Advertisement

Precision-Cut Vibratome Slices Allow Functional Live Cell Imaging of the Pulmonary Neuroepithelial Body Microenvironment in Fetal Mice

  • Kathy Schnorbusch
  • Robrecht Lembrechts
  • Inge Brouns
  • Isabel Pintelon
  • Jean-Pierre Timmermans
  • Dirk AdriaensenEmail author
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 758)

Abstract

We recently developed an ex vivo lung slice model that allows for confocal live cell imaging (LCI) of neuroepithelial bodies (NEBs) in postnatal mouse lungs (postnatal days 1–21 and adult). NEBs are morphologically well-characterized, extensively innervated groups of neuroendocrine cells in the airway epithelium, which are shielded from the airway lumen by ‘Clara-like’ cells. The prominent presence of differentiated NEBs from early embryonic development onwards, strongly suggests that NEBs may exert important functions during late fetal and neonatal life. The main goal of the present study was to adapt the current postnatal LCI lung slice model to enable functional studies of fetal mouse lungs (gestational days 17–20).

In vibratome lung slices of prenatal mice, NEBs could be unequivocally identified with the fluorescent stryryl pyridinium dye 4-Di-2-ASP. Changes in the intracellular free calcium concentration and in mitochondrial membrane potential could be monitored using appropriate functional fluorescent indicators (e.g. Fluo-4).

It is clear that the described fetal mouse lung slice model is suited for LCI studies of Clara cells, ciliated cells, and the NEB microenvironment, and offers excellent possibilities to further unravel the significance of NEBs during the prenatal and perinatal period.

Keywords

Fetal mouse lung Vibratome slices NEBs Live cell imaging Calcium imaging Clara-like cells 4-Di-2-ASP Styryl pyridinium dyes 

References

  1. Adriaensen D, Brouns I, Van Genechten J, Timmermans J-P (2003) Functional morphology of pulmonary neuroepithelial bodies: extremely complex airway receptors. Anat Rec 270A:25–40CrossRefGoogle Scholar
  2. Adriaensen D, Brouns I, Pintelon I, De Proost I, Timmermans J-P (2006) Evidence for a role of neuroepithelial bodies as complex airway sensors: comparison with smooth muscle-associated airway receptors. J Appl Physiol 101:960–970PubMedCrossRefGoogle Scholar
  3. Bollé T, Lauweryns JM, Van Lommel A (2000) Postnatal maturation of neuroepithelial bodies and carotid body innervation: a quantitative investigation in the rabbit. J Neurocytol 29:241–248PubMedCrossRefGoogle Scholar
  4. Brouns I, Van Genechten J, Burnstock G, Timmermans J-P, Adriaensen D (2003) Ontogenesis of P2X3 receptor-expressing nerve fibres in the rat lung, with special reference to neuroepithelial bodies. Biomed Res 14:80–86Google Scholar
  5. Cutz E, Jackson A (1999) Neuroepithelial bodies as airway oxygen sensors. Respir Physiol 115:201–214PubMedCrossRefGoogle Scholar
  6. De Proost I, Pintelon I, Brouns I, Kroese ABA, Riccardi D, Kemp PJ, Timmermans J-P, Adriaensen D (2008) Functional live cell imaging of the pulmonary neuroepithelial body microenvironment. Am J Respir Cell Mol Biol 39:180–189PubMedCrossRefGoogle Scholar
  7. De Proost I, Pintelon I, Wilkinson WJ, Goethals S, Brouns I, Van Nassauw L, Riccardi D, Timmermans J-P, Kemp PJ, Adriaensen D (2009) Purinergic signaling in the pulmonary neuroepithelial body microenvironment unraveled by live cell imaging. FASEB J 23:1153–1160PubMedCrossRefGoogle Scholar
  8. Fu XW, Wang D, Nurse CA, Dinauer MC, Cutz E (2000) NADPH oxidase is an O2 sensor in airway chemoreceptors: evidence from K+ current modulation in wild-type and oxidase-deficient mice. Proc Natl Acad Sci U S A 97:4374–4379PubMedCrossRefGoogle Scholar
  9. Fukuda J, Ishimine H, Masaki Y (2003) Long-term staining of live Merkel cells with FM dyes. Cell Tissue Res 311:325–332PubMedGoogle Scholar
  10. Gosney JR (1993) Pulmonary neuroendocrine cells in species at high altitude. Anat Rec 236:105–107PubMedCrossRefGoogle Scholar
  11. Hoyt RF, McNelly NA, Sorokin SP (1993) Calcitonin gene-related peptide (CGRP) as regional mitogen for tracheobronchial epithelium of organ cultured fetal rat lungs. Am Rev Resp Dis 147:A498Google Scholar
  12. Knowles MR, Clarke LL, Boucher RC (1991) Activation by extracellular nucleotides of chloride secretion in the airway epithelia of patients with cystic fibrosis. N Engl J Med 325:533–538PubMedCrossRefGoogle Scholar
  13. Liberati TA, Randle MR, Toth LA (2010) In vitro lung slices: a powerful approach for assessment of lung pathophysiology. Expert Rev Mol Diagn 10:501–508PubMedCrossRefGoogle Scholar
  14. Linnoila RI (2006) Functional facets of the pulmonary neuroendocrine system. Lab Invest 86:425–444PubMedCrossRefGoogle Scholar
  15. Pan J, Yeger H, Cutz E (2004) Innervation of pulmonary neuroendocrine cells and neuroepithelial bodies in developing rabbit lung. J Histochem Cytochem 52:379–389PubMedCrossRefGoogle Scholar
  16. Pintelon I, De Proost I, Brouns I, Van Herck H, Van Genechten J, Van Meir F, Timmermans J-P, Adriaensen D (2005) Selective visualisation of neuroepithelial bodies in vibratome slices of living lung by 4-Di-2-ASP in various animal species. Cell Tissue Res 321:21–33PubMedCrossRefGoogle Scholar
  17. Sanderson MJ (2011) Exploring lung physiology in health and disease with lung slices. Pulm Pharmacol Ther 24:452–465PubMedCrossRefGoogle Scholar
  18. Sorokin SP, Hoyt RF (1990) On the supposed function of neuroepithelial bodies in adult mammalian lungs. News Physiol Sci 5:89–95Google Scholar
  19. Sorokin SP, Hoyt RF, Shaffer MJ (1997) Ontogeny of neuroepithelial bodies: correlations with mitogenesis and innervation. Microsc Res Tech 37:43–61PubMedCrossRefGoogle Scholar
  20. Van Lommel A, Bolle T, Fannes W, Lauweryns JM (1999) The pulmonary neuroendocrine system: the past decade. Arch Histol Cytol 62:1–16PubMedCrossRefGoogle Scholar
  21. Widdicombe JG (2001) Airway receptors. Respir Physiol 125:3–15PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Kathy Schnorbusch
    • 1
  • Robrecht Lembrechts
    • 1
  • Inge Brouns
    • 1
  • Isabel Pintelon
    • 1
  • Jean-Pierre Timmermans
    • 1
  • Dirk Adriaensen
    • 1
    Email author
  1. 1.Department of Veterinary Sciences, Laboratory of Cell Biology and Histology University of AntwerpAntwerpBelgium

Personalised recommendations