Skip to main content

Precision-Cut Vibratome Slices Allow Functional Live Cell Imaging of the Pulmonary Neuroepithelial Body Microenvironment in Fetal Mice

  • Conference paper
  • First Online:
Arterial Chemoreception

Abstract

We recently developed an ex vivo lung slice model that allows for confocal live cell imaging (LCI) of neuroepithelial bodies (NEBs) in postnatal mouse lungs (postnatal days 1–21 and adult). NEBs are morphologically well-characterized, extensively innervated groups of neuroendocrine cells in the airway epithelium, which are shielded from the airway lumen by ‘Clara-like’ cells. The prominent presence of differentiated NEBs from early embryonic development onwards, strongly suggests that NEBs may exert important functions during late fetal and neonatal life. The main goal of the present study was to adapt the current postnatal LCI lung slice model to enable functional studies of fetal mouse lungs (gestational days 17–20).

In vibratome lung slices of prenatal mice, NEBs could be unequivocally identified with the fluorescent stryryl pyridinium dye 4-Di-2-ASP. Changes in the intracellular free calcium concentration and in mitochondrial membrane potential could be monitored using appropriate functional fluorescent indicators (e.g. Fluo-4).

It is clear that the described fetal mouse lung slice model is suited for LCI studies of Clara cells, ciliated cells, and the NEB microenvironment, and offers excellent possibilities to further unravel the significance of NEBs during the prenatal and perinatal period.

This work was supported by the following research grants:

A fellowship from the Agency for Innovation by Science and Technology in Flanders (IWT) to Robrecht Lembrechts (SB 81162), by grants of the Fund for Scientific Research-Flanders (FWO; G.0081.08 to D.A. and I.B., G.0589.11 to D.A. and J-P.T.), and by grants of the University of Antwerp (GOA BOF 2007 to D.A. and KP BOF 2011 to I.B.).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adriaensen D, Brouns I, Van Genechten J, Timmermans J-P (2003) Functional morphology of pulmonary neuroepithelial bodies: extremely complex airway receptors. Anat Rec 270A:25–40

    Article  Google Scholar 

  • Adriaensen D, Brouns I, Pintelon I, De Proost I, Timmermans J-P (2006) Evidence for a role of neuroepithelial bodies as complex airway sensors: comparison with smooth muscle-associated airway receptors. J Appl Physiol 101:960–970

    Article  PubMed  CAS  Google Scholar 

  • Bollé T, Lauweryns JM, Van Lommel A (2000) Postnatal maturation of neuroepithelial bodies and carotid body innervation: a quantitative investigation in the rabbit. J Neurocytol 29:241–248

    Article  PubMed  Google Scholar 

  • Brouns I, Van Genechten J, Burnstock G, Timmermans J-P, Adriaensen D (2003) Ontogenesis of P2X3 receptor-expressing nerve fibres in the rat lung, with special reference to neuroepithelial bodies. Biomed Res 14:80–86

    CAS  Google Scholar 

  • Cutz E, Jackson A (1999) Neuroepithelial bodies as airway oxygen sensors. Respir Physiol 115:201–214

    Article  PubMed  CAS  Google Scholar 

  • De Proost I, Pintelon I, Brouns I, Kroese ABA, Riccardi D, Kemp PJ, Timmermans J-P, Adriaensen D (2008) Functional live cell imaging of the pulmonary neuroepithelial body microenvironment. Am J Respir Cell Mol Biol 39:180–189

    Article  PubMed  Google Scholar 

  • De Proost I, Pintelon I, Wilkinson WJ, Goethals S, Brouns I, Van Nassauw L, Riccardi D, Timmermans J-P, Kemp PJ, Adriaensen D (2009) Purinergic signaling in the pulmonary neuroepithelial body microenvironment unraveled by live cell imaging. FASEB J 23:1153–1160

    Article  PubMed  Google Scholar 

  • Fu XW, Wang D, Nurse CA, Dinauer MC, Cutz E (2000) NADPH oxidase is an O2 sensor in airway chemoreceptors: evidence from K+ current modulation in wild-type and oxidase-deficient mice. Proc Natl Acad Sci U S A 97:4374–4379

    Article  PubMed  CAS  Google Scholar 

  • Fukuda J, Ishimine H, Masaki Y (2003) Long-term staining of live Merkel cells with FM dyes. Cell Tissue Res 311:325–332

    PubMed  Google Scholar 

  • Gosney JR (1993) Pulmonary neuroendocrine cells in species at high altitude. Anat Rec 236:105–107

    Article  PubMed  CAS  Google Scholar 

  • Hoyt RF, McNelly NA, Sorokin SP (1993) Calcitonin gene-related peptide (CGRP) as regional mitogen for tracheobronchial epithelium of organ cultured fetal rat lungs. Am Rev Resp Dis 147:A498

    Google Scholar 

  • Knowles MR, Clarke LL, Boucher RC (1991) Activation by extracellular nucleotides of chloride secretion in the airway epithelia of patients with cystic fibrosis. N Engl J Med 325:533–538

    Article  PubMed  CAS  Google Scholar 

  • Liberati TA, Randle MR, Toth LA (2010) In vitro lung slices: a powerful approach for assessment of lung pathophysiology. Expert Rev Mol Diagn 10:501–508

    Article  PubMed  Google Scholar 

  • Linnoila RI (2006) Functional facets of the pulmonary neuroendocrine system. Lab Invest 86:425–444

    Article  PubMed  CAS  Google Scholar 

  • Pan J, Yeger H, Cutz E (2004) Innervation of pulmonary neuroendocrine cells and neuroepithelial bodies in developing rabbit lung. J Histochem Cytochem 52:379–389

    Article  PubMed  CAS  Google Scholar 

  • Pintelon I, De Proost I, Brouns I, Van Herck H, Van Genechten J, Van Meir F, Timmermans J-P, Adriaensen D (2005) Selective visualisation of neuroepithelial bodies in vibratome slices of living lung by 4-Di-2-ASP in various animal species. Cell Tissue Res 321:21–33

    Article  PubMed  CAS  Google Scholar 

  • Sanderson MJ (2011) Exploring lung physiology in health and disease with lung slices. Pulm Pharmacol Ther 24:452–465

    Article  PubMed  CAS  Google Scholar 

  • Sorokin SP, Hoyt RF (1990) On the supposed function of neuroepithelial bodies in adult mammalian lungs. News Physiol Sci 5:89–95

    Google Scholar 

  • Sorokin SP, Hoyt RF, Shaffer MJ (1997) Ontogeny of neuroepithelial bodies: correlations with mitogenesis and innervation. Microsc Res Tech 37:43–61

    Article  PubMed  CAS  Google Scholar 

  • Van Lommel A, Bolle T, Fannes W, Lauweryns JM (1999) The pulmonary neuroendocrine system: the past decade. Arch Histol Cytol 62:1–16

    Article  PubMed  Google Scholar 

  • Widdicombe JG (2001) Airway receptors. Respir Physiol 125:3–15

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Adriaensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Schnorbusch, K., Lembrechts, R., Brouns, I., Pintelon, I., Timmermans, JP., Adriaensen, D. (2012). Precision-Cut Vibratome Slices Allow Functional Live Cell Imaging of the Pulmonary Neuroepithelial Body Microenvironment in Fetal Mice. In: Nurse, C., Gonzalez, C., Peers, C., Prabhakar, N. (eds) Arterial Chemoreception. Advances in Experimental Medicine and Biology, vol 758. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4584-1_22

Download citation

Publish with us

Policies and ethics