Skip to main content

Abstract

The mouse model of oxygen-induced retinopathy (OIR) is a well established model to study retinal angiogenesis. It has been used extensively to investigate the mechanisms behind pathologic vessel formation in the eye and has helped to lay the foundations for clinical trials. For example, the current use of intravitreal anti-VEGF agents for neovascular eye disease has been significantly influenced by findings in the OIR mouse model. Originally described in 1994, many detailed reports on the OIR mouse model exist and some examples are given in this chapter. The focus of this chapter, however, lies on a novel tool to reliably quantify retinal neovascularization (NV) in the OIR mouse model. Reliable and standardized NV measurements allow better comparabiltiy between labs and will help to further establish the OIR mouse model as a standard tool in retinal angiogenesis research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gyllensten LJ, Hellstrom BE (1954) Experimental approach to the pathogenesis of retrolental fibroplasia. I. Changes of the eye induced by exposure of newborn mice to concentrated oxygen. Acta Paediatr Suppl 43(100):131–148

    Article  PubMed  CAS  Google Scholar 

  2. Dorrell MI, Friedlander M (2006) Mechanisms of endothelial cell guidance and vascular patterning in the developing mouse retina. Prog Retin Eye Res 25(3):277–295

    Article  PubMed  Google Scholar 

  3. Aguilar E et al (2008) Chapter 6. Ocular models of angiogenesis. Methods Enzymol 444:115–158

    Article  PubMed  CAS  Google Scholar 

  4. Otani A et al (2002) A fragment of human TrpRS as a potent antagonist of ocular angiogenesis. Proc Natl Acad Sci USA 99(1):178–183

    Article  PubMed  CAS  Google Scholar 

  5. D’Amato R, Wesolowski E, Smith LE (1993) Microscopic visualization of the retina by angiography with high-molecular-weight fluorescein-labeled dextrans in the mouse. Microvasc Res 46(2):135–142

    Article  PubMed  Google Scholar 

  6. Ritter MR et al (2005) Three-dimensional in vivo imaging of the mouse intraocular vasculature during development and disease. Invest Ophthalmol Vis Sci 46(9):3021–3026

    Article  PubMed  Google Scholar 

  7. Stone J et al (1995) Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. J Neurosci 15(7 Pt 1):4738–4747

    PubMed  CAS  Google Scholar 

  8. Gerhardt H et al (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161(6):1163–1177

    Article  PubMed  CAS  Google Scholar 

  9. Benedito R et al (2009) The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell 137(6):1124–1135

    Article  PubMed  CAS  Google Scholar 

  10. Hellstrom M et al (2007) Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445(7129):776–780

    Article  PubMed  Google Scholar 

  11. Lobov IB et al (2007) Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc Natl Acad Sci USA 104(9):3219–3224

    Article  PubMed  CAS  Google Scholar 

  12. Xu Q et al (2004) Vascular development in the retina and inner ear: control by Norrin and Frizzled-4, a high-affinity ligand-receptor pair. Cell 116(6):883–895

    Article  PubMed  CAS  Google Scholar 

  13. Ye X et al (2009) Norrin, frizzled-4, and Lrp5 signaling in endothelial cells controls a genetic program for retinal vascularization. Cell 139(2):285–298

    Article  PubMed  CAS  Google Scholar 

  14. Stefater JA 3rd et al (2011) Regulation of angiogenesis by a non-canonical Wnt-Flt1 pathway in myeloid cells. Nature 474(7352):511–515

    Article  PubMed  CAS  Google Scholar 

  15. Lobov IB et al (2005) WNT7b mediates macrophage-induced programmed cell death in patterning of the vasculature. Nature 437(7057):417–421

    Article  PubMed  CAS  Google Scholar 

  16. Smith LE et al (1994) Oxygen-induced retinopathy in the mouse. Invest Ophthalmol Vis Sci 35(1):101–111

    PubMed  CAS  Google Scholar 

  17. Pierce EA et al (1995) Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization. Proc Natl Acad Sci USA 92(3):905–909

    Article  PubMed  CAS  Google Scholar 

  18. Smith LE et al (1999) Regulation of vascular endothelial growth factor-dependent retinal neovascularization by insulin-like growth factor-1 receptor. Nat Med 5(12):1390–1395

    Article  PubMed  CAS  Google Scholar 

  19. Aiello LP et al (1995) Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins. Proc Natl Acad Sci USA 92(23):10457–10461

    Article  PubMed  CAS  Google Scholar 

  20. Rota R et al (2004) Marked inhibition of retinal neovascularization in rats following soluble-flt-1 gene transfer. J Gene Med 6(9):992–1002

    Article  PubMed  CAS  Google Scholar 

  21. Bainbridge JW et al (2002) Inhibition of retinal neovascularisation by gene transfer of soluble VEGF receptor sFlt-1. Gene Ther 9(5):320–326

    Article  PubMed  CAS  Google Scholar 

  22. Connor KM et al (2009) Quantification of oxygen-induced retinopathy in the mouse: a model of vessel loss, vessel regrowth and pathological angiogenesis. Nat Protoc 4(11):1565–1573

    Article  PubMed  CAS  Google Scholar 

  23. Stahl A et al (2009) Computer-aided quantification of retinal neovascularization. Angiogenesis 12(3):297–301

    Article  PubMed  CAS  Google Scholar 

  24. Higgins RD et al (1999) Diltiazem reduces retinal neovascularization in a mouse model of oxygen induced retinopathy. Curr Eye Res 18(1):20–27

    Article  PubMed  CAS  Google Scholar 

  25. Lange C et al (2007) Intravitreal injection of the heparin analog 5-amino-2-naphthalenesulfonate reduces retinal neovascularization in mice. Exp Eye Res 85(3):323–327

    Article  PubMed  CAS  Google Scholar 

  26. Chen J et al (2008) Erythropoietin deficiency decreases vascular stability in mice. J Clin Invest 118(2):526–533

    PubMed  CAS  Google Scholar 

  27. Connor KM et al (2007) Increased dietary intake of omega-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis. Nat Med 13(7):868–873

    Article  PubMed  CAS  Google Scholar 

  28. Ritter MR et al (2006) Myeloid progenitors differentiate into microglia and promote vascular repair in a model of ischemic retinopathy. J Clin Invest 116(12):3266–3276

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Stahl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Stahl, A., Chen, J., Joyal, JS., Smith, L.E.H. (2012). The Mouse Model of Oxygen-Induced Retinopathy (OIR). In: Zudaire, E., Cuttitta, F. (eds) The Textbook of Angiogenesis and Lymphangiogenesis: Methods and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4581-0_11

Download citation

Publish with us

Policies and ethics