Skip to main content

Induction of Autophagy by Polyphenolic Compounds in Cancer: A Novel Strategy to induce cell death and to Treat Cancer

  • Chapter
  • First Online:

Abstract

Apoptosis (type I) and autophagy-associated cell death (type II) are both highly regulated forms of programmed cell death and play crucial roles in physiological processes such as the development, homeostasis and selective elimination of cells. Autophagy is an evolutionarily conserved lysosomal pathway for degrading cytoplasmic proteins, macromolecules, and organelles and functions as a survival pathway in response to nutrient and growth factor deprivation. If the process is induced excessively, autophagy leads to cell death. In contrast to apoptosis, cell death occurring with autophagy is caspase-independent and does not involve classic DNA laddering. Accumulating evidence suggests that cancer cells that are resistant to apoptosis can be killed by death associated with autophagy, providing an alternative cell death pathway to eliminate cancer cells. We and others found that natural polyphenolic compounds, such as rottlerin, resveratrol, curcumin, genistein, and quercetin can induce cell death associated with autophagy in a variety of cancer cells, including pancreatic, breast, glioma, colon, ovarian cancers and acute myeloid leukemia. More importantly, these compounds can enhance the effects of chemotherapy and reduce the required dose to induce cell death in cancer cells. In this chapter we will discuss the polyphenolic compounds and the mechanism by which they induce cell death occurring with autophagy in cancer cells and their potential as a novel strategy for the treatment of cancer.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abedin MJ, Wang D, McDonnell MA, Lehmann U, Kelekar A (2007) Autophagy delays apoptotic death in breast cancer cells following DNA damage. Cell Death Differ 14:500–510

    PubMed  CAS  Google Scholar 

  • Aggarwal BB, Bhardwaj A, Aggarwal RS, Seeram NP, Shishodia S, Takada Y (2004) Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Res 24:2783–2840

    PubMed  CAS  Google Scholar 

  • Aita VM, Liang XH, Murty VV, Pincus DL, Yu W, Cayanis E, Kalachikov S, Gilliam TC, Levine B (1999) Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21. Genomics 59:59–65

    PubMed  CAS  Google Scholar 

  • Akar U, Chaves-Reyez A, Barria M, Tari A, Sanguino A, Kondo Y, Kondo S, Arun B, Lopez-Berestein G, Ozpolat B (2008) Silencing of Bcl-2 expression by small interfering RNA induces autophagic cell death in MCF-7 breast cancer cells. Autophagy 4:669–679

    PubMed  CAS  Google Scholar 

  • Akar U, Ozpolat B, Mehta K, Fok J, Kondo Y, Lopez-Berestein G (2007) Tissue transglutaminase inhibits autophagy in pancreatic cancer cells. Mol Cancer Res 5:241–249

    PubMed  CAS  Google Scholar 

  • Amaravadi RK, Yu D, Lum JJ, Bui T, Christophorou MA, Evan GI, Thomas-Tikhonenko A, Thompson CB (2007) Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest 117:326–336

    PubMed  CAS  Google Scholar 

  • Aoki H, Takada Y, Kondo S, Sawaya R, Aggarwal BB, Kondo Y (2007) Evidence that curcumin suppresses the growth of malignant gliomas in vitro and in vivo through induction of autophagy: role of Akt and extracellular signal-regulated kinase signaling pathways. Mol Pharmacol 72:29–39

    PubMed  CAS  Google Scholar 

  • Apel A, Herr I, Schwarz H, Rodemann HP, Mayer A (2008) Blocked autophagy sensitizes resistant carcinoma cells to radiation therapy. Cancer Res 68:1485–1494

    PubMed  CAS  Google Scholar 

  • Avila MA, Velasco JA, Cansado J, Notario V (1994) Quercetin mediates the down-regulation of mutant p53 in the human breast cancer cell line MDA-MB468. Cancer Res 54:2424–2428

    PubMed  CAS  Google Scholar 

  • Banerjee S, Li Y, Wang Z, Sarkar FH (2008) Multi-targeted therapy of cancer by genistein. Cancer Lett 269:226–242

    PubMed  CAS  Google Scholar 

  • Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, Pouysségur J, Mazure NM (2009) Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol 29(10):2570–2581

    PubMed  CAS  Google Scholar 

  • Boya P, Gonzalez-Polo RA, Casares N, Perfettini JL, Dessen P, Larochette N, Metivier D, Meley D, Souquere S, Yoshimori T et al (2005) Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 25:1025–1040

    PubMed  CAS  Google Scholar 

  • Carew JS, Nawrocki ST, Kahue CN, Zhang H, Yang C, Chung L, Houghton JA, Huang P, Giles FJ, Cleveland JL (2007) Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Abl-mediated drug resistance. Blood 110:313–322

    PubMed  CAS  Google Scholar 

  • Chan EY, Longatti A, McKnight NC, Tooze SA (2009) Kinase-inactivated ULK proteins inhibit autophagy via their conserved C-terminal domains using an Atg13-independent mechanism. Mol Cell Biol 29:157–171

    PubMed  CAS  Google Scholar 

  • Chung S, Yao H, Caito S, Hwang JW, Arunachalam G, Rahman I (2010) Regulation of SIRT1 in cellular functions: role of polyphenols. Arch Biochem Biophys 501:79–90

    PubMed  CAS  Google Scholar 

  • Clarke PG (1990) Developmental cell death: morphological diversity and multiple mechanisms. Anat Embryol (Berl) 181:195–213

    CAS  Google Scholar 

  • Daniel F, Legrand A, Pessayre D, Borrega-Pires F, Mbida L, Lardeux B, Degott C, van Nhieu JT, Bernuau D (2007) Beclin 1 mRNA strongly correlates with Bcl-XLmRNA expression in human hepatocellular carcinoma. Cancer Invest 25:226–231

    PubMed  CAS  Google Scholar 

  • Ding ZB, Shi YH, Zhou J, Qiu SJ, Xu Y, Dai Z, Shi GM, Wang XY, Ke AW, Wu B et al (2008) Association of autophagy defect with a malignant phenotype and poor prognosis of hepatocellular carcinoma. Cancer Res 68:9167–9175

    PubMed  CAS  Google Scholar 

  • Edinger AL, Thompson CB (2003) Defective autophagy leads to cancer. Cancer Cell 4:422–424

    PubMed  CAS  Google Scholar 

  • Elsasser HP, MacDonald R, Dienst M, Kern HF (1993) Characterization of a transglutaminase expressed in human pancreatic adenocarcinoma cells. Eur J Cell Biol 61:321–328

    PubMed  CAS  Google Scholar 

  • Fabre C, Carvalho G, Tasdemir E, Braun T, Ades L, Grosjean J, Boehrer S, Metivier D, Souquere S, Pierron G et al (2007) NF-kappaB inhibition sensitizes to starvation-induced cell death in high-risk myelodysplastic syndrome and acute myeloid leukemia. Oncogene 26:4071–4083

    PubMed  CAS  Google Scholar 

  • Fesus L, Szondy Z (2005) Transglutaminase 2 in the balance of cell death and survival. FEBS Lett 579:3297–3302

    PubMed  Google Scholar 

  • Galluzzi L, Aaronson SA, Abrams J, Alnemri ES, Andrews DW, Baehrecke EH, Bazan NG, Blagosklonny MV, Blomgren K, Borner C et al (2009) Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. Cell Death Differ 16:1093–1107

    PubMed  CAS  Google Scholar 

  • Ganley IG, Lam DH, Wang J, Ding X, Chen S, Jiang X (2009) ULK1-ATG13-FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem 284(18):12297–12305

    PubMed  CAS  Google Scholar 

  • Gossner G, Choi M, Tan L, Fogoros S, Griffith KA, Kuenker M, Liu JR (2007) Genistein-induced apoptosis and autophagocytosis in ovarian cancer cells. Gynecol Oncol 105:23–30

    PubMed  CAS  Google Scholar 

  • Gozuacik D, Kimchi A (2006) DAPk protein family and cancer. Autophagy 2:74–79

    PubMed  CAS  Google Scholar 

  • Hait WN, Wu H, Jin S, Yang JM (2006) Elongation factor-2 kinase: its role in protein synthesis and autophagy. Autophagy 2:294–296

    PubMed  CAS  Google Scholar 

  • Hara T, Mizushima N (2009) Role of ULK-FIP200 complex in mammalian autophagy: FIP200, a counterpart of yeast Atg17? Autophagy 5:85–87

    PubMed  CAS  Google Scholar 

  • Harhaji-Trajkovic L, Vilimanovich U, Kravic-Stevovic T, Bumbasirevic V, Trajkovic V (2009) AMPK-mediated autophagy inhibits apoptosis in cisplatin-treated tumor cells. J Cell Mol Med 13(9B):3644–3654

    PubMed  CAS  Google Scholar 

  • Hayashi M, Ikezawa K, Ono A, Okabayashi S, Hayashi Y, Shimizu S, Mizuno T, Maeda K, Akasaka T, Naito M et al (2007) Evaluation of the effects of combination therapy with branched-chain amino acid and zinc supplements on nitrogen metabolism in liver cirrhosis. Hepatol Res 37:615–619

    PubMed  CAS  Google Scholar 

  • Herman JF, Mangala LS, Mehta K (2006) Implications of increased tissue transglutaminase (TG2) expression in drug-resistant breast cancer (MCF-7) cells. Oncogene 25:3049–3058

    PubMed  CAS  Google Scholar 

  • Herrero-Martin G, Hoyer-Hansen M, Garcia-Garcia C, Fumarola C, Farkas T, Lopez-Rivas A, Jaattela M (2009) TAK1 activates AMPK-dependent cytoprotective autophagy in TRAIL-treated epithelial cells. EMBO J 28:677–685

    PubMed  CAS  Google Scholar 

  • Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL et al (2003) Small molecule activators of sirtuins extend Saccharo-myces cerevisiae lifespan. Nature 425:191–196

    PubMed  CAS  Google Scholar 

  • Hwang JT, Kwak DW, Lin SK, Kim HM, Kim YM, Park OJ (2007) Resveratrol induces apoptosis in chemoresistant cancer cells via modulation of AMPK signaling pathway. Ann N Y Acad Sci 1095:441–448

    PubMed  CAS  Google Scholar 

  • Iacobuzio-Donahue CA, Ashfaq R, Maitra A, Adsay NV, Shen-Ong GL, Berg K, Hollingsworth MA, Cameron JL, Yeo CJ, Kern SE et al (2003) Highly expressed genes in pancreatic ductal adenocarcinomas: a comprehensive characterization and comparison of the transcription profiles obtained from three major technologies. Cancer Res 63:8614–8622

    PubMed  CAS  Google Scholar 

  • Jackson DN, Foster DA (2004) The enigmatic protein kinase Cdelta: complex roles in cell proliferation and survival. FASEB J 18:627–636

    PubMed  CAS  Google Scholar 

  • Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CW, Fong HH, Farnsworth NR, Kinghorn AD, Mehta RG et al (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275:218–220

    PubMed  CAS  Google Scholar 

  • Jia YL, Li J, Qin ZH, Liang ZQ (2009) Autophagic and apoptotic mechanisms of curcumin-induced death in K562 cells. J Asian Nat Prod Res 11:918–928

    PubMed  CAS  Google Scholar 

  • Kanzawa T, Germano IM, Komata T, Ito H, Kondo Y, Kondo S (2004) Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ 11:448–457

    PubMed  CAS  Google Scholar 

  • Katayama M, Kawaguchi T, Berger MS, Pieper RO (2007) DNA damaging agent-induced autophagy produces a cytoprotective adenosine triphosphate surge in malignant glioma cells. Cell Death Differ 14:548–558

    PubMed  CAS  Google Scholar 

  • Kirisako T, Baba M, Ishihara N, Miyazawa K, Ohsumi M, Yoshimori T, Noda T, Ohsumi Y (1999) Formation process of autophagosome is traced with Apg8/Aut7p in yeast. J Cell Biol 147:435–446

    PubMed  CAS  Google Scholar 

  • Klionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G, Askew DS, Baba M, Baehrecke EH, Bahr BA, Ballabio A et al (2008) Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4:151–175

    PubMed  CAS  Google Scholar 

  • Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290:1717–1721

    PubMed  CAS  Google Scholar 

  • Koivunen J, Aaltonen V, Peltonen J (2006) Protein kinase C (PKC) family in cancer progression. Cancer Lett 235:1–10

    PubMed  CAS  Google Scholar 

  • Kondo Y, Kanzawa T, Sawaya R, Kondo S (2005) The role of autophagy in cancer development and response to therapy. Nat Rev Cancer 5:726–734

    PubMed  CAS  Google Scholar 

  • Koneri K, Goi T, Hirono Y, Katayama K, Yamaguchi A (2007) Beclin 1 gene inhibits tumor growth in colon cancer cell lines. Anticancer Res 27:1453–1457

    PubMed  CAS  Google Scholar 

  • Kourelis TV, Siegel RD (2012) Metformin and cancer: new applications for an old drug. Med Oncol 29(2):1314–1327

    PubMed  CAS  Google Scholar 

  • Kueck A, Opipari AW Jr, Griffith KA, Tan L, Choi M, Huang J, Wahl H, Liu JR (2007) Resveratrol inhibits glucose metabolism in human ovarian cancer cells. Gynecol Oncol 107:450–457

    PubMed  CAS  Google Scholar 

  • La Porta CA, Comolli R (2000) Overexpression of nPKCdelta in BL6 murine melanoma cells enhances TGFbeta1 release into the plasma of metastasized animals. Melanoma Res 10:527–534

    PubMed  Google Scholar 

  • Lavieu G, Scarlatti F, Sala G, Levade T, Ghidoni R, Botti J, Codogno P (2007) Is autophagy the key mechanism by which the sphingolipid rheostat controls the cell fate decision? Autophagy 3:45–47

    PubMed  CAS  Google Scholar 

  • Lee MH, Choi BY, Kundu JK, Shin YK, Na HK, Surh YJ (2009) Resveratrol suppresses growth of human ovarian cancer cells in culture and in a murine xenograft model: eukaryotic elongation factor 1A2 as a potential target. Cancer Res 69:7449–7458

    PubMed  CAS  Google Scholar 

  • Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6:463–477

    PubMed  CAS  Google Scholar 

  • Li DD, Wang LL, Deng R, Tang J, Shen Y, Guo JF, Wang Y, Xia LP, Feng GK, Liu QQ et al (2009a) The pivotal role of c-Jun NH2-terminal kinase-mediated Beclin 1 expression during anticancer agents-induced autophagy in cancer cells. Oncogene 28:886–898

    PubMed  CAS  Google Scholar 

  • Li J, Qin Z, Liang Z (2009b) The prosurvival role of autophagy in Resveratrol-induced cytotoxicity in human U251 glioma cells. BMC Cancer 9:215

    PubMed  Google Scholar 

  • Liang C, Feng P, Ku B, Dotan I, Canaani D, Oh BH, Jung JU (2006) Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat Cell Biol 8:688–699

    PubMed  CAS  Google Scholar 

  • Liang J, Shao SH, Xu ZX, Hennessy B, Ding Z, Larrea M, Kondo S, Dumont DJ, Gutterman JU, Walker CL et al (2007) The energy sensing LKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis. Nat Cell Biol 9:218–224

    PubMed  CAS  Google Scholar 

  • Liang XH, Jackson S, Seaman M, Brown K, Kempkes B, Hibshoosh H, Levine B (1999) Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402:672–676

    PubMed  CAS  Google Scholar 

  • Lim JH, Park JW, Kim SH, Choi YH, Choi KS, Kwon TK (2008) Rottlerin induces pro-apoptotic endoplasmic reticulum stress through the protein kinase C-delta-independent pathway in human colon cancer cells. Apoptosis 13:1378–1385

    PubMed  CAS  Google Scholar 

  • Lockshin RA, Zakeri Z (2007) Cell death in health and disease. J Cell Mol Med 11:1214–1224

    PubMed  Google Scholar 

  • Lorand L, Graham RM (2003) Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat Rev Mol Cell Biol 4:140–156

    PubMed  CAS  Google Scholar 

  • Mann AP, Verma A, Sethi G, Manavathi B, Wang H, Fok JY, Kunnumakkara AB, Kumar R, Aggarwal BB, Mehta K (2006) Overexpression of tissue transglutaminase leads to constitutive activation of nuclear factor-kappaB in cancer cells: delineation of a novel pathway. Cancer Res 66:8788–8795

    PubMed  CAS  Google Scholar 

  • Matter WF, Brown RF, Vlahos CJ (1992) The inhibition of phosphatidylinositol 3-kinase by quercetin and analogs. Biochem Biophys Res Commun 186:624–631

    PubMed  CAS  Google Scholar 

  • Mehta K, Fok J, Miller FR, Koul D, Sahin AA (2004) Prognostic significance of tissue transglutaminase in drug resistant and metastatic breast cancer. Clin Cancer Res 10:8068–8076

    PubMed  CAS  Google Scholar 

  • Meijer AJ, Codogno P (2004) Regulation and role of autophagy in mammalian cells. Int J Biochem Cell Biol 36:2445–2462

    PubMed  CAS  Google Scholar 

  • Meijer AJ, Codogno P (2007) AMP-activated protein kinase and autophagy. Autophagy 3:238–240

    PubMed  CAS  Google Scholar 

  • Mhaouty-Kodja S (2004) Ghalpha/tissue transglutaminase 2: an emerging G protein in signal transduction. Biol Cell 96:363–367

    PubMed  CAS  Google Scholar 

  • Miracco C, Cosci E, Oliveri G, Luzi P, Pacenti L, Monciatti I, Mannucci S, De Nisi MC, Toscano M, Malagnino V et al (2007) Protein and mRNA expression of autophagy gene Beclin 1 in human brain tumours. Int J Oncol 30:429–436

    PubMed  CAS  Google Scholar 

  • Moretti L, Attia A, Kim KW, Lu B (2007) Crosstalk between Bak/Bax and mTOR signaling regulates radiation-induced autophagy. Autophagy 3:142–144

    PubMed  CAS  Google Scholar 

  • Nakamura Y, Yogosawa S, Izutani Y, Watanabe H, Otsuji E, Sakai T (2009) A combination of indol-3-carbinol and genistein synergistically induces apoptosis in human colon cancer HT-29 cells by inhibiting Akt phosphorylation and progression of autophagy. Mol Cancer 8:100

    PubMed  Google Scholar 

  • Ohshiro K, Rayala SK, Kondo S, Gaur A, Vadlamudi RK, El-Naggar AK, Kumar R (2007) Identifying the estrogen receptor coactivator PELP1 in autophagosomes. Cancer Res 67:8164–8171

    PubMed  CAS  Google Scholar 

  • Opipari AW Jr, Tan L, Boitano AE, Sorenson DR, Aurora A, Liu JR (2004) Resveratrol-induced autophagocytosis in ovarian cancer cells. Cancer Res 64:696–703

    PubMed  CAS  Google Scholar 

  • Ozpolat B, Akar U, Mehta K, Lopez-Berestein G (2007) PKC delta and tissue transglutaminase are novel inhibitors of autophagy in pancreatic cancer cells. Autophagy 3(5):480–483

    PubMed  CAS  Google Scholar 

  • Paglin S, Hollister T, Delohery T, Hackett N, McMahill M, Sphicas E, Domingo D, Yahalom J (2001) A novel response of cancer cells to radiation involves autophagy and formation of acidic vesicles. Cancer Res 61:439–444

    PubMed  CAS  Google Scholar 

  • Pan W, Yang H, Cao C, Song X, Wallin B, Kivlin R, Lu S, Hu G, Di W, Wan Y (2008) AMPK mediates curcumin-induced cell death in CaOV3 ovarian cancer cells. Oncol Rep 20:1553–1559

    PubMed  CAS  Google Scholar 

  • Papandreou I, Lim AL, Laderoute K, Denko NC (2008) Hypoxia signals autophagy in tumor cells via AMPK activity, independent of HIF-1, BNIP3, and BNIP3L. Cell Death Differ 15:1572–1581

    PubMed  CAS  Google Scholar 

  • Park CE, Yun H, Lee EB, Min BI, Bae H, Choe W, Kang I, Kim SS, Ha J (2010) The antioxidant effects of genistein are associated with AMP-activated protein kinase activation and PTEN induction in prostate cancer cells. J Med Food 13:815–820

    PubMed  CAS  Google Scholar 

  • Park JW, Choi YJ, Suh SI, Baek WK, Suh MH, Jin IN, Min DS, Woo JH, Chang JS, Passaniti A et al (2001) Bcl-2 overexpression attenuates resveratrol-induced apoptosis in U937 cells by inhibition of caspase-3 activity. Carcinogenesis 22:1633–1639

    PubMed  CAS  Google Scholar 

  • Park MA, Curiel DT, Koumenis C, Graf M, Chen CS, Fisher PB, Grant S, Dent P (2008a) PERK-dependent regulation of HSP70 expression and the regulation of autophagy. Autophagy 4:364–367

    PubMed  CAS  Google Scholar 

  • Park MA, Zhang G, Norris J, Hylemon PB, Fisher PB, Grant S, Dent P (2008b) Regulation of autophagy by ceramide-CD95-PERK signaling. Autophagy 4:929–931

    PubMed  CAS  Google Scholar 

  • Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD, Levine B (2005) Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122:927–939

    PubMed  CAS  Google Scholar 

  • Pavese JM, Farmer RL, Bergan RC (2010) Inhibition of cancer cell invasion and metastasis by genistein. Cancer Metastasis Rev 29:465–482

    PubMed  CAS  Google Scholar 

  • Peterson G, Barnes S (1996) Genistein inhibits both estrogen and growth factor-stimulated proliferation of human breast cancer cells. Cell Growth Differ 7:1345–1351

    PubMed  CAS  Google Scholar 

  • Psahoulia FH, Moumtzi S, Roberts ML, Sasazuki T, Shirasawa S, Pintzas A (2007) Quercetin mediates preferential degradation of oncogenic Ras and causes autophagy in Ha-RAS-transformed human colon cells. Carcinogenesis 28:1021–1031

    PubMed  CAS  Google Scholar 

  • Puissant A, Robert G, Fenouille N, Luciano F, Cassuto JP, Raynaud S, Auberger P (2010) Resveratrol promotes cell death occurring with autophagy in chronic myelogenous leukemia cells via JNK-mediated p62/SQSTM1 expression and AMPK activation. Cancer Res 70:1042–1052

    PubMed  CAS  Google Scholar 

  • Qadir MA, Kwok B, Dragowska WH, To KH, Le D, Bally MB, Gorski SM (2008) Macroautophagy inhibition sensitizes tamoxifen-resistant breast cancer cells and enhances mitochondrial depolarization. Breast Cancer Res Treat 112:389–403

    PubMed  CAS  Google Scholar 

  • Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, Rosen J, Eskelinen EL, Mizushima N, Ohsumi Y et al (2003) Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 112:1809–1820

    PubMed  CAS  Google Scholar 

  • Rouschop KM, Wouters BG (2009) Regulation of autophagy through multiple independent hypoxic signaling pathways. Curr Mol Med 9:417–424

    PubMed  CAS  Google Scholar 

  • Satoh A, Gukovskaya AS, Nieto JM, Cheng JH, Gukovsky I, Reeve JR Jr, Shimosegawa T, Pandol SJ (2004) PKC-delta and -epsilon regulate NF-kappaB activation induced by cholecystokinin and TNF-alpha in pancreatic acinar cells. Am J Physiol Gastrointest Liver Physiol 287:G582–G591

    PubMed  CAS  Google Scholar 

  • Shakibaei M, Harikumar KB, Aggarwal BB (2009) Resveratrol addiction: to die or not to die. Mol Nutr Food Res 53:115–128

    PubMed  CAS  Google Scholar 

  • Shen Y, Li DD, Wang LL, Deng R, Zhu XF (2008) Decreased expression of autophagy-related proteins in malignant epithelial ovarian cancer. Autophagy 4:1067–1068

    PubMed  CAS  Google Scholar 

  • Shimizu S, Kanaseki T, Mizushima N, Mizuta T, Arakawa-Kobayashi S, Thompson CB, Tsujimoto Y (2004) Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol 6:1221–1228

    PubMed  CAS  Google Scholar 

  • Shinojima N, Yokoyama T, Kondo Y, Kondo S (2007) Roles of the Akt/mTOR/p70S6K and ERK1/2 signaling pathways in curcumin-induced autophagy. Autophagy 3:635–637

    PubMed  CAS  Google Scholar 

  • Singletary K, Milner J (2008) Diet, autophagy, and cancer: a review. Cancer Epidemiol Biomarkers Prev 17:1596–1610

    PubMed  CAS  Google Scholar 

  • Sivaprasad U, Basu A (2008) Inhibition of ERK attenuates autophagy and potentiates tumour necrosis factor-alpha-induced cell death in MCF-7 cells. J Cell Mol Med 12:1265–1271

    PubMed  CAS  Google Scholar 

  • Soltoff SP (2007) Rottlerin: an inappropriate and ineffective inhibitor of PKCdelta. Trends Pharmacol Sci 28:453–458

    PubMed  CAS  Google Scholar 

  • Song KS, Kim JS, Yun EJ, Kim YR, Seo KS, Park JH, Jung YJ, Park JI, Kweon GR, Yoon WH et al (2008) Rottlerin induces autophagy and apoptotic cell death through a PKC-delta-independent pathway in HT1080 human fibrosarcoma cells: the protective role of autophagy in apoptosis. Autophagy 4:650–658

    PubMed  CAS  Google Scholar 

  • Sotelo J, Briceno E, Lopez-Gonzalez MA (2006) Adding chloroquine to conventional treatment for glioblastoma multiforme: a randomized, double-blind, placebo-controlled trial. Ann Intern Med 144:337–343

    PubMed  CAS  Google Scholar 

  • Takahashi Y, Coppola D, Matsushita N, Cualing HD, Sun M, Sato Y, Liang C, Jung JU, Cheng JQ, Mul JJ et al (2007) Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol 9:1142–1151

    PubMed  CAS  Google Scholar 

  • Tasdemir E, Galluzzi L, Maiuri MC, Criollo A, Vitale I, Hangen E, Modjtahedi N, Kroemer G (2008) Methods for assessing autophagy and cell death occurring with autophagy. Methods Mol Biol 445:29–76

    PubMed  CAS  Google Scholar 

  • Thangapazham RL, Sharma A, Maheshwari RK (2006) Multiple molecular targets in cancer chemoprevention by curcumin. AAPS J 8:E443–E449

    PubMed  CAS  Google Scholar 

  • Trincheri NF, Follo C, Nicotra G, Peracchio C, Castino R, Isidoro C (2008) Resveratrol-induced apoptosis depends on the lipid kinase activity of Vps34 and on the formation of autophagolysosomes. Carcinogenesis 29:381–389

    PubMed  CAS  Google Scholar 

  • Trincheri NF, Nicotra G, Follo C, Castino R, Isidoro C (2007) Resveratrol induces cell death in colorectal cancer cells by a novel pathway involving lysosomal cathepsin D. Carcinogenesis 28:922–931

    PubMed  CAS  Google Scholar 

  • Verma A, Wang H, Manavathi B, Fok JY, Mann AP, Kumar R, Mehta K (2006) Increased expression of tissue transglutaminase in pancreatic ductal adenocarcinoma and its implications in drug resistance and metastasis. Cancer Res 66:10525–10533

    PubMed  CAS  Google Scholar 

  • Wang SH, Shih YL, Kuo TC, Ko WC, Shih CM (2009) Cadmium toxicity toward autophagy through ROS-activated GSK-3beta in mesangial cells. Toxicol Sci 108:124–131

    PubMed  CAS  Google Scholar 

  • Wang ZH, Peng ZL, Duan ZL, Liu H (2006) Expression and clinical significance of autophagy gene Beclin 1 in cervical squamous cell carcinoma. Sichuan Da Xue Xue Bao Yi Xue Ban 37:860–863

    PubMed  CAS  Google Scholar 

  • Wei Y, Sinha S, Levine B (2008) Dual role of JNK1-mediated phosphorylation of Bcl-2 in autophagy and apoptosis regulation. Autophagy 4:949–951

    PubMed  CAS  Google Scholar 

  • Wu H, Yang JM, Jin S, Zhang H, Hait WN (2006) Elongation factor-2 kinase regulates autophagy in human glioblastoma cells. Cancer Res 66:3015–3023

    PubMed  CAS  Google Scholar 

  • Wu H, Zhu H, Liu DX, Niu TK, Ren X, Patel R, Hait WN, Yang JM (2009) Silencing of elongation factor-2 kinase potentiates the effect of 2-deoxy-D-glucose against human glioma cells through blunting of autophagy. Cancer Res 69:2453–2460

    PubMed  CAS  Google Scholar 

  • Xue L, Fletcher GC, Tolkovsky AM (1999) Autophagy is activated by apoptotic signalling in sympathetic neurons: an alternative mechanism of death execution. Mol Cell Neurosci 14:180–198

    PubMed  CAS  Google Scholar 

  • Yousefi S, Perozzo R, Schmid I, Ziemiecki A, Schaffner T, Scapozza L, Brunner T, Simon HU (2006) Calpain-mediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol 8:1124–1132

    PubMed  CAS  Google Scholar 

  • Yue Z, Jin S, Yang C, Levine AJ, Heintz N (2003) Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA 100:15077–15082

    PubMed  CAS  Google Scholar 

  • Zalckvar E, Berissi H, Mizrachy L, Idelchuk Y, Koren I, Eisenstein M, Sabanay H, Pinkas-Kramarski R, Kimchi A (2009) DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy. EMBO Rep 10:285–292

    PubMed  CAS  Google Scholar 

  • Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH (2008) Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 283:10892–10903

    PubMed  CAS  Google Scholar 

  • Zhang Y, Wu Y, Tashiro S, Onodera S, Ikejima T (2009a) Involvement of PKC signal pathways in oridonin-induced autophagy in HeLa cells: a protective mechanism against apoptosis. Biochem Biophys Res Commun 378:273–278

    PubMed  CAS  Google Scholar 

  • Zhang Y, Wu Y, Cheng Y, Zhao Z, Tashiro S, Onodera S, Ikejima T (2009b) Fas-mediated autophagy requires JNK activation in HeLa cells. Biochem Biophys Res Commun 377:1205–1210

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bulent Ozpolat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ozpolat, B., Dalby, K., Lopez-Berestein, G. (2012). Induction of Autophagy by Polyphenolic Compounds in Cancer: A Novel Strategy to induce cell death and to Treat Cancer. In: Diederich, M., Noworyta, K. (eds) Natural compounds as inducers of cell death. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4575-9_10

Download citation

Publish with us

Policies and ethics