Advertisement

The Retrotrapezoid Nucleus and Breathing

  • Patrice G. GuyenetEmail author
  • Ruth L. Stornetta
  • Stephen B. G. Abbott
  • Seth D. Depuy
  • Roy Kanbar
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 758)

Abstract

The retrotrapezoid nucleus (RTN) is located in the rostral medulla oblongata close to the ventral surface and consists of a bilateral cluster of glutamatergic neurons that are non-aminergic and express homeodomain transcription factor Phox2b throughout life. These neurons respond vigorously to increases in local pCO2 via cell-autonomous and paracrine (glial) mechanisms and receive additional chemosensory information from the carotid bodies. RTN neurons exclusively innervate the regions of the brainstem that contain the respiratory pattern generator (RPG). Lesion or inhibition of RTN neurons largely attenuates the respiratory chemoreflex of adult rats whereas their activation increases respiratory rate, inspiratory amplitude and active expiration. Phox2b mutations that cause congenital central hypoventilation syndrome in humans prevent the development of RTN neurons in mice. Selective deletion of the RTN Phox2b-VGLUT2 neurons by genetic means in mice eliminates the respiratory chemoreflex in neonates.

In short, RTN Phox2b-VGLUT2 neurons are a major nodal point of the CNS network that regulates pCO2 via breathing and these cells are probable central chemoreceptors.

Keywords

Breathing network Chemoreflexes Central chemoreceptors Retrotrapezoid nucleus Congenital central hypoventilation syndrome Phox2b Optogenetics 

References

  1. Abbott SBG, Stornetta RL, Fortuna MG, Depuy SD, West GH, Harris TE, Guyenet PG (2009) Photostimulation of retrotrapezoid nucleus Phox2b-expressing neurons in vivo produces long-lasting activation of breathing in rats. J Neurosci 29:5806–5819PubMedCrossRefGoogle Scholar
  2. Abdala AP, Rybak IA, Smith JC, Paton JF (2009a) Abdominal expiratory activity in the rat brainstem-spinal cord in situ: patterns, origins, and implications for respiratory rhythm generation. J Physiol 587:3539–3559PubMedCrossRefGoogle Scholar
  3. Abdala AP, Rybak IA, Smith JC, Zoccal DB, Machado BH, St-John WM, Paton JF (2009b) Multiple pontomedullary mechanisms of respiratory rhythmogenesis. Respir Physiol Neurobiol 168:19–25PubMedCrossRefGoogle Scholar
  4. Blain GM, Smith CA, Henderson KS, Dempsey JA (2010) Peripheral chemoreceptors determine the respiratory sensitivity of central chemoreceptors to CO(2). J Physiol 588:2455–2471PubMedCrossRefGoogle Scholar
  5. Bochorishvili G, Stornetta RL, Coates MB, Guyenet PG (2011) Pre-Bötzinger complex receives glutamatergic innervation from galaninergic and other retrotrapezoid nucleus neurons. J Comp Neurol 520(5):1047–1061Google Scholar
  6. Corcoran AE, Hodges MR, Wu Y, Wang W, Wylie CJ, Deneris ES, Richerson GB (2009) Medullary serotonin neurons and central CO2 chemoreception. Respir Physiol Neurobiol 168:49–58PubMedCrossRefGoogle Scholar
  7. Depuy SD, Kanbar R, Coates MB, Stornetta RL, Guyenet PG (2011) Control of breathing by raphe obscurus serotonergic neurons in mice. J Neurosci 31:1981–1990PubMedCrossRefGoogle Scholar
  8. Dubreuil V, Ramanantsoa N, Trochet D, Vaubourg V, Amiel J, Gallego J, Brunet JF, Goridis C (2008) A human mutation in Phox2b causes lack of CO2 chemosensitivity, fatal central apnoea and specific loss of parafacial neurons. Proc Natl Acad Sci U S A 105:1067–1072PubMedCrossRefGoogle Scholar
  9. Dubreuil V, Thoby-Brisson M, Rallu M, Persson K, Pattyn A, Birchmeier C, Brunet JF, Fortin G, Goridis C (2009) Defective respiratory rhythmogenesis and loss of central chemosensitivity in phox2b mutants targeting retrotrapezoid nucleus neurons. J Neurosci 29:14836–14846PubMedCrossRefGoogle Scholar
  10. Fortin G, Thoby-Brisson M (2009) Embryonic emergence of the respiratory rhythm generator. Respir Physiol Neurobiol 168:86–91PubMedCrossRefGoogle Scholar
  11. Goridis C, Brunet JF (2010) Central chemoreception: lessons from mouse and human genetics. Respir Physiol Neurobiol 173:312–321PubMedCrossRefGoogle Scholar
  12. Gourine AV, Kasymov V, Marina N, Tang F, Figueiredo MF, Lane S, Teschemacher AG, Spyer KM, Deisseroth K, Kasparov S (2010) Astrocytes control breathing through pH-dependent release of ATP. Science 329:571–575PubMedCrossRefGoogle Scholar
  13. Guyenet PG, Mulkey DK, Stornetta RL, Bayliss DA (2005) Regulation of ventral surface chemoreceptors by the central respiratory pattern generator. J Neurosci 25:8938–8947PubMedCrossRefGoogle Scholar
  14. Guyenet PG, Stornetta RL, Bayliss DA (2010) Central respiratory chemoreception. J Comp Neurol 518:3883–3906PubMedCrossRefGoogle Scholar
  15. Huckstepp RT, Id BR, Eason R, Spyer KM, Dicke N, Willecke K, Marina N, Gourine AV, Dale N (2010) Connexin hemichannel-mediated CO2-dependent release of ATP in the medulla oblongata contributes to central respiratory chemosensitivity. J Physiol 588:3901–3920PubMedCrossRefGoogle Scholar
  16. Hwang DY, Carlezon WA Jr, Isacson O, Kim KS (2001) A high-efficiency synthetic promoter that drives transgene expression selectively in noradrenergic neurons. Hum Gene Ther 12:1731–1740PubMedCrossRefGoogle Scholar
  17. Iscoe S (1998) Control of abdominal muscles. Prog Neurobiol 56:433–506PubMedCrossRefGoogle Scholar
  18. Janczewski WA, Feldman JL (2006) Distinct rhythm generators for inspiration and expiration in the juvenile rat. J Physiol 570:407–420PubMedGoogle Scholar
  19. Kanbar R, Stornetta RL, Cash DR, Lewis SJ, Guyenet PG (2010) Photostimulation of Phox2b medullary neurons activates cardiorespiratory function in conscious rats. Am J Respir Crit Care Med 182:1184–1194PubMedCrossRefGoogle Scholar
  20. Lazarenko RM, Milner TA, Depuy SD, Stornetta RL, West GH, Kievits JA, Bayliss DA, Guyenet PG (2009) Acid sensitivity and ultrastructure of the retrotrapezoid nucleus in Phox2b-EGFP transgenic mice. J Comp Neurol 517:69–86PubMedCrossRefGoogle Scholar
  21. Li A, Nattie E (2002) CO2 dialysis in one chemoreceptor site, the RTN: stimulus intensity and sensitivity in the awake rat. Respir Physiol Neurobiol 133:11–22PubMedCrossRefGoogle Scholar
  22. Marina N, Abdala AP, Trapp S, Li A, Nattie EE, Hewinson J, Smith JC, Paton JF, Gourine AV (2010) Essential role of Phox2b-expressing ventrolateral brainstem neurons in the chemosensory control of inspiration and expiration. J Neurosci 30:12466–12473PubMedCrossRefGoogle Scholar
  23. Mulkey DK, Wenker IC (2011) Astrocyte chemoreceptors: mechanisms of H  +  sensing by astrocytes in the retrotrapezoid nucleus and their possible contribution to respiratory drive. Exp Physiol 96:400–406PubMedGoogle Scholar
  24. Mulkey DK, Stornetta RL, Weston MC, Simmons JR, Parker A, Bayliss DA, Guyenet PG (2004) Respiratory control by ventral surface chemoreceptor neurons in rats. Nat Neurosci 7:1360–1369PubMedCrossRefGoogle Scholar
  25. Nattie E, Li A (2009) Central chemoreception is a complex system function that involves multiple brain stem sites. J Appl Physiol 106:1464–1466PubMedCrossRefGoogle Scholar
  26. Onimaru H, Ikeda K, Kawakami K (2008) CO2-sensitive preinspiratory neurons of the parafacial respiratory group express Phox2b in the neonatal rat. J Neurosci 28:12845–12850PubMedCrossRefGoogle Scholar
  27. Pagliardini S, Janczewski WA, Tan W, Dickson CT, Deisseroth K, Feldman JL (2011) Active expiration induced by excitation of ventral medulla in adult anesthetized rats. J Neurosci 31:2895–2905PubMedCrossRefGoogle Scholar
  28. Ramanantsoa N, Hirsch MR, Thoby-Brisson M, Dubreuil V, Bouvier J, Ruffault PL, Matrot B, Fortin G, Brunet JF, Gallego J, Goridis C (2011) Breathing without CO2 chemosensitivity in Conditional Phox2b Mutants. J Neurosci 31:12880–12888PubMedCrossRefGoogle Scholar
  29. Rudzinski E, Kapur RP (2010) immunolocalization of the candidate human retrotrapezoid nucleus. Pediatr Dev Pathol 13:291–299PubMedCrossRefGoogle Scholar
  30. Smith JC, Morrison DE, Ellenberger HH, Otto MR, Feldman JL (1989) Brainstem projections to the major respiratory neuron populations in the medulla of the cat. J Comp Neurol 281:69–96PubMedCrossRefGoogle Scholar
  31. Smith JC, Abdala AP, Rybak IA, Paton JF (2009) Structural and functional architecture of respiratory networks in the mammalian brainstem. Philos Trans R Soc Lond B Biol Sci 364:2577–2587PubMedCrossRefGoogle Scholar
  32. Stornetta RL, Moreira TS, Takakura AC, Kang BJ, Chang DA, West GH, Brunet JF, Mulkey DK, Bayliss DA, Guyenet PG (2006) Expression of Phox2b by brainstem neurons involved in chemosensory integration in the adult rat. J Neurosci 26:10305–10314PubMedCrossRefGoogle Scholar
  33. Takakura AC, Moreira TS, Colombari E, West GH, Stornetta RL, Guyenet PG (2006) Peripheral chemoreceptor inputs to retrotrapezoid nucleus (RTN) CO2-sensitive neurons in rats. J Physiol 572:503–523PubMedCrossRefGoogle Scholar
  34. Takakura AC, Moreira TS, Stornetta RL, West GH, Gwilt JM, Guyenet PG (2008) Selective lesion of retrotrapezoid Phox2b-expressing neurons raises the apnoeic threshold in rats. J Physiol 586:2975–2991PubMedCrossRefGoogle Scholar
  35. Thoby-Brisson M, Karlen M, Wu N, Charnay P, Champagnat J, Fortin G (2009) Genetic identification of an embryonic parafacial oscillator coupling to the preBotzinger complex. Nat Neurosci 12:1028–1035PubMedCrossRefGoogle Scholar
  36. Weese-Mayer DE, Berry-Kravis EM, Ceccherini I, Keens TG, Loghmanee DA, Trang H (2010) An official ATS clinical policy statement: congenital central hypoventilation syndrome: genetic basis, diagnosis, and management. Am J Respir Crit Care Med 181:626–644PubMedCrossRefGoogle Scholar
  37. Wenker IC, Kreneisz O, Nishiyama A, Mulkey DK (2010) Astrocytes in the retrotrapezoid nucleus sense H  +  by inhibition of a Kir4.1-Kir5.1-like current and may contribute to chemoreception by a purinergic mechanism. J Neurophysiol 104:3042–3052PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Patrice G. Guyenet
    • 1
    Email author
  • Ruth L. Stornetta
    • 1
  • Stephen B. G. Abbott
    • 1
  • Seth D. Depuy
    • 1
  • Roy Kanbar
    • 1
  1. 1.Department of PharmacologyUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations