Shifting from Hypoxia to Hyperoxia to Assess the Peripheral Chemosensory Drive of Ventilation

  • Patricio ZapataEmail author
  • Carolina Larraín
  • Edison-Pablo Reyes
  • Ricardo Fernández
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 758)


The study of the initial effects of a sudden and brief replacement of air by pure oxygen has been proposed as a tool (Dejours’ test) to determine the tonic influence that arterial (peripheral) chemoreceptors were exerting upon ventilation under previous normoxic conditions. Therefore, the acute ventilatory response to transient hyperoxia should be used to assess the level of hypoxic chemosensory drive. In spontaneously ventilated pentobarbitone-anesthetized cats, we observed that the degree of ventilatory depression provoked by hyperoxia was correlated to the degree of previous hypoxia. Minimal tidal volumes (VT) or transient apnea were reached between second to fourth cycles after switching from 5% to 100% O2 breathing. Continuous recordings of chemosensory discharges from one carotid (sinus) nerve allowed correlation of the falls in frequency of chemosensory discharges to the degree of hyperoxia-induced ventilatory depression and provided an accurate measure of the prevailing chemosensory drive of ventilation exerted during hypoxic steady-state conditions.


Carotid body Dejours’ test Hyperoxia Hypoxia Ventilatory chemosensory drive 


  1. Black AMS, Torrance RW (1971) Respiratory oscillations in chemoreceptor discharge in the control of breathing. Respir Physiol 13:221–237PubMedCrossRefGoogle Scholar
  2. Dejours P (1957) Intérêt méthodologique de l’étude d’un organisme vivant à la phase initiale de rupture d’un équilibre physiologique. Compt Rend Acad Sci Paris 245:1946–1948Google Scholar
  3. Dejours P (1962) Chemoreflexes in breathing. Physiol Rev 42:335–358PubMedGoogle Scholar
  4. Eugenin J, Larraín C, Zapata P (1989) Correlative contribution of carotid and aortic afferences to the ventilatory chemosensory drive in steady-state normoxia and to the ventilatory chemoreflexes induced by transient hypoxia. Arch Biol Med Exp 22:395–408PubMedGoogle Scholar
  5. Fernández R, Arriagada I, Garrido AM, Larraín C, Zapata P (2003) Ventilatory chemosensory drive in cats, rats and guinea-pigs. Adv Exp Med Biol 536:489–495PubMedCrossRefGoogle Scholar
  6. Gautier H (2003) Honoring Pierre Dejours: his contribution to the study of the role of the arterial chemoreceptors in the regulation of breathing in humans. Adv Exp Med Biol 536:1–7PubMedCrossRefGoogle Scholar
  7. Holtby SG, Berezanski DJ, Anthonisen NR (1988) Effect of 100% O2 on hypoxic eucapnic ventilation. J Appl Physiol 65:1157–1162PubMedGoogle Scholar
  8. Leitner L-M, Pagès B, Puccinelli R, Dejours P (1965) Étude simultanée de la ventilation et des décharges des chémorécepteurs du glomus carotidien chez le chat. I. Au cours d’inhalations brèves d’oxygène pur. Arch Intl Pharmacodyn Thér 154:421–426Google Scholar
  9. Sajkov D, Neill A, Saunders NA, McEvoy RD (1997) Comparison of the effects of sustained isocapnic hypoxia on ventilation in men and women. J Appl Physiol 83:599–607PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Patricio Zapata
    • 1
    Email author
  • Carolina Larraín
    • 1
  • Edison-Pablo Reyes
    • 1
  • Ricardo Fernández
    • 2
  1. 1.Facultad de Medicina, Clínica AlemanaUniversidad del DesarrolloSantiagoChile
  2. 2.Facultad de Ciencias Biologicas y Facultad de MedicinaUniversidad Andres BelloSantiagoChile

Personalised recommendations