo Cuéllar
  • Mónica Lemus
  • Reyes Ávalos
  • Gladys Ramírez
  • Elena Roces de Álvarez-BuyllaEmail author
Conference paper
  • 3.5k Downloads
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 758)

Abstract

Neuronal systems, which regulate energy intake, energy expenditure and endogenous glucose production, sense and respond to input from hormonal related signals that convey information from body energy availability. Carotid chemoreceptors (CChr) function as sensors for circulating glucose levels and contribute to glycemic counterregulatory responses. Brain-derived neurotrophic factor (BDNF) that plays an important role in the endocrine system to regulate glucose metabolism could play a role in hyperglycemic glucose reflex with brain glucose retention (BGR) evoked by anoxic CChr stimulation. Infusing BDNF into the nucleus tractus solitarii (NTS) before CChr stimulation, showed that this neurotrophin increased arterial glucose and BGR. In contrast, BDNF receptor (TrkB) antagonist (K252a) infusions in NTS resulted in a decrease in both glucose variables.

Keywords

BDNF NTS Brain glucose retention Carotid chemoreceptor stimulation 

Notes

Acknowledgements

Supporte by FRABA 330/205 and CONACYT P49376-Q grants.

References

  1. Alvarez-Buylla R, Alvarez-Buylla E (1988) Carotid sinus receptors participate in glucose homeostasis. Respir Physiol 72:347–360PubMedCrossRefGoogle Scholar
  2. Alvarez-Buylla R, de Alvarez-Buylla ER, Mendoza H, Montero SA, Alvarez-Buylla A (1997) Pituitary and adrenals are required for hyperglycemic reflex initiated by stimulation of CBR with cyanide. Am J Physiol 272:R392–R399PubMedGoogle Scholar
  3. Appleyard SM, Marks D, Kobayashi K, Okano H, Low MJ, Andresen MC (2007) Visceral afferents directly activate catecholamine neurons in the solitary tract nucleus. J Neurosci 28:13292–13302CrossRefGoogle Scholar
  4. Balkowiec A, Katz DM (2000) Activity-dependent release of endogenous brain-derived neurotrophic factor from primary sensory neurons detected by ELISA in situ. J Neurosci 20:7417–7423PubMedGoogle Scholar
  5. Brady R, Zaidi SI, Mayer C, Katz DMJ (1999) BDNF is a target-derived survival factor for arterial baroreceptor and chemoafferent primary sensory neurons. J Neurosci 19:2131–2142PubMedGoogle Scholar
  6. Braga VA, Soriano RN, Braccialli AL, de Paula PM, Bonagamba LGH, Paton JFR, Machado BH (2007) Involvement of L-glutamate and ATP in the neurotransmission of the sympathoexcitatory component of the chemoreflex in the commissural nucleus tractus solitarii of awake rats and in the working heart-brainstem preparation. J Physiol 581:1129–1145PubMedCrossRefGoogle Scholar
  7. Burkhalter J, Fiumelli H, Allaman I, Chatton J-Y, Martin J-L (2003) Brain-derived neurotrophic factor stimulates energy metabolism in developing cortical neurons. J Neurosci 23:8212–8220PubMedGoogle Scholar
  8. Erickson JT, Connover JC, Borday V, Champagnat J, Barbacid M, Yancopoulos G, Katz DM (1996) Mice lacking brain-derived neurotrophic factor exhibit visceral sensory neuron losses distinct from mice lacking NT4 and display a severe developmental deficit in control of breathing. J Neurosci 16:5361–5371PubMedGoogle Scholar
  9. Hoffman RP (2007) Sympathetic mechanisms of hypoglycemic counterregulation. Curr Diabetes Rev 3:185–193PubMedCrossRefGoogle Scholar
  10. Hsieh HY, Robertson CL, Vermehren-Schmaedick A, Balkowiec A (2010) Nitric oxide regulates BDNF release from nodose ganglion neurons in a pattern-dependent and cGMP-independent manner. J Neurosci Res 88:1285–1297PubMedGoogle Scholar
  11. Katz DM (2005) Regulation of respiratory neuron development by neurotrophic and transcriptional signaling mechanisms. Respir Physiol Neurobiol 149:99–109PubMedCrossRefGoogle Scholar
  12. Krabbe KS, Nielsen AR, Krogh-Madsen R, Plomgaard P, Rasmussen P, Erikstrup C, Fischer CP, Lindegaard B, Petersen AMW, Taudorf S, Secher NH, Pilegaard H, Bruunsgard H, Pedersen BK (2007) Brain-derived neurotrophic factor (BDNF) and type 2 diabetes. Diabetologia 50:431–438PubMedCrossRefGoogle Scholar
  13. Lemus M, Montero S, Luquin S, Garcia J, de Alvarez-Buylla ER (2009) Nitric oxide in the solitary tract nucleus (STn) modulates glucose hemostasis and FOS-ir expression after carotid chemoreceptor stimulation. Adv Exp Med Biol 648:403–410PubMedCrossRefGoogle Scholar
  14. Nonomura T, Tsuchida A, Ono-Kishino M, Nakagawa T, Taiji M, Noguchi H (2001) Brain-derived neurotrophic factor regulates energy expenditure through the central nervous system in obese diabetic mice. Int J Exp Diabetes Res 2:201–209PubMedCrossRefGoogle Scholar
  15. Paton JFR, Deuchars J, Li Y-W, Kasparov S (2001) Properties of solitary tract neurons responding to peripheral arterial chemoreceptors. Neuroscience 105:231–248PubMedCrossRefGoogle Scholar
  16. Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic, New YorkGoogle Scholar
  17. Shen F, Meredith GE, Napier C (2006) Amphetamine-induced place preference and conditioned motor sensitization requires activation of tyrosine kinase receptors in the hippocampus. J Neurosci 26:11041–11051PubMedCrossRefGoogle Scholar
  18. Tsuchida A, Nonomura T, Ono-Kishino M, Nakagawa T, Taiji M, Noguchi H (2001) Acute effects of brain-derived neurotrophic factor on energy expenditure in obese diabetic mice. Int J Obes 25:1286–1293CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Sergio Montero
    • 1
    • 2
  • Ricardo Cuéllar
    • 1
  • Mónica Lemus
    • 1
  • Reyes Ávalos
    • 2
  • Gladys Ramírez
    • 2
  • Elena Roces de Álvarez-Buylla
    • 1
    Email author
  1. 1.Centro Universitario de Investigaciones BiomédicasUniversidad de ColimaColimaMexico
  2. 2.Facultad de MedicinaUniversidad de ColimaColimaMexico

Personalised recommendations