Skip to main content

Plant-Derived Isoprenoids Mediate Regulation of mTOR Signaling in Tumor Cells

  • Chapter
  • First Online:
Book cover Natural compounds as inducers of cell death

Abstract

It is widely recognized that metabolites derived from plants behave as preemptive nutrients that provide cytoprotection or modify disease risk through processes regulating gene expression at the levels of transcription, DNA methylation as well as formation or bioactivation of proteins. In contrast, lipid-related terpenes, commonly referred to as isoprenoids, are bioactive secondary products of plant mevalonate metabolism that modulate mammalian cell growth, survival, differentiation and autophagic cell death through their effects on gene expression at the level of mRNA translation via the mammalian target of rapamycin (mTOR) pathway. Early findings from our laboratory established that isoprenoids such as perillyl alcohol suppressed 3-hydroxy-methylglutaryl coenzyme A (HMG-CoA) reductase, the rate-limiting enzyme of mevalonate/cholesterol biosynthesis, through a mechanism regulating mRNA translational efficiency. Additionally, our studies found that perillyl alcohol suppressed 4E-BP1 phosphorylation in tumor cells via the mTOR pathway, and disrupted the m7GpppX mRNA cap binding complex, eIF4F, by suppressing interaction of eukaryotic initiation factor 4E (eIF4E) with eIF4G. Furthermore, isoprenoids exhibit certain rapamycin-like inhibitory effects on the rapamycin-sensitive mTORC1 complex, but also have distinct effects on the rapamycin-insensitive TSC1/2-mediated regulation of mTOR signaling. Overall, these effects on mTOR signaling suppress cap-dependent protein translation and set-up conditions for cap-independent translation that in part mediate isoprenoid-induced tumor cell death through a caspase-independent mechanism similar to autophagy. Additionally, other studies have reported that polyphenols, flavonoids and triterpenes induced cell death through a similar mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abid MR, Li Y et al (1999) Translational regulation of ribonucleotide reductase by eukaryotic initiation factor 4E links protein synthesis to the control of DNA replication. J Biol Chem 274(50):35991–35998

    PubMed  CAS  Google Scholar 

  • Abraham RT, Gibbons JJ (2007) The mammalian target of rapamycin signaling pathway: twists and turns in the road to cancer therapy. Clin Cancer Res 13(11):3109–3114

    PubMed  CAS  Google Scholar 

  • Adlercreutz H (1990) Western diet and Western diseases: some hormonal and biochemical mechanisms and associations. Scand J Clin Lab Invest Suppl 201:3–23

    PubMed  CAS  Google Scholar 

  • Aggarwal BB, Sundaram C et al (2010) Tocotrienols, the vitamin E of the 21st century: its potential against cancer and other chronic diseases. Biochem Pharmacol 80(11):1613–1631

    PubMed  CAS  Google Scholar 

  • Alhasan SA, Aranha O et al (2001) Genistein elicits pleiotropic molecular effects on head and neck cancer cells. Clin Cancer Res 7(12):4174–4181

    PubMed  CAS  Google Scholar 

  • Aoki H, Takada Y et al (2007) Evidence that curcumin suppresses the growth of malignant gliomas in vitro and in vivo through induction of autophagy: role of Akt and extracellular signal-regulated kinase signaling pathways. Mol Pharmacol 72(1):29–39

    PubMed  CAS  Google Scholar 

  • Ariazi EA, Gould MN (1996) Identifying differential gene expression in monoterpene-treated mammary carcinomas using subtractive display. J Biol Chem 271(46):29286–29294

    PubMed  CAS  Google Scholar 

  • Ariazi EA, Satomi Y et al (1999) Activation of the transforming growth factor beta signaling pathway and induction of cytostasis and apoptosis in mammary carcinomas treated with the anticancer agent perillyl alcohol. Cancer Res 59(8):1917–1928

    PubMed  CAS  Google Scholar 

  • Averous J, Proud CG (2006) When translation meets transformation: the mTOR story. Oncogene 25(48):6423–6435

    PubMed  CAS  Google Scholar 

  • Azrolan NI, Coleman PS (1989) A discoordinate increase in the cellular amount of 3-hydroxy-3-methylglutaryl-CoA reductase results in the loss of rate-limiting control over cholesterogenesis in a tumour cell-free system. Biochem J 258(2):421–425

    PubMed  CAS  Google Scholar 

  • Babendure JR, Babendure JL et al (2006) Control of mammalian translation by mRNA structure near caps. RNA 12(5):851–861

    PubMed  CAS  Google Scholar 

  • Barthelman M, Chen W et al (1998) Inhibitory effects of perillyl alcohol on UVB-induced murine skin cancer and AP-1 transactivation. Cancer Res 58(4):711–716

    PubMed  CAS  Google Scholar 

  • Beevers CS, Li F et al (2006) Curcumin inhibits the mammalian target of rapamycin-mediated signaling pathways in cancer cells. Int J Cancer 119(4):757–764

    PubMed  CAS  Google Scholar 

  • Beevers CS, Chen L et al (2009) Curcumin disrupts the Mammalian target of rapamycin-raptor complex. Cancer Res 69(3):1000–1008

    PubMed  CAS  Google Scholar 

  • Berchtold CM, Chen KS et al (2005) Perillyl alcohol inhibits a calcium-dependent constitutive nuclear factor-kappaB pathway. Cancer Res 65(18):8558–8566

    PubMed  CAS  Google Scholar 

  • Berkel HJ, Turbat-Herrera EA et al (2001) Expression of the translation initiation factor eIF4E in the polyp-cancer sequence in the colon. Cancer Epidemiol Biomarkers Prev 10(6):663–666

    PubMed  CAS  Google Scholar 

  • Bernstein J, Sella O et al (1997) PDGF2/c-sis mRNA leader contains a differentiation-linked internal ribosomal entry site (D-IRES). J Biol Chem 272(14):9356–9362

    PubMed  CAS  Google Scholar 

  • Blagosklonny MV (2000) Cell death beyond apoptosis. Leukemia 14(8):1502–1508

    PubMed  CAS  Google Scholar 

  • Bommareddy A, Hahm ER et al (2009) Atg5 regulates phenethyl isothiocyanate-induced autophagic and apoptotic cell death in human prostate cancer cells. Cancer Res 69(8):3704–3712

    PubMed  CAS  Google Scholar 

  • Buechler RD, Peffley DM (2004) Proto oncogene/eukaryotic translation initiation factor (eIF) 4E attenuates mevalonate-mediated regulation of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase synthesis. Mol Carcinog 41(1):39–53

    PubMed  CAS  Google Scholar 

  • Byrnes K, White S et al (2006) High eIF4E, VEGF, and microvessel density in stage I to III breast cancer. Ann Surg 243(5):684–690, discussion 691–682

    PubMed  Google Scholar 

  • Cao Q, Richter JD (2002) Dissolution of the maskin-eIF4E complex by cytoplasmic polyadenylation and poly(A)-binding protein controls cyclin B1 mRNA translation and oocyte maturation. EMBO J 21(14):3852–3862

    PubMed  CAS  Google Scholar 

  • Chen CN, Hsieh FJ et al (2004) Expression of eukaryotic initiation factor 4E in gastric adenocarcinoma and its association with clinical outcome. J Surg Oncol 86(1):22–27

    PubMed  CAS  Google Scholar 

  • Chiu MI, Katz H et al (1994) RAPT1, a mammalian homolog of yeast Tor, interacts with the FKBP12/rapamycin complex. Proc Natl Acad Sci USA 91(26):12574–12578

    PubMed  CAS  Google Scholar 

  • Choi JW, Peffley DM (1995) 3′-untranslated sequences mediate post-transcriptional regulation of 3-hydroxy-3-methylglutaryl-CoA reductase mRNA by 25-hydroxycholesterol. Biochem J 307(Pt 1):233–238

    PubMed  CAS  Google Scholar 

  • Chung BH, Lee HY et al (2006) Perillyl alcohol inhibits the expression and function of the androgen receptor in human prostate cancer cells. Cancer Lett 236(2):222–228

    PubMed  CAS  Google Scholar 

  • Clark SS (2006) Perillyl alcohol induces c-Myc-dependent apoptosis in Bcr/Abl-transformed leukemia cells. Oncology 70(1):13–18

    PubMed  CAS  Google Scholar 

  • Clemens MJ, Bommer UA (1999) Translational control: the cancer connection. Int J Biochem Cell Biol 31(1):1–23

    PubMed  CAS  Google Scholar 

  • Codogno P, Meijer AJ (2005) Autophagy and signaling: their role in cell survival and cell death. Cell Death Differ 12(Suppl 2):1509–1518

    PubMed  CAS  Google Scholar 

  • Coleman PS, Chen LC et al (1997) Cholesterol metabolism and tumor cell proliferation. Subcell Biochem 28:363–435

    PubMed  CAS  Google Scholar 

  • Constantinou A, Huberman E (1995) Genistein as an inducer of tumor cell differentiation: possible mechanisms of action. Proc Soc Exp Biol Med 208(1):109–115

    PubMed  CAS  Google Scholar 

  • Corradetti MN, Guan KL (2006) Upstream of the mammalian target of rapamycin: do all roads pass through mTOR? Oncogene 25(48):6347–6360

    PubMed  CAS  Google Scholar 

  • Corradetti MN, Inoki K et al (2004) Regulation of the TSC pathway by LKB1: evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers syndrome. Genes Dev 18(13):1533–1538

    PubMed  CAS  Google Scholar 

  • Correll CC, Edwards PA (1994) Mevalonic acid-dependent degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase in vivo and in vitro. J Biol Chem 269(1):633–638

    PubMed  CAS  Google Scholar 

  • Correll CC, Ng L et al (1994) Identification of farnesol as the non-sterol derivative of mevalonic acid required for the accelerated degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. J Biol Chem 269(26):17390–17393

    PubMed  CAS  Google Scholar 

  • Crowell PL, Chang RR et al (1991) Selective inhibition of isoprenylation of 21-26-kDa proteins by the anticarcinogen d-limonene and its metabolites. J Biol Chem 266(26):17679–17685

    PubMed  CAS  Google Scholar 

  • Davis JN, Singh B et al (1998) Genistein-induced upregulation of p21WAF1, downregulation of cyclin B, and induction of apoptosis in prostate cancer cells. Nutr Cancer 32(3):123–131

    PubMed  CAS  Google Scholar 

  • Davis JN, Kucuk O et al (2001) Soy isoflavone supplementation in healthy men prevents NF-kappa B activation by TNF-alpha in blood lymphocytes. Free Radic Biol Med 30(11):1293–1302

    PubMed  CAS  Google Scholar 

  • De Benedetti A, Graff JR (2004) eIF-4E expression and its role in malignancies and metastases. Oncogene 23(18):3189–3199

    PubMed  Google Scholar 

  • De Gregorio E, Baron J et al (2001) Tethered-function analysis reveals that elF4E can recruit ribosomes independent of its binding to the cap structure. RNA 7(1):106–113

    PubMed  Google Scholar 

  • DeBose-Boyd RA (2008) Feedback regulation of cholesterol synthesis: sterol-accelerated ubiquitination and degradation of HMG CoA reductase. Cell Res 18(6):609–621

    PubMed  CAS  Google Scholar 

  • Defatta RJ, De Benedetti A (2003) Translational upregulation of yes accompanies eIF4E-mediated oncogenic transformation. Int J Oncol 23(6):1709–1713

    PubMed  CAS  Google Scholar 

  • DeFatta RJ, Turbat-Herrera EA et al (1999) Elevated expression of eIF4E in confined early breast cancer lesions: possible role of hypoxia. Int J Cancer 80(4):516–522

    PubMed  CAS  Google Scholar 

  • DeFatta RJ, Nathan CA et al (2000) Antisense RNA to eIF4E suppresses oncogenic properties of a head and neck squamous cell carcinoma cell line. Laryngoscope 110(6):928–933

    PubMed  CAS  Google Scholar 

  • DeFatta RJ, Li Y et al (2002) Selective killing of cancer cells based on translational control of a suicide gene. Cancer Gene Ther 9(7):573–578

    PubMed  CAS  Google Scholar 

  • Elson CE, Peffley DM et al (1999) Isoprenoid-mediated inhibition of mevalonate synthesis: potential application to cancer. Proc Soc Exp Biol Med 221(4):294–311

    PubMed  CAS  Google Scholar 

  • Engstrom W, Schofield PN (1987) Expression of the 3-hydroxy-3-methylglutaryl coenzyme A-reductase and LDL-receptor genes in human embryonic tumours and in normal foetal tissues. Anticancer Res 7(3 Pt B):337–342

    PubMed  CAS  Google Scholar 

  • Espel E (2005) The role of the AU-rich elements of mRNAs in controlling translation. Semin Cell Dev Biol 16(1):59–67

    PubMed  CAS  Google Scholar 

  • Espenshade PJ, Hughes AL (2007) Regulation of sterol synthesis in eukaryotes. Annu Rev Genet 41:401–427

    PubMed  CAS  Google Scholar 

  • Fernandez J, Yaman I et al (2001) Internal ribosome entry site-mediated translation of a mammalian mRNA is regulated by amino acid availability. J Biol Chem 276(15):12285–12291

    PubMed  CAS  Google Scholar 

  • Fernandez J, Yaman I et al (2005) Ribosome stalling regulates IRES-mediated translation in eukaryotes, a parallel to prokaryotic attenuation. Mol Cell 17(3):405–416

    PubMed  CAS  Google Scholar 

  • Fischer Jde S, Liao L et al (2010) Dynamic proteomic overview of glioblastoma cells (A172) exposed to perillyl alcohol. J Proteomics 73(5):1018–1027

    PubMed  Google Scholar 

  • Forman HJ, Torres M et al (2002) Redox signaling. Mol Cell Biochem 234–235(1–2):49–62

    PubMed  Google Scholar 

  • Fournier DB, Erdman JW Jr et al (1998) Soy, its components, and cancer prevention: a review of the in vitro, animal, and human data. Cancer Epidemiol Biomarkers Prev 7(11):1055–1065

    PubMed  CAS  Google Scholar 

  • Fritz T, Buechler R, Peffley DM (1998) Translational efficiency of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase is regulated by 5′-untranslated (UTR) mRNA secondary structure. Circ Res 98:379

    Google Scholar 

  • Galluzzi L, Vicencio JM et al (2008) To die or not to die: that is the autophagic question. Curr Mol Med 8(2):78–91

    PubMed  CAS  Google Scholar 

  • Gayen AK, Peffley DM (1995) The length of 5′-untranslated leader sequences influences distribution of 3-hydroxy-3-methylglutaryl-coenzyme A reductase mRNA in polysomes: effects of lovastatin, oxysterols, and mevalonate. Arch Biochem Biophys 322(2):475–485

    PubMed  CAS  Google Scholar 

  • Ghosh PM, Ghosh-Choudhury N et al (1999) Role of RhoA activation in the growth and morphology of a murine prostate tumor cell line. Oncogene 18(28):4120–4130

    PubMed  CAS  Google Scholar 

  • Gingras AC, Raught B et al (2001a) Control of translation by the target of rapamycin proteins. Prog Mol Subcell Biol 27:143–174

    PubMed  CAS  Google Scholar 

  • Gingras AC, Raught B et al (2001b) Regulation of translation initiation by FRAP/mTOR. Genes Dev 15(7):807–826

    PubMed  CAS  Google Scholar 

  • Giraud S, Greco A et al (2001) Translation initiation of the insulin-like growth factor I receptor mRNA is mediated by an internal ribosome entry site. J Biol Chem 276(8):5668–5675

    PubMed  CAS  Google Scholar 

  • Goldson TM, Vielhauer G et al (2007) Eukaryotic initiation factor 4E variants alter the morphology, proliferation, and colony-formation properties of MDA-MB-435 cancer cells. Mol Carcinog 46(1):71–84

    PubMed  CAS  Google Scholar 

  • Goldstein JL, Brown MS (1990) Regulation of the mevalonate pathway. Nature 343(6257):425–430

    PubMed  CAS  Google Scholar 

  • Gould MN (1997) Cancer chemoprevention and therapy by monoterpenes. Environ Health Perspect 105(Suppl 4):977–979

    PubMed  CAS  Google Scholar 

  • Graff JR, Zimmer SG (2003) Translational control and metastatic progression: enhanced activity of the mRNA cap-binding protein eIF-4E selectively enhances translation of metastasis-related mRNAs. Clin Exp Metastasis 20(3):265–273

    PubMed  CAS  Google Scholar 

  • Graff JR, Konicek BW et al (2008) Targeting the eukaryotic translation initiation factor 4E for cancer therapy. Cancer Res 68(3):631–634

    PubMed  CAS  Google Scholar 

  • Guilford JM, Pezzuto JM (2008) Natural products as inhibitors of carcinogenesis. Expert Opin Investig Drugs 17(9):1341–1352

    PubMed  CAS  Google Scholar 

  • Gullett NP, Ruhul Amin AR et al (2010) Cancer prevention with natural compounds. Semin Oncol 37(3):258–281

    PubMed  CAS  Google Scholar 

  • Halaby MJ, Yang DQ (2007) p53 translational control: a new facet of p53 regulation and its implication for tumorigenesis and cancer therapeutics. Gene 395(1–2):1–7

    PubMed  CAS  Google Scholar 

  • Haluska P, Dy GK et al (2002) Farnesyl transferase inhibitors as anticancer agents. Eur J Cancer 38(13):1685–1700

    PubMed  CAS  Google Scholar 

  • Handayani R, Rice L et al (2006) Soy isoflavones alter expression of genes associated with cancer progression, including interleukin-8, in androgen-independent PC-3 human prostate cancer cells. J Nutr 136(1):75–82

    PubMed  CAS  Google Scholar 

  • Hekman M, Hamm H et al (2002) Associations of B- and C-Raf with cholesterol, phosphatidylserine, and lipid second messengers: preferential binding of Raf to artificial lipid rafts. J Biol Chem 277(27):24090–24102

    PubMed  CAS  Google Scholar 

  • Henis-Korenblit S, Strumpf NL et al (2000) A novel form of DAP5 protein accumulates in apoptotic cells as a result of caspase cleavage and internal ribosome entry site-mediated translation. Mol Cell Biol 20(2):496–506

    PubMed  CAS  Google Scholar 

  • Henis-Korenblit S, Shani G et al (2002) The caspase-cleaved DAP5 protein supports internal ribosome entry site-mediated translation of death proteins. Proc Natl Acad Sci USA 99(8):5400–5405

    PubMed  CAS  Google Scholar 

  • Hentosh P, Yuh SH et al (2001) Sterol-independent regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase in tumor cells. Mol Carcinog 32(3):154–166

    PubMed  CAS  Google Scholar 

  • Herbert TP, Fahraeus R et al (2000) Rapid induction of apoptosis mediated by peptides that bind initiation factor eIF4E. Curr Biol 10(13):793–796

    PubMed  CAS  Google Scholar 

  • Herman-Antosiewicz A, Johnson DE et al (2006) Sulforaphane causes autophagy to inhibit release of cytochrome C and apoptosis in human prostate cancer cells. Cancer Res 66(11):5828–5835

    PubMed  CAS  Google Scholar 

  • Hiipakka RA, Zhang HZ et al (2002) Structure-activity relationships for inhibition of human 5alpha-reductases by polyphenols. Biochem Pharmacol 63(6):1165–1176

    PubMed  CAS  Google Scholar 

  • Holcik M, Gordon BW et al (2003) The internal ribosome entry site-mediated translation of antiapoptotic protein XIAP is modulated by the heterogeneous nuclear ribonucleoproteins C1 and C2. Mol Cell Biol 23(1):280–288

    PubMed  CAS  Google Scholar 

  • Holz MK, Ballif BA et al (2005) mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell 123(4):569–580

    PubMed  CAS  Google Scholar 

  • Hsieh TC, Elangovan S et al (2010) Gamma-Tocotrienol controls proliferation, modulates expression of cell cycle regulatory proteins and up-regulates quinone reductase NQO2 in MCF-7 breast cancer cells. Anticancer Res 30(7):2869–2874

    PubMed  CAS  Google Scholar 

  • Hu J, Straub J et al (2007) Phenethyl isothiocyanate, a cancer chemopreventive constituent of cruciferous vegetables, inhibits cap-dependent translation by regulating the level and phosphorylation of 4E-BP1. Cancer Res 67(8):3569–3573

    PubMed  CAS  Google Scholar 

  • Huang M, Prendergast GC (2006) RhoB in cancer suppression. Histol Histopathol 21(2):213–218

    PubMed  CAS  Google Scholar 

  • Huang J, Nasr M et al (1992) Genistein inhibits protein histidine kinase. J Biol Chem 267(22):15511–15515

    PubMed  CAS  Google Scholar 

  • Hudes GR, Szarka CE et al (2000) Phase I pharmacokinetic trial of perillyl alcohol (NSC 641066) in patients with refractory solid malignancies. Clin Cancer Res 6(8):3071–3080

    PubMed  CAS  Google Scholar 

  • Humar R, Kiefer FN et al (2002) Hypoxia enhances vascular cell proliferation and angiogenesis in vitro via rapamycin (mTOR)-dependent signaling. FASEB J 16(8):771–780

    PubMed  CAS  Google Scholar 

  • Inoki K, Guan KL (2006) Complexity of the TOR signaling network. Trends Cell Biol 16(4):206–212

    PubMed  CAS  Google Scholar 

  • Izquierdo JM, Cuezva JM (2000) Internal-ribosome-entry-site functional activity of the 3′-untranslated region of the mRNA for the beta subunit of mitochondrial H+−ATP synthase. Biochem J 346(Pt 3):849–855

    PubMed  CAS  Google Scholar 

  • Jacinto E, Loewith R et al (2004) Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6(11):1122–1128

    PubMed  CAS  Google Scholar 

  • Jeffrey IW, Bushell M et al (2002) Inhibition of protein synthesis in apoptosis: differential requirements by the tumor necrosis factor alpha family and a DNA-damaging agent for caspases and the double-stranded RNA-dependent protein kinase. Cancer Res 62(8):2272–2280

    PubMed  CAS  Google Scholar 

  • Jo Y, Debose-Boyd RA (2010) Control of cholesterol synthesis through regulated ER-associated degradation of HMG CoA reductase. Crit Rev Biochem Mol Biol 45(3):185–198

    PubMed  CAS  Google Scholar 

  • Jung CH, Ro SH et al (2010) mTOR regulation of autophagy. FEBS Lett 584(7):1287–1295

    PubMed  CAS  Google Scholar 

  • Kevil C, Carter P et al (1995) Translational enhancement of FGF-2 by eIF-4 factors, and alternate utilization of CUG and AUG codons for translation initiation. Oncogene 11(11):2339–2348

    PubMed  CAS  Google Scholar 

  • Khan N, Afaq F et al (2008) Cancer chemoprevention through dietary antioxidants: progress and promise. Antioxid Redox Signal 10(3):475–510

    PubMed  CAS  Google Scholar 

  • Kim DH, Sarbassov DD et al (2003) GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol Cell 11(4):895–904

    PubMed  CAS  Google Scholar 

  • Kim S, Sohn I et al (2005) Hepatic gene expression profiles are altered by genistein supplementation in mice with diet-induced obesity. J Nutr 135(1):33–41

    PubMed  CAS  Google Scholar 

  • Kitanaka C, Kuchino Y (1999) Caspase-independent programmed cell death with necrotic morphology. Cell Death Differ 6(6):508–515

    PubMed  CAS  Google Scholar 

  • Komarova AV, Brocard M et al (2006) The case for mRNA 5′ and 3′ end cross talk during translation in a eukaryotic cell. Prog Nucleic Acid Res Mol Biol 81:331–367

    PubMed  CAS  Google Scholar 

  • Kozak M (2001a) Constraints on reinitiation of translation in mammals. Nucleic Acids Res 29(24):5226–5232

    PubMed  CAS  Google Scholar 

  • Kozak M (2001b) New ways of initiating translation in eukaryotes? Mol Cell Biol 21(6):1899–1907

    PubMed  CAS  Google Scholar 

  • Kozak M (2001c) A progress report on translational control in eukaryotes. Sci STKE 2001(71):PE1

    PubMed  CAS  Google Scholar 

  • Kozak M (2005) Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene 361:13–37

    PubMed  CAS  Google Scholar 

  • Kozak M (2007) Lessons (not) learned from mistakes about translation. Gene 403(1–2):194–203

    PubMed  CAS  Google Scholar 

  • Lawrence JC Jr, Abraham RT (1997) PHAS/4E-BPs as regulators of mRNA translation and cell proliferation. Trends Biochem Sci 22(9):345–349

    PubMed  CAS  Google Scholar 

  • Lawrence JC Jr, Fadden P et al (1997) PHAS proteins as mediators of the actions of insulin, growth factors and cAMP on protein synthesis and cell proliferation. Adv Enzyme Regul 37:239–267

    PubMed  Google Scholar 

  • Le Sourd F, Boulben S et al (2006) eEF1B: At the dawn of the 21st century. Biochim Biophys Acta 1759(1–2):13–31

    PubMed  Google Scholar 

  • Lebowitz PF, Prendergast GC (1998) Functional interaction between RhoB and the transcription factor DB1. Cell Adhes Commun 6(4):277–287

    PubMed  CAS  Google Scholar 

  • Lebowitz PF, Du W et al (1997) Prenylation of RhoB is required for its cell transforming function but not its ability to activate serum response element-dependent transcription. J Biol Chem 272(26):16093–16095

    PubMed  CAS  Google Scholar 

  • Lee HK, Jeong S (2006) Beta-Catenin stabilizes cyclooxygenase-2 mRNA by interacting with AU-rich elements of 3′-UTR. Nucleic Acids Res 34(19):5705–5714

    PubMed  CAS  Google Scholar 

  • Lee CH, Inoki K et al (2007) mTOR pathway as a target in tissue hypertrophy. Annu Rev Pharmacol Toxicol 47:443–467

    PubMed  CAS  Google Scholar 

  • Lefranc F, Facchini V et al (2007) Proautophagic drugs: a novel means to combat apoptosis-resistant cancers, with a special emphasis on glioblastomas. Oncologist 12(12):1395–1403

    PubMed  CAS  Google Scholar 

  • Levy S, Avni D et al (1991) Oligopyrimidine tract at the 5′ end of mammalian ribosomal protein mRNAs is required for their translational control. Proc Natl Acad Sci USA 88(8):3319–3323

    PubMed  CAS  Google Scholar 

  • Li X, Marani M et al (2001) Overexpression of BCL-X(L) underlies the molecular basis for resistance to staurosporine-induced apoptosis in PC-3 cells. Cancer Res 61(4):1699–1706

    PubMed  CAS  Google Scholar 

  • Li B, Gruner JS et al (2002) Prospective study of eukaryotic initiation factor 4E protein elevation and breast cancer outcome. Ann Surg 235(5):732–738; discussion 738–739

    PubMed  Google Scholar 

  • Liao JK (2002) Isoprenoids as mediators of the biological effects of statins. J Clin Invest 110(3):285–288

    PubMed  CAS  Google Scholar 

  • Lluria-Prevatt M, Morreale J et al (2002) Effects of perillyl alcohol on melanoma in the TPras mouse model. Cancer Epidemiol Biomarkers Prev 11(6):573–579

    PubMed  CAS  Google Scholar 

  • Makela SI, Pylkkanen LH et al (1995) Dietary soybean may be antiestrogenic in male mice. J Nutr 125(3):437–445

    PubMed  CAS  Google Scholar 

  • Mamane Y, Petroulakis E et al (2004) eIF4E–from translation to transformation. Oncogene 23(18):3172–3179

    PubMed  CAS  Google Scholar 

  • Marissen WE, Gradi A et al (2000) Cleavage of eukaryotic translation initiation factor 4GII correlates with translation inhibition during apoptosis. Cell Death Differ 7(12):1234–1243

    PubMed  CAS  Google Scholar 

  • Martinez O, Goud B (1998) Rab proteins. Biochim Biophys Acta 1404(1–2):101–112

    PubMed  CAS  Google Scholar 

  • Matsukawa Y, Marui N et al (1993) Genistein arrests cell cycle progression at G2-M. Cancer Res 53(6):1328–1331

    PubMed  CAS  Google Scholar 

  • McIntyre BS, Briski KP et al (2000) Antiproliferative and apoptotic effects of tocopherols and tocotrienols on normal mouse mammary epithelial cells. Lipids 35(2):171–180

    PubMed  CAS  Google Scholar 

  • Mehta RG, Murillo G et al (2010) Cancer chemoprevention by natural products: how far have we come? Pharm Res 27(6):950–961

    PubMed  CAS  Google Scholar 

  • Meigs TE, Simoni RD (1997) Farnesol as a regulator of HMG-CoA reductase degradation: characterization and role of farnesyl pyrophosphatase. Arch Biochem Biophys 345(1):1–9

    PubMed  CAS  Google Scholar 

  • Meley D, Bauvy C et al (2006) AMP-activated protein kinase and the regulation of autophagic proteolysis. J Biol Chem 281(46):34870–34879

    PubMed  CAS  Google Scholar 

  • Mo H, Elson CE (1999) Apoptosis and cell-cycle arrest in human and murine tumor cells are initiated by isoprenoids. J Nutr 129(4):804–813

    PubMed  CAS  Google Scholar 

  • Mo H, Peffley DM, Elson CE (1999) Targeting the action of isoprenoids and related phytochemicals to tumors. In: Heber D, Blackburn GL, Go VLW (eds) Nutritional oncology. Academic, San Diego, pp 379–391

    Google Scholar 

  • Morley SJ, Coldwell MJ et al (2005) Initiation factor modifications in the preapoptotic phase. Cell Death Differ 12(6):571–584

    PubMed  CAS  Google Scholar 

  • Nair S, Li W et al (2007) Natural dietary anti-cancer chemopreventive compounds: redox-mediated differential signaling mechanisms in cytoprotection of normal cells versus cytotoxicity in tumor cells. Acta Pharmacol Sin 28(4):459–472

    PubMed  CAS  Google Scholar 

  • Nesaretnam K, Dorasamy S et al (2000) Tocotrienols inhibit growth of ZR-75-1 breast cancer cells. Int J Food Sci Nutr 51(Suppl):S95–S103

    PubMed  CAS  Google Scholar 

  • Nevins TA, Harder ZM et al (2003) Distinct regulation of internal ribosome entry site-mediated translation following cellular stress is mediated by apoptotic fragments of eIF4G translation initiation factor family members eIF4GI and p97/DAP5/NAT1. J Biol Chem 278(6):3572–3579

    PubMed  CAS  Google Scholar 

  • Nicklin P, Bergman P et al (2009) Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136(3):521–534

    PubMed  CAS  Google Scholar 

  • Nobukuni T, Kozma SC et al (2007) hvps34, an ancient player, enters a growing game: mTOR Complex1/S6K1 signaling. Curr Opin Cell Biol 19(2):135–141

    PubMed  CAS  Google Scholar 

  • Okura A, Arakawa H et al (1988) Effect of genistein on topoisomerase activity and on the growth of [Val 12] Ha-ras-transformed NIH 3T3 cells. Biochem Biophys Res Commun 157(1):183–189

    PubMed  CAS  Google Scholar 

  • Origanti S, Shantz LM (2007) Ras transformation of RIE-1 cells activates cap-independent translation of ornithine decarboxylase: regulation by the Raf/MEK/ERK and phosphatidylinositol 3-kinase pathways. Cancer Res 67(10):4834–4842

    PubMed  CAS  Google Scholar 

  • Pagliacci MC, Smacchia M et al (1994) Growth-inhibitory effects of the natural phyto-oestrogen genistein in MCF-7 human breast cancer cells. Eur J Cancer 30A(11):1675–1682

    PubMed  CAS  Google Scholar 

  • Park SK, Sanders BG et al (2010) Tocotrienols induce apoptosis in breast cancer cell lines via an endoplasmic reticulum stress-dependent increase in extrinsic death receptor signaling. Breast Cancer Res Treat 124(2):361–375

    PubMed  CAS  Google Scholar 

  • Peffley DM (1992) Regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase synthesis in Syrian hamster C100 cells by mevinolin, 25-hydroxycholesterol, and mevalonate: the role of posttranscriptional control. Somat Cell Mol Genet 18(1):19–32

    PubMed  CAS  Google Scholar 

  • Peffley DM, Gayen AK (1997) Inhibition of squalene synthase but not squalene cyclase prevents mevalonate-mediated suppression of 3-hydroxy-3-methylglutaryl coenzyme A reductase synthesis at a posttranscriptional level. Arch Biochem Biophys 337(2):251–260

    PubMed  CAS  Google Scholar 

  • Peffley DM, Gayen AK (2003) Plant-derived monoterpenes suppress hamster kidney cell 3-hydroxy-3-methylglutaryl coenzyme a reductase synthesis at the post-transcriptional level. J Nutr 133(1):38–44

    PubMed  CAS  Google Scholar 

  • Peffley DM, Gayen AK et al (1998) Down-regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase mRNA levels and synthesis in syrian hamster C100 cells by the oxidosqualene cyclase inhibitor [4′-(6-allyl-ethyl-amino-hexyloxy)-2′-fluoro-phenyl]-(4-bromophenyl)-me thanone (Ro 48–8071): comparison to simvastatin. Biochem Pharmacol 56(4):439–449

    PubMed  CAS  Google Scholar 

  • Peffley DM, Sharma C et al (2007) Perillyl alcohol and genistein differentially regulate PKB/Akt and 4E-BP1 phosphorylation as well as eIF4E/eIF4G interactions in human tumor cells. Arch Biochem Biophys 465(1):266–273

    PubMed  CAS  Google Scholar 

  • Pelletier J, Brook JD et al (1991) Assignment of two of the translation initiation factor-4E (EIF4EL1 and EIF4EL2) genes to human chromosomes 4 and 20. Genomics 10(4):1079–1082

    PubMed  CAS  Google Scholar 

  • Perkins CL, Fang G et al (2000) The role of Apaf-1, caspase-9, and bid proteins in etoposide- or paclitaxel-induced mitochondrial events during apoptosis. Cancer Res 60(6):1645–1653

    PubMed  CAS  Google Scholar 

  • Petiot A, Ogier-Denis E et al (2000) Distinct classes of phosphatidylinositol 3′-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J Biol Chem 275(2):992–998

    PubMed  CAS  Google Scholar 

  • Piccinelli P, Samuelsson T (2007) Evolution of the iron-responsive element. RNA 13(7):952–966

    PubMed  CAS  Google Scholar 

  • Pollard M, Luckert PH (1997) Influence of isoflavones in soy protein isolates on development of induced prostate-related cancers in L-W rats. Nutr Cancer 28(1):41–45

    PubMed  CAS  Google Scholar 

  • Polunovsky VA, Gingras AC et al (2000) Translational control of the antiapoptotic function of Ras. J Biol Chem 275(32):24776–24780

    PubMed  CAS  Google Scholar 

  • Poon RY, Toyoshima H et al (1995) Redistribution of the CDK inhibitor p27 between different cyclin.CDK complexes in the mouse fibroblast cell cycle and in cells arrested with lovastatin or ultraviolet irradiation. Mol Biol Cell 6(9):1197–1213

    PubMed  CAS  Google Scholar 

  • Prendergast GC, Khosravi-Far R et al (1995) Critical role of Rho in cell transformation by oncogenic Ras. Oncogene 10(12):2289–2296

    PubMed  CAS  Google Scholar 

  • Puissant A, Robert G et al (2010) Resveratrol promotes autophagic cell death in chronic myelogenous leukemia cells via JNK-mediated p62/SQSTM1 expression and AMPK activation. Cancer Res 70(3):1042–1052

    PubMed  CAS  Google Scholar 

  • Pyronnet S, Pradayrol L et al (2000) A cell cycle-dependent internal ribosome entry site. Mol Cell 5(4):607–616

    PubMed  CAS  Google Scholar 

  • Rabi T, Bishayee A (2009) Terpenoids and breast cancer chemoprevention. Breast Cancer Res Treat 115(2):223–239

    PubMed  CAS  Google Scholar 

  • Ren Z, Elson CE et al (1997) Inhibition of type I and type II geranylgeranyl-protein transferases by the monoterpene perillyl alcohol in NIH3T3 cells. Biochem Pharmacol 54(1):113–120

    PubMed  CAS  Google Scholar 

  • Reynolds GA, Goldstein JL et al (1985) Multiple mRNAs for 3-hydroxy-3-methylglutaryl coenzyme A reductase determined by multiple transcription initiation sites and intron splicing sites in the 5′-untranslated region. J Biol Chem 260(18):10369–10377

    PubMed  CAS  Google Scholar 

  • Ripple GH, Gould MN et al (1998) Phase I clinical trial of perillyl alcohol administered daily. Clin Cancer Res 4(5):1159–1164

    PubMed  CAS  Google Scholar 

  • Ripple GH, Gould MN et al (2000) Phase I clinical and pharmacokinetic study of perillyl alcohol administered four times a day. Clin Cancer Res 6(2):390–396

    PubMed  CAS  Google Scholar 

  • Rubio I, Rodriguez-Viciana P et al (1997) Interaction of Ras with phosphoinositide 3-kinase gamma. Biochem J 326(Pt 3):891–895

    PubMed  CAS  Google Scholar 

  • Salehi Z, Mashayekhi F (2006) Expression of the eukaryotic translation initiation factor 4E (eIF4E) and 4E-BP1 in esophageal cancer. Clin Biochem 39(4):404–409

    PubMed  CAS  Google Scholar 

  • Sarbassov DD, Ali SM et al (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14(14):1296–1302

    PubMed  CAS  Google Scholar 

  • Sarbassov DD, Ali SM et al (2005) Growing roles for the mTOR pathway. Curr Opin Cell Biol 17(6):596–603

    PubMed  CAS  Google Scholar 

  • Sarbassov DD, Ali SM et al (2006) Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 22(2):159–168

    PubMed  CAS  Google Scholar 

  • Sato R (2010) Sterol metabolism and SREBP activation. Arch Biochem Biophys 501(2):177–181

    PubMed  CAS  Google Scholar 

  • Schmidt EV (1999) The role of c-myc in cellular growth control. Oncogene 18(19):2988–2996

    PubMed  CAS  Google Scholar 

  • Sehgal A, Briggs J et al (2000) The chicken c-Jun 5′ untranslated region directs translation by internal initiation. Oncogene 19(24):2836–2845

    PubMed  CAS  Google Scholar 

  • Shantz LM (2004) Transcriptional and translational control of ornithine decarboxylase during Ras transformation. Biochem J 377(Pt 1):257–264

    PubMed  CAS  Google Scholar 

  • Shaw RJ, Bardeesy N et al (2004) The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell 6(1):91–99

    PubMed  CAS  Google Scholar 

  • Shen JC, Klein RD et al (2000) Low-dose genistein induces cyclin-dependent kinase inhibitors and G(1) cell-cycle arrest in human prostate cancer cells. Mol Carcinog 29(2):92–102

    PubMed  CAS  Google Scholar 

  • Sonenberg N (2008) eIF4E, the mRNA cap-binding protein: from basic discovery to translational research. Biochem Cell Biol 86(2):178–183

    PubMed  CAS  Google Scholar 

  • Sonenberg N, Dever TE (2003) Eukaryotic translation initiation factors and regulators. Curr Opin Struct Biol 13(1):56–63

    PubMed  CAS  Google Scholar 

  • Sonenberg N, Hinnebusch AG (2009) Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136(4):731–745

    PubMed  CAS  Google Scholar 

  • Spinozzi F, Pagliacci MC et al (1994) The natural tyrosine kinase inhibitor genistein produces cell cycle arrest and apoptosis in Jurkat T-leukemia cells. Leuk Res 18(6):431–439

    PubMed  CAS  Google Scholar 

  • Stayrook KR, McKinzie JH et al (1998) Effects of the antitumor agent perillyl alcohol on H-Ras vs. K-Ras farnesylation and signal transduction in pancreatic cells. Anticancer Res 18(2A):823–828

    PubMed  CAS  Google Scholar 

  • Stolovich M, Tang H et al (2002) Transduction of growth or mitogenic signals into translational activation of TOP mRNAs is fully reliant on the phosphatidylinositol 3-kinase-mediated pathway but requires neither S6K1 nor rpS6 phosphorylation. Mol Cell Biol 22(23):8101–8113

    PubMed  CAS  Google Scholar 

  • Stratton SP, Alberts DS et al (2010) A phase 2a study of topical perillyl alcohol cream for chemoprevention of skin cancer. Cancer Prev Res (Phila) 3(2):160–169

    CAS  Google Scholar 

  • Subkhankulova T, Mitchell SA et al (2001) Internal ribosome entry segment-mediated initiation of c-Myc protein synthesis following genotoxic stress. Biochem J 359(Pt 1):183–192

    PubMed  CAS  Google Scholar 

  • Suh Y, Afaq F et al (2010) Fisetin induces autophagic cell death through suppression of mTOR signaling pathway in prostate cancer cells. Carcinogenesis 31(8):1424–1433

    PubMed  CAS  Google Scholar 

  • Sumitani S, Goya K et al (2002) Akt1 and Akt2 differently regulate muscle creatine kinase and myogenin gene transcription in insulin-induced differentiation of C2C12 myoblasts. Endocrinology 143(3):820–828

    PubMed  CAS  Google Scholar 

  • Suzuki Y, Nakabayashi Y et al (2001) Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death. Proc Natl Acad Sci USA 98(15):8662–8667

    PubMed  CAS  Google Scholar 

  • Svitkin YV, Herdy B et al (2005) Eukaryotic translation initiation factor 4E availability controls the switch between cap-dependent and internal ribosomal entry site-mediated translation. Mol Cell Biol 25(23):10556–10565

    PubMed  CAS  Google Scholar 

  • Tan A, Bitterman P et al (2000) Inhibition of Myc-dependent apoptosis by eukaryotic translation initiation factor 4E requires cyclin D1. Oncogene 19(11):1437–1447

    PubMed  CAS  Google Scholar 

  • Teerink H, Voorma HO et al (1995) The human insulin-like growth factor II leader 1 contains an internal ribosomal entry site. Biochim Biophys Acta 1264(3):403–408

    PubMed  Google Scholar 

  • Thornton S, Anand N et al (2003) Not just for housekeeping: protein initiation and elongation factors in cell growth and tumorigenesis. J Mol Med 81(9):536–548

    PubMed  CAS  Google Scholar 

  • Trachootham D, Zhou Y et al (2006) Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanate. Cancer Cell 10(3):241–252

    PubMed  CAS  Google Scholar 

  • van den Beucken T, Koritzinsky M et al (2006) Translational control of gene expression during hypoxia. Cancer Biol Ther 5(7):749–755

    PubMed  Google Scholar 

  • Van Der Kelen K, Beyaert R et al (2009) Translational control of eukaryotic gene expression. Crit Rev Biochem Mol Biol 44(4):143–168

    Google Scholar 

  • van der Velden AW, Thomas AA (1999) The role of the 5′ untranslated region of an mRNA in translation regulation during development. Int J Biochem Cell Biol 31(1):87–106

    PubMed  Google Scholar 

  • Vary TC, Goodman S et al (2005) Nutrient Regulation of PKC{epsilon} is Mediated by Leucine, not Insulin in Skeletal Muscle. Am J Physiol Endocrinol Metab 289(4):E684–E694

    PubMed  CAS  Google Scholar 

  • von der Haar T, Gross JD et al (2004) The mRNA cap-binding protein eIF4E in post-transcriptional gene expression. Nat Struct Mol Biol 11(6):503–511

    PubMed  Google Scholar 

  • Walker WA, Blackburn G (2004) Symposium introduction: nutrition and gene regulation. J Nutr 134(9):2434S–2436S

    PubMed  CAS  Google Scholar 

  • Waskiewicz AJ, Johnson JC et al (1999) Phosphorylation of the cap-binding protein eukaryotic translation initiation factor 4E by protein kinase Mnk1 in vivo. Mol Cell Biol 19(3):1871–1880

    PubMed  CAS  Google Scholar 

  • Wilkie GS, Dickson KS et al (2003) Regulation of mRNA translation by 5′- and 3′-UTR-binding factors. Trends Biochem Sci 28(4):182–188

    PubMed  CAS  Google Scholar 

  • Wiseman DA, Werner SR et al (2007) Cell cycle arrest by the isoprenoids perillyl alcohol, geraniol, and farnesol is mediated by p21(Cip1) and p27(Kip1) in human pancreatic adenocarcinoma cells. J Pharmacol Exp Ther 320(3):1163–1170

    PubMed  CAS  Google Scholar 

  • Wittke I, Madge B et al (2001) DAP-5 is involved in MycN/IFNgamma-induced apoptosis in human neuroblastoma cells. Cancer Lett 162(2):237–243

    PubMed  CAS  Google Scholar 

  • Xu M, Floyd HS et al (2004) Perillyl alcohol-mediated inhibition of lung cancer cell line proliferation: potential mechanisms for its chemotherapeutic effects. Toxicol Appl Pharmacol 195(2):232–246

    PubMed  CAS  Google Scholar 

  • Yan Y, Backer JM (2007) Regulation of class III (Vps34) PI3Ks. Biochem Soc Trans 35(Pt 2):239–241

    PubMed  CAS  Google Scholar 

  • Yang L, Cao Z et al (2003) Coexistence of high levels of apoptotic signaling and inhibitor of apoptosis proteins in human tumor cells: implication for cancer specific therapy. Cancer Res 63(20):6815–6824

    PubMed  CAS  Google Scholar 

  • Yeruva L, Pierre KJ et al (2007) Perillyl alcohol and perillic acid induced cell cycle arrest and apoptosis in non small cell lung cancer cells. Cancer Lett 257(2):216–226

    PubMed  CAS  Google Scholar 

  • Yorimitsu T, Klionsky DJ (2005) Autophagy: molecular machinery for self-eating. Cell Death Differ 12(Suppl 2):1542–1552

    PubMed  CAS  Google Scholar 

  • Yu W, Simmons-Menchaca M et al (1999) Induction of apoptosis in human breast cancer cells by tocopherols and tocotrienols. Nutr Cancer 33(1):26–32

    PubMed  Google Scholar 

  • Yuri T, Danbara N et al (2004) Perillyl alcohol inhibits human breast cancer cell growth in vitro and in vivo. Breast Cancer Res Treat 84(3):251–260

    PubMed  CAS  Google Scholar 

  • Zerial M, McBride H (2001) Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2(2):107–117

    PubMed  CAS  Google Scholar 

  • Zhou JR, Gugger ET et al (1999) Soybean phytochemicals inhibit the growth of transplantable human prostate carcinoma and tumor angiogenesis in mice. J Nutr 129(9):1628–1635

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis M. Peffley Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Peffley, D.M., Hentosh, P. (2012). Plant-Derived Isoprenoids Mediate Regulation of mTOR Signaling in Tumor Cells. In: Diederich, M., Noworyta, K. (eds) Natural compounds as inducers of cell death. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4575-9_15

Download citation

Publish with us

Policies and ethics