Advertisement

Ion Channel Regulation by the LKB1-AMPK Signalling Pathway: The Key to Carotid Body Activation by Hypoxia and Metabolic Homeostasis at the Whole Body Level

  • A. Mark EvansEmail author
  • Chris Peers
  • Christopher N. Wyatt
  • Prem Kumar
  • D. Grahame Hardie
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 758)

Abstract

Our recent investigations provide further support for the proposal that, consequent to inhibition of mitochondrial oxidative phosphorylation, activation of AMP-activated protein kinase (AMPK) mediates carotid body excitation by hypoxia. Consistent with the effects of hypoxia, intracellular dialysis from a patch pipette of an active (thiophosphorylated) recombinant AMPK heterotrimer (α2β2γ1) or application of the AMPK activators AICAR and A769662: (1) Inhibited BKCa currents and TASK K+ currents in rat carotid body type I cells; (2) Inhibited whole-cell currents carried by KCa1.1 and TASK3, but not TASK1 channels expressed in HEK293 cells; (3) Triggered carotid body activation. Furthermore, preliminary studies using mice with conditional knockout in type I cells of the primary upstream kinase that activates AMPK in response to metabolic stresses, LKB1, appear to confirm our working hypothesis. Studies on mice with knockout of the catalytic α1 subunit and α2 subunits of AMPK, respectively, have proved equally consistent. Accumulating evidence therefore suggests that the LKB1-AMPK signalling pathway is necessary for hypoxia-response coupling by the carotid body, and serves to regulate oxygen and therefore energy supply at the whole body level.

Keywords

Hypoxia Carotid body LKB1 AMPK BKCa TASK Ventilation Afferent discharge 

Notes

Acknowledgements

These studies were supported by a Programme Grant from the Wellcome Trust (81195, to AME, CP and DGH).

References

  1. Biscoe TJ, Pallot DJ (1982) The carotid body chemoreceptor: an investigation in the mouse. Q J Exp Physiol 67(4):557–576 (Cambridge, England)PubMedGoogle Scholar
  2. Brown GC (1992) Control of respiration and ATP synthesis in mammalian mitochondria and cells. Biochem J 284(Pt 1):1–13PubMedGoogle Scholar
  3. Buckler KJ (1997) A novel oxygen-sensitive potassium current in rat carotid body type I cells. J Physiol 498(Pt 3):649–662PubMedGoogle Scholar
  4. Buckler KJ (2007) TASK-like potassium channels and oxygen sensing in the carotid body. Respir Physiol Neurobiol 157(1):55–64PubMedCrossRefGoogle Scholar
  5. Buttigieg J, Brown ST, Lowe M, Zhang M, Nurse CA (2008) Functional mitochondria are required for O2 but not CO2 sensing in immortalized adrenomedullary chromaffin cells. Am J Physiol Cell Physiol 294(4):C945–956PubMedCrossRefGoogle Scholar
  6. Chandel NS (2010) Mitochondrial complex III: an essential component of universal oxygen sensing machinery? Respir Physiol Neurobiol 174(3):175–181PubMedCrossRefGoogle Scholar
  7. Cooper CE, Brown GC (2008) The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: chemical mechanism and physiological significance. J Bioenerg Biomembr 40(5):533–539PubMedCrossRefGoogle Scholar
  8. De Castro F (1928) Sur la structure et l’innervation du sinus carotidien de l’homme et des mammiferes: nouveau faits sur l’innervation et la fonction du glomus caroticum. Trab Lab Invest Biol Univ Madrid 24:330–380Google Scholar
  9. Delpiano MA, Hescheler J (1989) Evidence for a PO2-sensitive K  +  channel in the type-I cell of the rabbit carotid body. FEBS Lett 249(2):195–198PubMedCrossRefGoogle Scholar
  10. Dipp M, Evans AM (2001) Cyclic ADP-ribose is the primary trigger for hypoxic pulmonary vasoconstriction in the rat lung in situ. Circ Res 89(1):77–83PubMedCrossRefGoogle Scholar
  11. Duchen MR, Biscoe TJ (1992a) Relative mitochondrial membrane potential and [Ca2+]i in type I cells isolated from the rabbit carotid body. J Physiol 450:33–61PubMedGoogle Scholar
  12. Duchen MR, Biscoe TJ (1992b) Mitochondrial function in type I cells isolated from rabbit arterial chemoreceptors. J Physiol 450:13–31PubMedGoogle Scholar
  13. Evans AM (2006) AMP-activated protein kinase and the regulation of Ca2+ signalling in O2-sensing cells. J Physiol 574(Pt 1):113–123PubMedCrossRefGoogle Scholar
  14. Evans AM, Mustard KJ, Wyatt CN, Peers C, Dipp M, Kumar P, Kinnear NP, Hardie DG (2005) Does AMP-activated protein kinase couple inhibition of mitochondrial oxidative phosphorylation by hypoxia to calcium signaling in O2-sensing cells? J Biol Chem 280(50):41504–41511PubMedCrossRefGoogle Scholar
  15. Evans AM, Hardie DG, Peers C, Wyatt CN, Viollet B, Kumar P, Dallas ML, Ross F, Ikematsu N, Jordan HL, Barr BL, Rafferty JN, Ogunbayo O (2009) Ion channel regulation by AMPK: the route of hypoxia-response coupling in the carotid body and pulmonary artery. Ann N Y Acad Sci 1177:89–100PubMedCrossRefGoogle Scholar
  16. Evans AM, Hardie DG, Peers C, Mahmoud A (2011) Hypoxic pulmonary vasoconstriction: mechanisms of oxygen-sensing. Curr Opin Anaesthesiol 24(1):13–20PubMedCrossRefGoogle Scholar
  17. Eyzaguirre C, Koyano H (1965a) Effects of hypoxia, hypercapnia, and pH on the chemoreceptor activity of the carotid body in vitro. J Physiol 178(3):385–409PubMedGoogle Scholar
  18. Eyzaguirre C, Koyano H (1965b) Effects of some pharmacological agents on chemoreceptor discharges. J Physiol 178(3):410–437PubMedGoogle Scholar
  19. Gadalla AE, Pearson T, Currie AJ, Dale N, Hawley SA, Sheehan M, Hirst W, Michel AD, Randall A, Hardie DG, Frenguelli BG (2004) AICA riboside both activates AMP-activated protein kinase and competes with adenosine for the nucleoside transporter in the CA1 region of the rat hippocampus. J Neurochem 88(5):1272–1282PubMedCrossRefGoogle Scholar
  20. Gnaiger E, Lassnig B, Kuznetsov A, Rieger G, Margreiter R (1998) Mitochondrial oxygen affinity, respiratory flux control and excess capacity of cytochrome c oxidase. J Exp Biol 201(Pt 8):1129–1139PubMedGoogle Scholar
  21. Gonzalez C, Almaraz L, Obeso A, Rigual R (1994) Carotid body chemoreceptors: from natural stimuli to sensory discharges. Physiol Rev 74(4):829–898PubMedGoogle Scholar
  22. Gonzalez C, Vicario I, Almaraz L, Rigual R (1995a) Oxygen sensing in the carotid body. Biol Signal 4(5):245–256CrossRefGoogle Scholar
  23. Gonzalez C, Lopez-Lopez JR, Obeso A, Perez-Garcia MT, Rocher A (1995b) Cellular mechanisms of oxygen chemoreception in the carotid body. Respir Physiol 102(2–3):137–147PubMedCrossRefGoogle Scholar
  24. Hardie DG (2007) AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev 8(10):774–785CrossRefGoogle Scholar
  25. Hardie DG, Carling D, Gamblin SJ (2011) AMP-activated protein kinase: also regulated by ADP? Trends Biochem Sci 29:18–24Google Scholar
  26. Hatton CJ, Carpenter E, Pepper DR, Kumar P, Peers C (1997) Developmental changes in isolated rat type I carotid body cell K  +  currents and their modulation by hypoxia. J Physiol 501(Pt 1):49–58PubMedCrossRefGoogle Scholar
  27. Hescheler J, Delpiano MA, Acker H, Pietruschka F (1989) Ionic currents on type-I cells of the rabbit carotid body measured by voltage-clamp experiments and the effect of hypoxia. Brain Res 486(1):79–88PubMedCrossRefGoogle Scholar
  28. Heymans C, Bouckaert JJ, Dautrebande L (1930) Sinus carotidien et reflexes respiratoires. II. Influences respiratoires reflexes de l’acidose, de l’alcalose, de l’anhydride carbonique, de l’ion hydrogene et de l’anoxemie: sinus carotidiens et echanges respiratoires dans les poumons et au dela poumons. Arch Int Pharmacodyn Ther 39(2)):400–408Google Scholar
  29. Hill AA, Garcia AJ 3rd, Zanella S, Upadhyaya R, Ramirez JM (2011) Graded reductions in oxygenation evoke graded reconfiguration of the isolated respiratory network. J Neurophysiol 105(2):625–639PubMedCrossRefGoogle Scholar
  30. Ikematsu N, Dallas ML, Ross FA, Lewis RW, Rafferty JN, David JA, Suman R, Peers C, Hardie DG, Evans AM (2011) Phosphorylation of the voltage-gated potassium channel Kv2.1 by AMP-activated protein kinase regulates membrane excitability. Proc Natl Acad Sci U S A 44:18132–18137CrossRefGoogle Scholar
  31. Iturriaga R, Alcayaga J (2004) Neurotransmission in the carotid body: transmitters and modulators between glomus cells and petrosal ganglion nerve terminals. Brain Res Rev 47(1–3):46–53PubMedCrossRefGoogle Scholar
  32. Jones DP (1986) Intracellular diffusion gradients of O2 and ATP. Am J Physiol 250(5 Pt 1):C663–675PubMedGoogle Scholar
  33. Kim D, Cavanaugh EJ, Kim I, Carroll JL (2009) Heteromeric TASK-1/TASK-3 is the major oxygen-sensitive background K  +  channel in rat carotid body glomus cells. J Physiol 587(Pt 12):2963–2975PubMedCrossRefGoogle Scholar
  34. Kumar P, Prabhakar N (2007) Sensing hypoxia: carotid body mechanisms and reflexes in health and disease. Respir Physiol Neurobiol 157(1):1–3PubMedCrossRefGoogle Scholar
  35. Lopez-Barneo J, Lopez-Lopez JR, Urena J, Gonzalez C (1988) Chemotransduction in the carotid body: K+ current modulated by PO2 in type I chemoreceptor cells. Science 241(4865):580–582, New York, NYPubMedCrossRefGoogle Scholar
  36. Lopez-Lopez JR, De Luis DA, Gonzalez C (1993) Properties of a transient K+ current in chemoreceptor cells of rabbit carotid body. J Physiol 460:15–32PubMedGoogle Scholar
  37. Mills E, Jobsis FF (1972) Mitochondrial respiratory chain of carotid body and chemoreceptor response to changes in oxygen tension. J Neurophysiol 35(4):405–428PubMedGoogle Scholar
  38. Nurse CA (2010) Neurotransmitter and neuromodulatory mechanisms at peripheral arterial chemoreceptors. Exp Physiol 95(6):657–667PubMedCrossRefGoogle Scholar
  39. Ortega-Saenz P, Levitsky KL, Marcos-Almaraz MT, Bonilla-Henao V, Pascual A, Lopez-Barneo J (2010) Carotid body chemosensory responses in mice deficient of TASK channels. J Gen Physiol 135(4):379–392PubMedCrossRefGoogle Scholar
  40. Peers C (1990) Hypoxic suppression of K+ currents in type I carotid body cells: selective effect on the Ca2(+)-activated K+ current. Neurosci Lett 119(2):253–256PubMedCrossRefGoogle Scholar
  41. Peers C, Wyatt CN, Evans AM (2010) Mechanisms for acute oxygen sensing in the carotid body. Respir Physiol Neurobiol 174(3):292–298PubMedCrossRefGoogle Scholar
  42. Peng YJ, Nanduri J, Raghuraman G, Souvannakitti D, Gadalla MM, Kumar GK, Snyder SH, Prabhakar NR (2010) H2S mediates O2 sensing in the carotid body. Proc Natl Acad Sci U S A 107(23):10719–10724PubMedCrossRefGoogle Scholar
  43. Perez-Garcia MT, Colinas O, Miguel-Velado E, Moreno-Dominguez A, Lopez-Lopez JR (2004) Characterization of the Kv channels of mouse carotid body chemoreceptor cells and their role in oxygen sensing. J Physiol 557(Pt 2):457–471PubMedCrossRefGoogle Scholar
  44. Ross FA, Rafferty JN, Dallas ML, Ogunbayo O, Ikematsu N, McClafferty H, Tian L, Widmer H, Rowe IC, Wyatt CN, Shipston MJ, Peers C, Hardie DG, Evans AM (2011) Selective expression in carotid body type I cells of a single splice variant of the large conductance calcium- and voltage-activated potassium channel confers regulation by AMP-activated protein kinase. J Biol Chem 286(14):11929–11936PubMedCrossRefGoogle Scholar
  45. Stea A, Nurse CA (1991) Whole-cell and perforated-patch recordings from O2-sensitive rat carotid body cells grown in short- and long-term culture. Pflugers Archiv 418(1–2):93–101PubMedGoogle Scholar
  46. Tamas P, Hawley SA, Clarke RG, Mustard KJ, Green K, Hardie DG, Cantrell DA (2006) Regulation of the energy sensor AMP-activated protein kinase by antigen receptor and Ca2+ in T lymphocytes. J Exp Med 203(7):1665–1670PubMedCrossRefGoogle Scholar
  47. Thompson RJ, Jackson A, Nurse CA (1997) Developmental loss of hypoxic chemosensitivity in rat adrenomedullary chromaffin cells. J Physiol 498(Pt 2):503–510PubMedGoogle Scholar
  48. Verna A, Roumy M, Leitner LM (1975) Loss of chemoreceptive properties of the rabbit carotid body after destruction of the glomus cells. Brain Res 100(1):13–23PubMedCrossRefGoogle Scholar
  49. Wasicko MJ, Breitwieser GE, Kim I, Carroll JL (2006) Postnatal development of carotid body glomus cell response to hypoxia. Respir Physiol Neurobiol 154(3):356–371PubMedCrossRefGoogle Scholar
  50. Wyatt CN, Evans AM (2007) AMP-activated protein kinase and chemotransduction in the carotid body. Respir Physiol Neurobiol 157(1):22–29PubMedCrossRefGoogle Scholar
  51. Wyatt CN, Mustard KJ, Pearson SA, Dallas ML, Atkinson L, Kumar P, Peers C, Hardie DG, Evans AM (2007) AMP-activated protein kinase mediates carotid body excitation by hypoxia. J Biol Chem 282(11):8092–8098PubMedCrossRefGoogle Scholar
  52. Xiao B, Sanders MJ, Underwood E, Heath R, Mayer FV, Carmena D, Jing C, Walker PA, Eccleston JF, Haire LF, Saiu P, Howell SA, Aasland R, Martin SR, Carling D, Gamblin SJ (2011) Structure of mammalian AMPK and its regulation by ADP. Nature 472(7342):230–233PubMedCrossRefGoogle Scholar
  53. Zhang M, Zhong H, Vollmer C, Nurse CA (2000) Co-release of ATP and ACh mediates hypoxic signalling at rat carotid body chemoreceptors. J Physiol 525(Pt 1):143–158PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • A. Mark Evans
    • 1
    Email author
  • Chris Peers
    • 2
  • Christopher N. Wyatt
    • 3
  • Prem Kumar
    • 4
  • D. Grahame Hardie
    • 5
  1. 1.Centre for Integrative Physiology, College of Medicine and Veterinary MedicineUniversity of EdinburghEdinburghUK
  2. 2.Division of Cardiovascular and Neuronal Remodelling, LIGHT, Faculty of Medicine and Health, Garstang Building (level 5)University of LeedsLeedsUK
  3. 3.Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of MedicineWright State UniversityDaytonUSA
  4. 4.School of Clinical and Experimental Medicine, College of Medical and Dental SciencesUniversity of BirminghamEdgbaston, BirminghamUK
  5. 5.College of Life SciencesUniversity of DundeeDundeeUK

Personalised recommendations