Skip to main content

Natural Sulfur Products as Redox Modulators and Selective Inducers of Cell Death

  • Chapter
  • First Online:
Book cover Natural compounds as inducers of cell death

Abstract

Numerous plants, fungi and microorganisms contain organic sulfur compounds (OSCs), which during the last couple of decades have been associated increasingly with chemoprevention, antibacterial and anticancer activity. These compounds also play a particular role as intracellular redox modulators and inducers of apoptosis. Among the various OSCs, redox-active, reactive sulfur species, such as allicin and polysulfanes (RSxR, R ≠ H, x ≥ 3) from garlic and onion, show particularly interesting properties. These compounds are able to S-thiolate or oxidize a wide range of peptides and proteins, and hence modulate intracellular redox processes, either directly or by oxidizing GSH to GSSG, which shifts the intracellular redox balance to more oxidizing potentials. Such interference with the intracellular ‘thiolstat’ has widespread consequences, ranging from an activation of antioxidant defenses to induction of apoptosis. While S-thiolation may be the most prominent mode of action associated with OSCs, the chemistry of these compounds has many facets, including superoxide radical generation, binding to metal centres of metallo-proteins and hydrophobic interactions with various cellular membranes and proteins. Ultimately, many of these reactions also have the potential to trigger apoptotic pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the biochemical literature, the use of electrochemical potentials attributed to cysteine residues is sometimes confusing. In essence, the oxidation potential E ox reflects the ease of oxidation of the cysteine thiol to an oxidized form, usually the disulfide. The reduction potential E red, on the other hand, reflects the ease of reduction of the disulfide to the thiol. The redox potential E 0’ is calculated mathematically as the midpoint between these potentials (essentially the ‘average’). Importantly, E 0’ requires full reversibility of the oxidation and reduction processes, and can only be used to describe the thiol/disulfide pair, but not processes involving other sulfur oxidation states, such as sulfenic or sulfinic acids. It may therefore be more adequate to discuss redox sensitivity of the thiol groups of cysteine proteins in terms of E ox rather than E 0’.

  2. 2.

    Polysulfanes have the chemical formula RSxR’ (R,R’  ≠  H and x  ≥  3). They should not be confused with polysulfides, which, strictly speaking, are charged, often inorganic species of the type RSxH or S 2−x (R  ≠  H and x  ≥  2). In the case of DATS and DATTS, the widely used ‘trisulfide’ and ‘tetrasulfide’ terminology is therefore somewhat misleading.

  3. 3.

    It is likely that other diallylpolysulfanes, such as the penta- and hexasulfane, exhibit similar biological activities. Those longer-chain analogues have hardly been studied so far, mostly due to their inherent chemical instability.

  4. 4.

    Most of these studies have been conducted with DAS, DADS and DATS. DATTS is chemically more unstable and, at least in the past, has been more difficult to obtain. As a consequence, less is known about the various activities of DATTS and higher polysulfanes. Nonetheless, it is likely that these agents will exhibit a similar biochemical behavior.

Abbreviations

AIF:

apoptosis-inducing factor

ALA:

α-lipoic acid

AM:

allylmercaptan

ANT:

adenine nucleotide translocase

AP-1:

activator protein-1

AR:

androgen receptor

ATC:

Human anaplastic thyroid carcinoma

Bad:

B-cell lymphoma protein 2 associated death promoter

Bak:

B-cell lymphoma protein 2 homologous antagonist/killer

Bax:

B-cell lymphoma protein 2 associated X protein

Bcl-2:

B-cell lymphoma protein 2

Bcl-xL :

B-cell lymphoma protein 2-extra large

cdk1:

cyclin dependent kinase 1

DADS:

diallyldisulfide

DAS:

diallylsulfide

DATS:

diallyltrisulfide

DATTS:

diallyltetrasulfide

DHLA:

dihydrolipoic acid

DPTTS:

dipropyltetrasulfide

1,2-DT:

3-vinyl-4H-1,2-dithiin

1,3-DT:

2-vinyl-4H-1,3-dithiin

ERK:

extracellular signal-regulated kinases

FACS:

Fluorescence activated cell sorting

ERK:

extracellular signal-regulated kinases

GSH:

glutathione

GSSG:

glutathione disulfide

HDACs:

histone deacetylases

HMG-CoA:

3-hydroxy-3-methyl-glutaryl coenzyme A

H2S:

hydrogen sulfide

JNK:

c-Jun N-terminal kinase

MAPKs:

mitogen-activated protein kinases

MCF-7:

human mammary carcinoma cells

MPTP:

mitochondrial permeability transition pore

NHE:

normal hydrogen electrode

OSCs:

organic sulfur compounds

OS:

oxidative stress

PARP-1:

poly(ADT-ribose) polymerase 1

PC-3:

human prostate cancer cells

PDIs:

protein disulfide isomerases

PFTase:

protein FTase

PKA:

protein kinase A

PKB:

protein kinase B

PrSH:

protein thiol

PrSSG:

S-glutathiolated protein thiol

PrSSPr:

protein disulfides

Rb:

human retinoblastoma protein

ROS:

reactive oxygen species.

References

  • Adams JM, Cory S (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281(5381):1322–1326

    PubMed  CAS  Google Scholar 

  • Amagase H (2006) Clarifying the real bioactive constituents of garlic. J Nutr 136(3):716s–725s

    PubMed  CAS  Google Scholar 

  • Antlsperger DS, Dirsch VM, Ferreira D, Su JL, Kuo ML, Vollmar AM (2003) Ajoene-induced cell death in human promyeloleukemic cells does not require JNK but is amplified by the inhibition of ERK. Oncogene 22(4):582–589. doi:10.1038/sj.onc.1206161 1206161 [pii]

    PubMed  CAS  Google Scholar 

  • Anwar A, Burkholz T, Scherer C, Abbas M, Lehr CM, Diederich M, Jacob C, Daum N (2008) Naturally occurring reactive sulfur species, their activity against Caco-2 cells, and possible modes of biochemical action. J Sulfur Chem 29(5):573–573. doi:10.1080/17415990802519103

    CAS  Google Scholar 

  • Benavides GA, Squadrito GL, Mills RW, Patel HD, Isbell TS, Patel RP, Darley-Usmar VM, Doeller JE, Kraus DW (2007) Hydrogen sulfide mediates the vasoactivity of garlic. Proc Natl Acad Sci USA 104(46):17977–17982. doi:0705710104 [pii] 10.1073/pnas.0705710104

    PubMed  CAS  Google Scholar 

  • Bhat SH, Azmi AS, Hadi SM (2007) Prooxidant DNA breakage induced by caffeic acid in human peripheral lymphocytes: involvement of endogenous copper and a putative mechanism for anticancer properties. Toxicol Appl Pharmacol 218(3):249–255. doi:S0041-008X(06)00450-9 [pii] 10.1016/j.taap. 2006.11.022

    PubMed  CAS  Google Scholar 

  • Bilska A, Wlodek L (2005) Lipoic acid - the drug of the future? Pharmacol Rep 57(5):570–577

    PubMed  CAS  Google Scholar 

  • Brady JF, Ishizaki H, Fukuto JM, Lin MC, Fadel A, Gapac JM, Yang CS (1991) Inhibition of cytochrome P-450 2E1 by diallyl sulfide and its metabolites. Chem Res Toxicol 4(6):642–647. doi:10.1021/tx00024a008

    PubMed  CAS  Google Scholar 

  • Brandes N, Schmitt S, Jakob U (2009) Thiol-based redox switches in eukaryotic proteins. Antioxid Redox Signal 11(5):997–1014. doi:10.1089/ARS.2008.2285

    PubMed  CAS  Google Scholar 

  • Busch C, Jacob C, Anwar A, Burkholz T, Aicha Ba L, Cerella C, Diederich M, Brandt W, Wessjohann L, Montenarh M (2010) Diallylpolysulfides induce growth arrest and apoptosis. Int J Oncol 36(3):743–749. doi:10.3892/ijo_00000550

    PubMed  CAS  Google Scholar 

  • Buzek J, Latonen L, Kurki S, Peltonen K, Laiho M (2002) Redox state of tumor suppressor p53 regulates its sequence-specific DNA binding in DNA-damaged cells by cysteine 277. Nucleic Acids Res 30(11):2340–2348

    PubMed  CAS  Google Scholar 

  • Cerella C, Scherer C, Cristofanon S, Henry E, Anwar A, Busch C, Montenarh M, Dicato M, Jacob C, Diederich M (2009) Cell cycle arrest in early mitosis and induction of caspase-dependent apoptosis in U937 cells by diallyltetrasulfide (Al2S4). Apoptosis 14(5):641–654. doi:10.1007/s10495-009-0328-8

    PubMed  CAS  Google Scholar 

  • Choi SY, Yu JH, Kim H (2009) Mechanism of alpha-lipoic acid-induced apoptosis of lung cancer cells involvement of Ca2+. Ann N Y Acad Sci 1171:149–155. doi:10.1111/j.1749-6632.2009.04708.x

    PubMed  CAS  Google Scholar 

  • Chung LY (2006) The antioxidant properties of garlic compounds: allyl cysteine, alliin, allicin, and allyl disulfide. J Med Food 9(2):205–213. doi:10.1089/jmf.2006.9.205

    PubMed  CAS  Google Scholar 

  • Cox AG, Peskin AV, Paton LN, Winterbourn CC, Hampton MB (2009) Redox potential and peroxide reactivity of human peroxiredoxin 3. Biochemistry 48(27):6495–6501. doi:10.1021/bi900558g

    PubMed  CAS  Google Scholar 

  • Cunat S, Anahory T, Berthenet C, Hedon B, Franckhauser C, Fernandez A, Hamamah S, Lamb NJ (2008) The cell cycle control protein cdc25C is present, and phosphorylated on serine 214 in the transition from germinal vesicle to metaphase II in human oocyte meiosis. Mol Reprod Dev 75(7):1176–1184. doi:10.1002/mrd.20853

    PubMed  CAS  Google Scholar 

  • Daopin S, Piez KA, Ogawa Y, Davies DR (1992) Crystal structure of transforming growth factor-beta 2: an unusual fold for the superfamily. Science 257(5068):369–373

    PubMed  CAS  Google Scholar 

  • Dirsch VM, Kiemer AK, Wagner H, Vollmar AM (1998a) Effect of allicin and ajoene, two compounds of garlic, on inducible nitric oxide synthase. Atherosclerosis 139(2):333–339. doi:S002191509800094X [pii]

    PubMed  CAS  Google Scholar 

  • Dirsch VM, Gerbes AL, Vollmar AM (1998b) Ajoene, a compound of garlic, induces apoptosis in human promyeloleukemic cells, accompanied by generation of reactive oxygen species and activation of nuclear factor kappaB. Mol Pharmacol 53(3):402–407

    PubMed  CAS  Google Scholar 

  • Dirsch VM, Antlsperger DS, Hentze H, Vollmar AM (2002) Ajoene, an experimental anti-leukemic drug: mechanism of cell death. Leukemia 16(1):74–83. doi:10.1038/sj.leu.2402337

    PubMed  CAS  Google Scholar 

  • Dozio E, Ruscica M, Passafaro L, Dogliotti G, Steffani L, Pagani A, Demartini G, Esposti D, Fraschini F, Magni P (2010) The natural antioxidant alpha-lipoic acid induces p27(Kip1)-dependent cell cycle arrest and apoptosis in MCF-7 human breast cancer cells. Eur J Pharmacol 641(1):29–34. doi:S0014-2999(10)00425-5 [pii] 10.1016/j.ejphar.2010.05.009

    PubMed  CAS  Google Scholar 

  • Egen-Schwind C, Eckard R, Jekat FW, Winterhoff H (1992) Pharmacokinetics of vinyldithiins, transformation products of allicin. Planta Med 58(1):8–13. doi:10.1055/s-2006-961379

    PubMed  CAS  Google Scholar 

  • Ferri N, Yokoyama K, Sadilek M, Paoletti R, Apitz-Castro R, Gelb MH, Corsini A (2003) Ajoene, a garlic compound, inhibits protein prenylation and arterial smooth muscle cell proliferation. Br J Pharmacol 138(5):811–818. doi:10.1038/sj.bjp. 0705126

    PubMed  CAS  Google Scholar 

  • Filomeni G, Rotilio G, Ciriolo MR (2008) Molecular transduction mechanisms of the redox network underlying the antiproliferative effects of allyl compounds from garlic. J Nutr 138(11):2053–2057. doi:138/11/2053 [pii]

    PubMed  CAS  Google Scholar 

  • Forrest VJ, Kang YH, McClain DE, Robinson DH, Ramakrishnan N (1994) Oxidative stress-induced apoptosis prevented by Trolox. Free Radic Biol Med 16(6):675–684

    PubMed  CAS  Google Scholar 

  • Fourquet S, Guerois R, Biard D, Toledano MB (2010) Activation of NRF2 by nitrosative agents and H2O2 involves KEAP1 disulfide formation. J Biol Chem 285(11):8463–8471. doi:M109.051714 [pii] 10.1074/jbc.M109.051714

    PubMed  CAS  Google Scholar 

  • Gayathri R, Gunadharini DN, Arunkumar A, Senthilkumar K, Krishnamoorthy G, Banudevi S, Vignesh RC, Arunakaran J (2009) Effects of diallyl disulfide (DADS) on expression of apoptosis associated proteins in androgen independent human prostate cancer cells (PC-3). Mol Cell Biochem 320(1–2):197–203. doi:10.1007/s11010-008-9903-5

    PubMed  CAS  Google Scholar 

  • Giles NM, Watts AB, Giles GI, Fry FH, Littlechild JA, Jacob C (2003) Metal and redox modulation of cysteine protein function. Chem Biol 10(8):677–693. doi:S1074552103001741 [pii]

    PubMed  CAS  Google Scholar 

  • Gruhlke MC, Portz D, Stitz M, Anwar A, Schneider T, Jacob C, Schlaich NL, Slusarenko AJ (2010) Allicin disrupts the cell’s electrochemical potential and induces apoptosis in yeast. Free Radic Biol Med. doi:S0891-5849(10)00565-4 [pii] 10.1016/j.freeradbiomed.2010.09.019

    Google Scholar 

  • Hadi SM, Bhat SH, Azmi AS, Hanif S, Shamim U, Ullah MF (2007) Oxidative breakage of cellular DNA by plant polyphenols: a putative mechanism for anticancer properties. Semin Cancer Biol 17(5):370–376. doi:S1044-579X(07)00025-9 [pii] 10.1016/j.semcancer.2007.04.002

    PubMed  CAS  Google Scholar 

  • Hansen RE, Roth D, Winther JR (2009) Quantifying the global cellular thiol-disulfide status. Proc Natl Acad Sci USA 106(2):422–427. doi:10.1073/pnas.0812149106

    PubMed  CAS  Google Scholar 

  • Hattori A, Yamada N, Nishikawa T, Fukuda H, Fujino T (2005) Antidiabetic effects of ajoene in genetically diabetic KK-A(y) mice. J Nutr Sci Vitaminol (Tokyo) 51(5):382–384

    CAS  Google Scholar 

  • Herman-Antosiewicz A, Singh SV (2004) Signal transduction pathways leading to cell cycle arrest and apoptosis induction in cancer cells by Allium vegetable-derived organosulfur compounds: a review. Mutat Res 555(1–2):121–131. doi:S0027-5107(04)00287-8 [pii] 10.1016/j.mrfmmm.2004.04.016

    PubMed  CAS  Google Scholar 

  • Herman-Antosiewicz A, Powolny AA, Singh SV (2007a) Molecular targets of cancer chemoprevention by garlic-derived organosulfides. Acta Pharmacol Sin 28(9):1355–1364. doi:10.1111/j.1745-7254.2007.00682.x

    PubMed  CAS  Google Scholar 

  • Herman-Antosiewicz A, Stan SD, Hahm ER, Xiao D, Singh SV (2007b) Activation of a novel ataxia-telangiectasia mutated and Rad3 related/checkpoint kinase 1-dependent prometaphase checkpoint in cancer cells by diallyl trisulfide, a promising cancer chemopreventive constituent of processed garlic. Mol Cancer Ther 6(4):1249–1261. doi:1535-7163.MCT-06-0477 [pii] 10.1158/1535-7163.MCT-06-0477

    PubMed  CAS  Google Scholar 

  • Herman-Antosiewicz A, Kim YA, Kim SH, Xiao D, Singh SV (2010) Diallyl trisulfide-induced G2/M phase cell cycle arrest in DU145 cells is associated with delayed nuclear translocation of cyclin-dependent kinase 1. Pharm Res 27(6):1072–1079. doi:10.1007/s11095-010-0060-7

    PubMed  CAS  Google Scholar 

  • Hirsch K, Danilenko M, Giat J, Miron T, Rabinkov A, Wilchek M, Mirelman D, Levy J, Sharoni Y (2000) Effect of purified allicin, the major ingredient of freshly crushed garlic, on cancer cell proliferation. Nutr Cancer 38(2):245–254

    PubMed  CAS  Google Scholar 

  • Hong SJ, Dawson TM, Dawson VL (2004) Nuclear and mitochondrial conversations in cell death: PARP-1 and AIF signaling. Trends Pharmacol Sci 25(5):259–264. doi:10.1016/j.tips.2004.03.005

    PubMed  CAS  Google Scholar 

  • Hong F, Freeman ML, Liebler DC (2005) Identification of sensor cysteines in human Keap1 modified by the cancer chemopreventive agent sulforaphane. Chem Res Toxicol 18(12):1917–1926. doi:10.1021/tx0502138

    PubMed  CAS  Google Scholar 

  • Hosono T, Fukao T, Ogihara J, Ito Y, Shiba H, Seki T, Ariga T (2005) Diallyl trisulfide suppresses the proliferation and induces apoptosis of human colon cancer cells through oxidative modification of beta-tubulin. J Biol Chem 280(50):41487–41493. doi:M507127200 [pii] 10.1074/jbc.M507127200

    PubMed  CAS  Google Scholar 

  • Huber K, Patel P, Zhang L, Evans H, Westwell AD, Fischer PM, Chan S, Martin S (2008) 2-[(1-methylpropyl)dithio]-1 H-imidazole inhibits tubulin polymerization through cysteine oxidation. Mol Cancer Ther 7(1):143–151. doi:7/1/143 [pii] 10.1158/1535-7163.MCT-07-0486

    PubMed  CAS  Google Scholar 

  • Jacob C (2006) A scent of therapy: pharmacological implications of natural products containing redox-active sulfur atoms. Nat Prod Rep 23(6):851–863. doi:10.1039/b609523m

    PubMed  CAS  Google Scholar 

  • Jacob C, Anwar A (2008) The chemistry behind redox regulation with a focus on sulphur redox systems. Physiol Plant 133(3):469–480. doi:10.1111/j.1399-3054.2008.01080.x

    PubMed  CAS  Google Scholar 

  • Jacob C, Holme AL, Fry FH (2004) The sulfinic acid switch in proteins. Org Biomol Chem 2(14):1953–1956. doi:10.1039/b406180b

    PubMed  CAS  Google Scholar 

  • Jacob C, Knight I, Winyard PG (2006) Aspects of the biological redox chemistry of cysteine: from simple redox responses to sophisticated signalling pathways. Biol Chem 387(10–11):1385–1397. doi:10.1515/BC.2006.174

    PubMed  CAS  Google Scholar 

  • Jacob C, Jamier V, Ba LA (2010) Redox active secondary metabolites. Current Opin Chem Biol. doi:10.1016/j.cbpa.2010.10.015

    Google Scholar 

  • Karmakar S, Banik NL, Patel SJ, Ray SK (2007) Garlic compounds induced calpain and intrinsic caspase cascade for apoptosis in human malignant neuroblastoma SH-SY5Y cells. Apoptosis 12(4):671–684. doi:10.1007/s10495-006-0024-x

    PubMed  CAS  Google Scholar 

  • Keophiphath M, Priem F, Jacquemond-Collet I, Clement K, Lacasa D (2009) 1,2-vinyldithiin from garlic inhibits differentiation and inflammation of human preadipocytes. J Nutr 139(11):2055–2060. doi:jn.109.105452 [pii] 10.3945/jn.109.105452

    PubMed  CAS  Google Scholar 

  • Kraaij MD, Savage ND, van der Kooij SW, Koekkoek K, Wang J, van den Berg JM, Ottenhoff TH, Kuijpers TW, Holmdahl R, van Kooten C, Gelderman KA (2010) Induction of regulatory T cells by macrophages is dependent on production of reactive oxygen species. Proc Natl Acad Sci USA 107(41):17686–17691. doi:1012016107 [pii] 10.1073/pnas.1012016107

    PubMed  CAS  Google Scholar 

  • Landino LM, Koumas MT, Mason CE, Alston JA (2007) Modification of tubulin cysteines by nitric oxide and nitroxyl donors alters tubulin polymerization activity. Chem Res Toxicol 20(11):1693–1700. doi:10.1021/tx7001492

    PubMed  CAS  Google Scholar 

  • Ledezma E, Apitz-Castro R, Cardier J (2004) Apoptotic and anti-adhesion effect of ajoene, a garlic derived compound, on the murine melanoma B16F10 cells: possible role of caspase-3 and the alpha(4)beta(1) integrin. Cancer Lett 206(1):35–41. doi:10.1016/j.canlet.2003.10.031 S0304383503007729 [pii]

    PubMed  CAS  Google Scholar 

  • Ledezma E, Wittig O, Alonso J, Cardier JE (2009) Potentiated cytotoxic effects of statins and ajoene in murine melanoma cells. Melanoma Res 19(2):69–74. doi:10.1097/CMR.0b013e32831bc45a

    PubMed  CAS  Google Scholar 

  • Lee W, Choi KS, Riddell J, Ip C, Ghosh D, Park JH, Park YM (2007) Human peroxiredoxin 1 and 2 are not duplicate proteins: the unique presence of CYS83 in Prx1 underscores the structural and functional differences between Prx1 and Prx2. J Biol Chem 282(30):22011–22022. doi:M610330200 [pii] 10.1074/jbc.M610330200

    PubMed  CAS  Google Scholar 

  • Li M, Ciu JR, Ye Y, Min JM, Zhang LH, Wang K, Gares M, Cros J, Wright M, Leung-Tack J (2002a) Antitumor activity of Z-ajoene, a natural compound purified from garlic: antimitotic and microtubule-interaction properties. Carcinogenesis 23(4):573–579. doi:10.1093/carcin/23.4.573

    PubMed  CAS  Google Scholar 

  • Li M, Min JM, Cui JR, Zhang LH, Wang K, Valette A, Davrinche C, Wright M, Leung-Tack J (2002b) Z-ajoene induces apoptosis of HL-60 cells: involvement of Bcl-2 cleavage. Nutr Cancer 42(2):241–247

    PubMed  CAS  Google Scholar 

  • Liu L, Yeh YY (2002) S-alk(en)yl cysteines of garlic inhibit cholesterol synthesis by deactivating HMG-CoA reductase in cultured rat hepatocytes. J Nutr 132(6):1129–1134

    PubMed  CAS  Google Scholar 

  • Lo Bello M, Battistoni A, Mazzetti AP, Board PG, Muramatsu M, Federici G, Ricci G (1995) Site-directed mutagenesis of human glutathione transferase P1-1. Spectral, kinetic, and structural properties of Cys-47 and Lys-54 mutants. J Biol Chem 270(3):1249–1253

    PubMed  CAS  Google Scholar 

  • Lundstrom J, Holmgren A (1993) Determination of the reduction-oxidation potential of the thioredoxin-like domains of protein disulfide-isomerase from the equilibrium with glutathione and thioredoxin. Biochemistry 32(26):6649–6655. doi:10.1021/bi00077a018

    PubMed  CAS  Google Scholar 

  • Maser RS, Antoku K, Scully WJ Jr, Cho RL, Johnson DE (2000) Analysis of the role of conserved cysteine residues in the bcl-2 oncoprotein. Biochem Biophys Res Commun 277(1):171–178. doi:10.1006/bbrc.2000.3652 S0006-291X(00)93652-0 [pii]

    PubMed  CAS  Google Scholar 

  • McStay GP, Clarke SJ, Halestrap AP (2002) Role of critical thiol groups on the matrix surface of the adenine nucleotide translocase in the mechanism of the mitochondrial permeability transition pore. Biochem J 367(Pt 2):541–548. doi:10.1042/BJ20011672 BJ20011672 [pii]

    PubMed  CAS  Google Scholar 

  • Menon SG, Goswami PC (2007) A redox cycle within the cell cycle: ring in the old with the new. Oncogene 26(8):1101–1109. doi:1209895 [pii] 10.1038/sj.onc.1209895

    PubMed  CAS  Google Scholar 

  • Meyer M, Schreck R, Baeuerle PA (1993) H2O2 and antioxidants have opposite effects on activation of NF-kappa B and AP-1 in intact cells: AP-1 as secondary antioxidant-responsive factor. EMBO J 12(5):2005–2015

    PubMed  CAS  Google Scholar 

  • Mieyal JJ, Gallogly MM, Qanungo S, Sabens EA, Shelton MD (2008) Molecular mechanisms and clinical implications of reversible protein S-glutathionylation. Antioxid Redox Signal 10(11):1941–1988. doi:10.1089/ars.2008.2089

    PubMed  CAS  Google Scholar 

  • Miron T, Wilchek M, Sharp A, Nakagawa Y, Naoi M, Nozawa Y, Akao Y (2008) Allicin inhibits cell growth and induces apoptosis through the mitochondrial pathway in HL60 and U937 cells. J Nutr Biochem 19(8):524–535. doi:S0955-2863(07)00179-9 [pii] 10.1016/j.jnutbio.2007.06.009

    PubMed  CAS  Google Scholar 

  • Moungjaroen J, Nimmannit U, Callery PS, Wang L, Azad N, Lipipun V, Chanvorachote P, Rojanasakul Y (2006) Reactive oxygen species mediate caspase activation and apoptosis induced by lipoic acid in human lung epithelial cancer cells through Bcl-2 down-regulation. J Pharmacol Exp Ther 319(3):1062–1069. doi:jpet.106.110965 [pii] 10.1124/jpet.106.110965

    PubMed  CAS  Google Scholar 

  • Munchberg U, Anwar A, Mecklenburg S, Jacob C (2007) Polysulfides as biologically active ingredients of garlic. Org Biomol Chem 5(10):1505–1518. doi:10.1039/b703832a

    PubMed  Google Scholar 

  • Naganawa R, Iwata N, Ishikawa K, Fukuda H, Fujino T, Suzuki A (1996) Inhibition of microbial growth by ajoene, a sulfur-containing compound derived from garlic. Appl Environ Microbiol 62(11):4238–4242

    PubMed  CAS  Google Scholar 

  • Nagaraj NS, Anilakumar KR, Singh OV (2010) Diallyl disulfide causes caspase-dependent apoptosis in human cancer cells through a Bax-triggered mitochondrial pathway. J Nutr Biochem 21(5):405–412. doi:10.1016/j.jnutbio.2009.01.015

    PubMed  CAS  Google Scholar 

  • Nian H, Delage B, Pinto JT, Dashwood RH (2008) Allyl mercaptan, a garlic-derived organosulfur compound, inhibits histone deacetylase and enhances Sp3 binding on the P21WAF1 promoter. Carcinogenesis 29(9):1816–1824. doi:bgn165 [pii] 10.1093/carcin/bgn165

    PubMed  CAS  Google Scholar 

  • Nian H, Delage B, Ho E, Dashwood RH (2009) Modulation of histone deacetylase activity by dietary isothiocyanates and allyl sulfides: studies with sulforaphane and garlic organosulfur compounds. Environ Mol Mutagen 50(3):213–221. doi:10.1002/em.20454

    PubMed  CAS  Google Scholar 

  • Nie C, Tian C, Zhao L, Petit PX, Mehrpour M, Chen Q (2008) Cysteine 62 of Bax is critical for its conformational activation and its proapoptotic activity in response to H2O2-induced apoptosis. J Biol Chem 283(22):15359–15369. doi:M800847200 [pii] 10.1074/jbc.M800847200

    PubMed  CAS  Google Scholar 

  • Nishinaka Y, Masutani H, Nakamura H, Yodoi J (2001) Regulatory roles of thioredoxin in oxidative stress-induced cellular responses. Redox Rep 6(5):289–295

    PubMed  CAS  Google Scholar 

  • Oommen S, Anto RJ, Srinivas G, Karunagaran D (2004) Allicin (from garlic) induces caspase-mediated apoptosis in cancer cells. Eur J Pharmacol 485(1–3):97–103. doi:S0014299903027262 [pii]

    PubMed  CAS  Google Scholar 

  • Park SY, Cho SJ, Kwon HC, Lee KR, Rhee DK, Pyo S (2005) Caspase-independent cell death by allicin in human epithelial carcinoma cells: involvement of PKA. Cancer Lett 224(1):123–132. doi:S0304-3835(04)00804-3 [pii] 10.1016/j.canlet.2004.10.009

    PubMed  CAS  Google Scholar 

  • Peskin AV, Low FM, Paton LN, Maghzal GJ, Hampton MB, Winterbourn CC (2007) The high reactivity of peroxiredoxin 2 with H(2)O(2) is not reflected in its reaction with other oxidants and thiol reagents. J Biol Chem 282(16):11885–11892. doi:M700339200 [pii] 10.1074/jbc.M700339200

    PubMed  CAS  Google Scholar 

  • Pociask DA, Sime PJ, Brody AR (2004) Asbestos-derived reactive oxygen species activate TGF-beta1. Lab Invest 84(8):1013–1023. doi:10.1038/labinvest.3700109 3700109 [pii]

    PubMed  CAS  Google Scholar 

  • Powolny AA, Singh SV (2008) Multitargeted prevention and therapy of cancer by diallyl trisulfide and related Allium vegetable-derived organosulfur compounds. Cancer Lett 269(2):305–314. doi:S0304-3835(08)00397-2 [pii] 10.1016/j.canlet.2008.05.027

    PubMed  CAS  Google Scholar 

  • Rainwater R, Parks D, Anderson ME, Tegtmeyer P, Mann K (1995) Role of cysteine residues in regulation of p53 function. Mol Cell Biol 15(7):3892–3903

    PubMed  CAS  Google Scholar 

  • Ren B, Huang W, Akesson B, Ladenstein R (1997) The crystal structure of seleno-glutathione peroxidase from human plasma at 2.9 A resolution. J Mol Biol 268(5):869–885. doi:S0022-2836(97)91005-6 [pii] 10.1006/jmbi.1997.1005

    PubMed  CAS  Google Scholar 

  • Rendu F, Daveloose D, Debouzy JC, Bourdeau N, Levy-Toledano S, Jain MK, Apitz-Castro R (1989) Ajoene, the antiplatelet compound derived from garlic, specifically inhibits platelet release reaction by affecting the plasma membrane internal microviscosity. Biochem Pharmacol 38(8):1321–1328

    PubMed  CAS  Google Scholar 

  • Ricci G, Lo Bello M, Caccurri AM, Pastore A, Nuccetelli M, Parker MW, Federici G (1995) Site-directed mutagenesis of human glutathione transferase P1-1. Mutation of Cys-47 induces a positive cooperativity in glutathione transferase P1-1. J Biol Chem 270(3):1243–1248

    PubMed  CAS  Google Scholar 

  • Roy S, Packer L (1998) Redox regulation of cell functions by alpha-lipoate: biochemical and molecular aspects. Biofactors 8(1–2):17–21

    PubMed  CAS  Google Scholar 

  • Sarakbi M-B (2009) Natural products and related compounds as promising antioxidants and antimicrobial agents. Universitaet des Saarlandes, Saarbruecken

    Google Scholar 

  • Saurin AT, Neubert H, Brennan JP, Eaton P (2004) Widespread sulfenic acid formation in tissues in response to hydrogen peroxide. Proc Natl Acad Sci USA 101(52):17982–17987. doi:0404762101 [pii] 10.1073/pnas.0404762101

    PubMed  CAS  Google Scholar 

  • Savitsky PA, Finkel T (2002) Redox regulation of Cdc25C. J Biol Chem 277(23):20535–20540. doi:10.1074/jbc.M201589200 M201589200 [pii]

    PubMed  CAS  Google Scholar 

  • Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30(11):1191–1212. doi:10.1016/S0891-5849(01)00480-4

    PubMed  CAS  Google Scholar 

  • Scharfenberg K, Wagner R, Wagner KG (1990) The cytotoxic effect of ajoene, a natural product from garlic, investigated with different cell lines. Cancer Lett 53(2–3):103–108

    PubMed  CAS  Google Scholar 

  • Selvakumar E, Hsieh TC (2008) Regulation of cell cycle transition and induction of apoptosis in HL-60 leukemia cells by lipoic acid: role in cancer prevention and therapy. J Hematol Oncol 1:4. doi:1756-8722-1-4 [pii] 10.1186/1756-8722-1-4

    PubMed  Google Scholar 

  • Shin HA, Cha YY, Park MS, Kim JM, Lim YC (2010) Diallyl sulfide induces growth inhibition and apoptosis of anaplastic thyroid cancer cells by mitochondrial signaling pathway. Oral Oncol 46(4):E15–E18. doi:10.1016/j.oraloncology.2009.10.012

    PubMed  CAS  Google Scholar 

  • Simbula G, Columbano A, Ledda-Columbano GM, Sanna L, Deidda M, Diana A, Pibiri M (2007) Increased ROS generation and p53 activation in alpha-lipoic acid-induced apoptosis of hepatoma cells. Apoptosis 12(1):113–123. doi:10.1007/s10495-006-0487-9

    PubMed  CAS  Google Scholar 

  • Soldani C, Scovassi AI (2002) Poly(ADP-ribose) polymerase-1 cleavage during apoptosis: an update. Apoptosis 7(4):321–328. doi:10.1023/A:1016119328968

    PubMed  CAS  Google Scholar 

  • Song JD, Lee SK, Kim KM, Park SE, Park SJ, Kim KH, Ahn SC, Park YC (2009) Molecular mechanism of diallyl disulfide in cell cycle arrest and apoptosis in HCT-116 colon cancer cells. J Biochem Mol Toxicol 23(1):71–79. doi:10.1002/jbt.20266

    PubMed  CAS  Google Scholar 

  • Sparnins VL, Barany G, Wattenberg LW (1988) Effects of organosulfur compounds from garlic and onions on benzo[a]pyrene-induced neoplasia and glutathione S-transferase activity in the mouse. Carcinogenesis 9(1):131–134. doi:10.1093/carcin/9.1.131

    PubMed  CAS  Google Scholar 

  • Stamatakis K, Sanchez-Gomez FJ, Perez-Sala D (2006) Identification of novel protein targets for modification by 15-deoxy-Delta12,14-prostaglandin J2 in mesangial cells reveals multiple interactions with the cytoskeleton. J Am Soc Nephrol 17(1):89–98. doi:ASN.2005030329 [pii] 10.1681/ASN.2005030329

    PubMed  CAS  Google Scholar 

  • Stan SD, Singh SV (2009) Transcriptional repression and inhibition of nuclear translocation of androgen receptor by diallyl trisulfide in human prostate cancer cells. Clin Cancer Res 15(15):4895–4903. doi:1078-0432.CCR-09-0512 [pii] 10.1158/1078-0432.CCR-09-0512

    PubMed  CAS  Google Scholar 

  • Sun L, Wang X (2003) Effects of allicin on both telomerase activity and apoptosis in gastric cancer SGC-7901 cells. World J Gastroenterol 9(9):1930–1934

    PubMed  CAS  Google Scholar 

  • Tanaka T, Hosoi F, Yamaguchi-Iwai Y, Nakamura H, Masutani H, Ueda S, Nishiyama A, Takeda S, Wada H, Spyrou G, Yodoi J (2002) Thioredoxin-2 (TRX-2) is an essential gene regulating mitochondria-dependent apoptosis. EMBO J 21(7):1695–1703. doi:10.1093/emboj/21.7.1695

    PubMed  CAS  Google Scholar 

  • Terrasson J, Xu B, Li M, Allart S, Davignon JL, Zhang LH, Wang K, Davrinche C (2007) Activities of Z-ajoene against tumour and viral spreading in vitro. Fundam Clin Pharmacol 21(3):281–289. doi:FCP470 [pii] 10.1111/j.1472-8206.2007.00470.x

    PubMed  CAS  Google Scholar 

  • Trachootham D, Lu W, Ogasawara MA, Nilsa RD, Huang P (2008) Redox regulation of cell survival. Antioxid Redox Signal 10(8):1343–1374. doi:10.1089/ars.2007.1957

    PubMed  CAS  Google Scholar 

  • Truong D, Hindmarsh W, O’Brien PJ (2009) The molecular mechanisms of diallyl disulfide and diallyl sulfide induced hepatocyte cytotoxicity. Chem Biol Interact 180(1):79–88. doi:S0009-2797(09)00075-1 [pii] 10.1016/j.cbi.2009.02.008

    PubMed  CAS  Google Scholar 

  • Tsai CW, Chen HW, Yang JJ, Sheen LY, Lii CK (2007) Diallyl disulfide and diallyl trisulfide up-regulate the expression of the pi class of glutathione S-transferase via an AP-1-dependent pathway. J Agric Food Chem 55(3):1019–1026. doi:10.1021/jf061874t

    PubMed  CAS  Google Scholar 

  • Tsuchiya H, Nagayama M (2008) Garlic allyl derivatives interact with membrane lipids to modify the membrane fluidity. J Biomed Sci 15(5):653–660. doi:10.1007/s11373-008-9257-8

    PubMed  CAS  Google Scholar 

  • Velu CS, Niture SK, Doneanu CE, Pattabiraman N, Srivenugopal KS (2007) Human p53 is inhibited by glutathionylation of cysteines present in the proximal DNA-binding domain during oxidative stress. Biochemistry 46(26):7765–7780. doi:10.1021/bi700425y

    PubMed  CAS  Google Scholar 

  • Vilcek J, Lee TH (1991) Tumor necrosis factor. New insights into the molecular mechanisms of its multiple actions. J Biol Chem 266(12):7313–7316

    PubMed  CAS  Google Scholar 

  • Viry E, Anwar A, Kirsch G, Jacob C, Diederich M, Bagrel D (2010) Antiproliferative effect of natural tetrasulfides in human breast cancer cells is mediated through the inhibition of the cell division cycle 25 phosphatase. Int J Oncol. doi:10.3892/ijo_xxxxxxxx

    Google Scholar 

  • Walder R, Kalvatchev Z, Garzaro D, Barrios M, Apitz-Castro R (1997) In vitro suppression of HIV-1 replication by ajoene [(e)-(z)-4,5,9-trithiadodeca-1,6,11-triene-9 oxide]. Biomed Pharmacother 51(9):397–403. doi:S0753332297894334 [pii]

    PubMed  CAS  Google Scholar 

  • Wang HC, Yang JH, Hsieh SC, Sheen LY (2010) Allyl sulfides inhibit cell growth of skin cancer cells through induction of DNA damage mediated G2/M arrest and apoptosis. J Agric Food Chem 58(11):7096–7103. doi:10.1021/jf100613x

    PubMed  CAS  Google Scholar 

  • Wargovich MJ (2006) Diallylsulfide and allylmethylsulfide are uniquely effective among organosulfur compounds in inhibiting CYP2E1 protein in animal models. J Nutr 136(3 Suppl):832S–834S. doi:136/3/832S [pii]

    PubMed  CAS  Google Scholar 

  • Wargovich MJ, Woods C, Eng VW, Stephens LC, Gray K (1988) Chemoprevention of N-nitrosomethylbenzylamine-induced esophageal cancer in rats by the naturally occurring thioether, diallyl sulfide. Cancer Res 48(23):6872–6875

    PubMed  CAS  Google Scholar 

  • Watson WH, Pohl J, Montfort WR, Stuchlik O, Reed MS, Powis G, Jones DP (2003) Redox potential of human thioredoxin 1 and identification of a second dithiol/disulfide motif. J Biol Chem 278(35):33408–33415. doi:10.1074/jbc.M211107200 M211107200 [pii]

    PubMed  CAS  Google Scholar 

  • Wenzel U, Nickel A, Daniel H (2005) alpha-Lipoic acid induces apoptosis in human colon cancer cells by increasing mitochondrial respiration with a concomitant O2-*-generation. Apoptosis 10(2):359–368. doi:10.1007/s10495-005-0810-x

    PubMed  CAS  Google Scholar 

  • Wu X, Kassie F, Mersch-Sundermann V (2005) Induction of apoptosis in tumor cells by naturally occurring sulfur-containing compounds. Mutat Res 589(2):81–102. doi:S1383-5742(04)00070-5 [pii] 10.1016/j.mrrev.2004.11.001

    PubMed  CAS  Google Scholar 

  • Xiao D (2005) Diallyltrisulfide, a constituent of processed garlic, inactivates Akt to trigger mitochondrial translocation of BAD and caspase-mediated apoptosis in human prostate cancer cells. Carcinogenesis 27(3):533–540

    PubMed  Google Scholar 

  • Xiao D, Choi S, Johnson DE, Vogel VG, Johnson CS, Trump DL, Lee YJ, Singh SV (2004) Diallyl trisulfide-induced apoptosis in human prostate cancer cells involves c-Jun N-terminal kinase and extracellular-signal regulated kinase-mediated phosphorylation of Bcl-2. Oncogene 23(33):5594–5606. doi:10.1038/sj.onc.1207747 1207747 [pii]

    PubMed  CAS  Google Scholar 

  • Xiao D, Herman-Antosiewicz A, Antosiewicz J, Xiao H, Brisson M, Lazo JS, Singh SV (2005) Diallyl trisulfide-induced G(2)-M phase cell cycle arrest in human prostate cancer cells is caused by reactive oxygen species-dependent destruction and hyperphosphorylation of Cdc 25 C. Oncogene 24(41):6256–6268. doi:1208759 [pii] 10.1038/sj.onc.1208759

    PubMed  CAS  Google Scholar 

  • Xiao D, Lew KL, Kim YA, Zeng Y, Hahm ER, Dhir R, Singh SV (2006) Diallyl trisulfide suppresses growth of PC-3 human prostate cancer xenograft in vivo in association with Bax and Bak induction. Clin Cancer Res 12(22):6836–6843. doi:12/22/6836 [pii] 10.1158/1078-0432.CCR-06-1273

    PubMed  CAS  Google Scholar 

  • Xu S, Simon Cho BH (1999) Allyl mercaptan, a major metabolite of garlic compounds, reduces cellular cholesterol synthesis and its secretion in Hep-G2 cells. J Nutr Biochem 10(11):654–659. doi:S0955-2863(99)00056-X [pii]

    PubMed  CAS  Google Scholar 

  • Xu B, Monsarrat B, Gairin JE, Girbal-Neuhauser E (2004) Effect of ajoene, a natural antitumor small molecule, on human 20 S proteasome activity in vitro and in human leukemic HL60 cells. Fundam Clin Pharmacol 18(2):171–180. doi:10.1111/j.1472-8206.2004.00219.x FCP219 [pii]

    PubMed  CAS  Google Scholar 

  • Yakovlev AG, Wang GP, Stoica BA, Boulares HA, Spoonde AY, Yoshihara K, Smulson ME (2000) A role of the Ca2+/Mg2  +  −dependent endonuclease in apoptosis and its inhibition by poly(ADP-ribose) polymerase. J Biol Chem 275(28):21302–21308. doi:10.1074/jbc.M001087200

    PubMed  CAS  Google Scholar 

  • Yang JY, Della-Fera MA, Nelson-Dooley C, Baile CA (2006) Molecular mechanisms of apoptosis induced by ajoene in 3 T3-L1 adipocytes. Obesity (Silver Spring) 14(3):388–397. doi:14/3/388 [pii] 10.1038/oby.2006.52

    CAS  Google Scholar 

  • Yoshida H, Iwata N, Katsuzaki H, Naganawa R, Ishikawa K, Fukuda H, Fujino T, Suzuki A (1998) Antimicrobial activity of a compound isolated from an oil-macerated garlic extract. Biosci Biotechnol Biochem 62(5):1014–1017

    PubMed  CAS  Google Scholar 

  • Yu L, Guo N, Meng R, Liu B, Tang X, Jin J, Cui Y, Deng X (2010) Allicin-induced global gene expression profile of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 88(1):219–229. doi:10.1007/s00253-010-2709-x

    PubMed  CAS  Google Scholar 

  • Zeng T, Zhang CL, Zhu ZP, Yu LH, Zhao XL, Xie KQ (2008) Diallyl trisulfide (DATS) effectively attenuated oxidative stress-mediated liver injury and hepatic mitochondrial dysfunction in acute ethanol-exposed mice. Toxicology 252(1–3):86–91. doi:S0300-483X(08)00370-3 [pii] 10.1016/j.tox.2008.07.062

    PubMed  CAS  Google Scholar 

  • Zuo Y, Xiang B, Yang J, Sun X, Wang Y, Cang H, Yi J (2009) Oxidative modification of caspase-9 facilitates its activation via disulfide-mediated interaction with Apaf-1. Cell Res 19(4):449–457. doi:cr200919 [pii] 10.1038/cr.2009.19

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claus Jacob .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Czepukojc, B., Schneider, T., Burkholz, T., Jamier, V., Jacob, C. (2012). Natural Sulfur Products as Redox Modulators and Selective Inducers of Cell Death. In: Diederich, M., Noworyta, K. (eds) Natural compounds as inducers of cell death. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4575-9_12

Download citation

Publish with us

Policies and ethics