Skip to main content

Structure and Function of Eukaryotic DNA Polymerase δ

  • Chapter
  • First Online:
Book cover The Eukaryotic Replisome: a Guide to Protein Structure and Function

Part of the book series: Subcellular Biochemistry ((SCBI,volume 62))

Abstract

DNA polymerase δ (Pol δ) is a member of the B-family DNA polymerases and is one of the major replicative DNA polymerases in eukaryotes. In addition to chromosomal DNA replication it is also involved in DNA repair and recombination. Pol δ is a multi-subunit complex comprised of a catalytic subunit and accessory subunits. The latter subunits play a critical role in the regulation of Pol δ functions. Recent progress in the structural characterization of Pol δ, together with a vast number of biochemical and functional studies, provides the basis for understanding the intriguing mechanisms of its regulation during DNA replication, repair and recombination. In this chapter we review the current state of the Pol δ structure-function relationship with an emphasis on the role of its accessory subunits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albertson TM, Ogawa M, Bugni JM, Hays LE, Chen Y, Wang Y, Treuting PM, Heddle JA, Goldsby RE, Preston BD (2009) DNA polymerase ε and δ proofreading suppress discrete mutator and cancer phenotypes in mice. Proc Natl Acad Sci U S A 106:17101–17104

    Article  PubMed  CAS  Google Scholar 

  • Aravind L, Koonin EV (1998) Phosphoesterase domains associated with DNA polymerases of diverse origins. Nucleic Acids Res 26:3746–3752

    Article  PubMed  CAS  Google Scholar 

  • Baranovskiy AG, Babayeva ND, Liston VG, Rogozin IB, Koonin EV, Pavlov YI, Vassylyev DG, Tahirov TH (2008) X-ray structure of the complex of regulatory subunits of human DNA polymerase δ. Cell Cycle 7:3026–3036

    Article  PubMed  CAS  Google Scholar 

  • Bochkarev A, Pfuetzner RA, Edwards AM, Frappier L (1997) Structure of the single-stranded-DNA-binding domain of replication protein A bound to DNA. Nature 385:176–181

    Article  PubMed  CAS  Google Scholar 

  • Bochkareva E, Kaustov L, Ayed A, Yi GS, Lu Y, Pineda-Lucena A, Liao JC, Okorokov AL, Milner J, Arrowsmith CH, Bochkarev A (2005) Single-stranded DNA mimicry in the p53 transactivation domain interaction with replication protein A. Proc Natl Acad Sci U S A 102:15412–15417

    Article  PubMed  CAS  Google Scholar 

  • Brocas C, Charbonnier JB, Dherin C, Gangloff S, Maloisel L (2010) Stable interactions between DNA polymerase δ catalytic and structural subunits are essential for efficient DNA repair. DNA Repair (Amst) 9:1098–1111

    Article  CAS  Google Scholar 

  • Bruning JB, Shamoo Y (2004) Structural and thermodynamic analysis of human PCNA with peptides derived from DNA polymerase δ p66 subunit and flap endonuclease-1. Structure 12:2209–2219

    Article  PubMed  CAS  Google Scholar 

  • Byrnes JJ (1984) Structural and functional properties of DNA polymerase delta from rabbit bone marrow. Mol Cell Biochem 62:13–24

    Article  PubMed  CAS  Google Scholar 

  • Byrnes JJ, Downey KM, Black VL, So AG (1976) A new mammalian DNA polymerase with 3′ to 5′ exonuclease activity: DNA polymerase δ. Biochemistry 15:2817–2823

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Yakunin AF, Kuznetsova E, Busso D, Pufan R, Proudfoot M, Kim R, Kim SH (2004) Structural and functional characterization of a novel phosphodiesterase from Methanococcus jannaschii. J Biol Chem 279:31854–31862

    Article  PubMed  CAS  Google Scholar 

  • Chung DW, Zhang JA, Tan CK, Davie EW, So AG, Downey KM (1991) Primary structure of the catalytic subunit of human DNA polymerase δ and chromosomal location of the gene. Proc Natl Acad Sci U S A 88:11197–11201

    Article  PubMed  CAS  Google Scholar 

  • da Costa LT, Liu B, el-Deiry W, Hamilton SR, Kinzler KW, Vogelstein B, Markowitz S, Willson JK, de la Chapelle A, Downey KM et al (1995) Polymerase δ variants in RER colorectal tumours. Nat Genet 9:10–11

    Article  PubMed  Google Scholar 

  • Daee DL, Mertz TM, Shcherbakova PV (2010) A cancer-associated DNA polymerase δ variant modeled in yeast causes a catastrophic increase in genomic instability. Proc Natl Acad Sci U S A 107:157–162

    Article  PubMed  CAS  Google Scholar 

  • Downey KM, Tan CK, So AG (1990) DNA polymerase δ: a second eukaryotic DNA replicase. Bioessays 12:231–236

    Article  PubMed  CAS  Google Scholar 

  • Flohr T, Dai JC, Buttner J, Popanda O, Hagmuller E, Thielmann HW (1999) Detection of mutations in the DNA polymerase δ gene of human sporadic colorectal cancers and colon cancer cell lines. Int J Cancer 80:919–929

    Article  PubMed  CAS  Google Scholar 

  • Franklin MC, Wang J, Steitz TA (2001) Structure of the replicating complex of a pol α family DNA polymerase. Cell 105:657–667

    Article  PubMed  CAS  Google Scholar 

  • Gao Y, Zhou Y, Xie B, Zhang S, Rahmeh A, Huang HS, Lee MY, Lee EY (2008) Protein phosphatase-1 is targeted to DNA polymerase δ via an interaction with the p68 subunit. Biochemistry 47:11367–11376

    Article  PubMed  CAS  Google Scholar 

  • Garg P, Burgers PM (2005) DNA polymerases that propagate the eukaryotic DNA replication fork. Crit Rev Biochem Mol Biol 40:115–128

    Article  PubMed  CAS  Google Scholar 

  • Gerik KJ, Li X, Pautz A, Burgers PM (1998) Characterization of the two small subunits of Saccharomyces cerevisiae DNA polymerase δ. J Biol Chem 273:19747–19755

    Article  PubMed  CAS  Google Scholar 

  • Gibbs PE, McDonald J, Woodgate R, Lawrence CW (2005) The relative roles in vivo of Saccharomyces cerevisiae Pol η, Pol ζ, Rev1 protein and Pol32 in the bypass and mutation induction of an abasic site, T-T (6–4) photoadduct and T-T cis-syn cyclobutane dimer. Genetics 169:575–582

    Article  PubMed  CAS  Google Scholar 

  • Goldsby RE, Lawrence NA, Hays LE, Olmsted EA, Chen X, Singh M, Preston BD (2001) Defective DNA polymerase δ proofreading causes cancer susceptibility in mice. Nat Med 7:638–639

    Article  PubMed  CAS  Google Scholar 

  • Goldsby RE, Hays LE, Chen X, Olmsted EA, Slayton WB, Spangrude GJ, Preston BD (2002) High incidence of epithelial cancers in mice deficient for DNA polymerase δ proofreading. Proc Natl Acad Sci U S A 99:15560–15565

    Article  PubMed  CAS  Google Scholar 

  • Goscin LP, Byrnes JJ (1982) DNA polymerase δ: one polypeptide, two activities. Biochemistry 21:2513–2518

    Article  PubMed  CAS  Google Scholar 

  • Gulbis JM, Kelman Z, Hurwitz J, O’Donnell M, Kuriyan J (1996) Structure of the C-terminal region of p21WAF1/CIP1 complexed with human PCNA. Cell 87:297–306

    Article  PubMed  CAS  Google Scholar 

  • Hogg M, Aller P, Konigsberg W, Wallace SS, Doublie S (2007) Structural and biochemical investigation of the role in proofreading of a β hairpin loop found in the exonuclease domain of a replicative DNA polymerase of the B family. J Biol Chem 282:1432–1444

    Article  PubMed  CAS  Google Scholar 

  • Huang ME, de Calignon A, Nicolas A, Galibert F (2000) Pol32, a subunit of the Saccharomyces cerevisiae DNA polymerase δ, defines a link between DNA replication and the mutagenic bypass repair pathway. Curr Genet 38:178–187

    Article  PubMed  CAS  Google Scholar 

  • Huang ME, Rio AG, Galibert MD, Galibert F (2002) Pol32, a subunit of Saccharomyces cerevisiae DNA polymerase δ, suppresses genomic deletions and is involved in the mutagenic bypass pathway. Genetics 160:1409–1422

    PubMed  CAS  Google Scholar 

  • Huang QM, Akashi T, Masuda Y, Kamiya K, Takahashi T, Suzuki M (2010a) Roles of POLD4, smallest subunit of DNA polymerase δ, in nuclear structures and genomic stability of human cells. Biochem Biophys Res Commun 391:542–546

    Article  PubMed  CAS  Google Scholar 

  • Huang QM, Tomida S, Masuda Y, Arima C, Cao K, Kasahara TA, Osada H, Yatabe Y, Akashi T, Kamiya K, Takahashi T, Suzuki M (2010b) Regulation of DNA polymerase POLD4 influences genomic instability in lung cancer. Cancer Res 70:8407–8416

    Article  PubMed  CAS  Google Scholar 

  • Hughes P, Tratner I, Ducoux M, Piard K, Baldacci G (1999) Isolation and identification of the third subunit of mammalian DNA polymerase δ by PCNA-affinity chromatography of mouse FM3A cell extracts. Nucleic Acids Res 27:2108–2114

    Article  PubMed  CAS  Google Scholar 

  • Jain R, Hammel M, Johnson RE, Prakash L, Prakash S, Aggarwal AK (2009) Structural insights into yeast DNA polymerase δ by small angle X-ray scattering. J Mol Biol 394:377–382

    Article  PubMed  CAS  Google Scholar 

  • Johansson E, Garg P, Burgers PM (2004) The Pol32 subunit of DNA polymerase δ contains separable domains for processive replication and proliferating cell nuclear antigen (PCNA) binding. J Biol Chem 279:1907–1915

    Article  PubMed  CAS  Google Scholar 

  • Kelley LA, Sternberg MJ (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 4:363–371

    Article  PubMed  CAS  Google Scholar 

  • Kesti T, Flick K, Keranen S, Syvaoja JE, Wittenberg C (1999) DNA polymerase ε catalytic domains are dispensable for DNA replication, DNA repair, and cell viability. Mol Cell 3:679–685

    Article  PubMed  CAS  Google Scholar 

  • Klinge S, Nunez-Ramirez R, Llorca O, Pellegrini L (2009) 3D architecture of DNA Pol α reveals the functional core of multi-subunit replicative polymerases. EMBO J 28:1978–1987

    Article  PubMed  CAS  Google Scholar 

  • Lawrence CW (2002) Cellular roles of DNA polymerase ζ and Rev1 protein. DNA Repair (Amst) 1:425–435

    Article  CAS  Google Scholar 

  • Li H, Xie B, Zhou Y, Rahmeh A, Trusa S, Zhang S, Gao Y, Lee EY, Lee MY (2006) Functional roles of p12, the fourth subunit of human DNA polymerase δ. J Biol Chem 281:14748–14755

    Article  PubMed  CAS  Google Scholar 

  • Liu G, Warbrick E (2006) The p66 and p12 subunits of DNA polymerase δ are modified by ubiquitin and ubiquitin-like proteins. Biochem Biophys Res Commun 349:360–366

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Mo J, Rodriguez-Belmonte EM, Lee MY (2000) Identification of a fourth subunit of mammalian DNA polymerase δ. J Biol Chem 275:18739–18744

    Article  PubMed  CAS  Google Scholar 

  • Lu X, Tan CK, Zhou JQ, You M, Carastro LM, Downey KM, So AG (2002) Direct interaction of proliferating cell nuclear antigen with the small subunit of DNA polymerase δ. J Biol Chem 277:24340–24345

    Article  PubMed  CAS  Google Scholar 

  • Lydeard JR, Jain S, Yamaguchi M, Haber JE (2007) Break-induced replication and telomerase-independent telomere maintenance require Pol32. Nature 448:820–823

    Article  PubMed  CAS  Google Scholar 

  • MacNeill SA, Moreno S, Reynolds N, Nurse P, Fantes PA (1996) The fission yeast Cdc1 protein, a homologue of the small subunit of DNA polymerase δ, binds to Pol3 and Cdc27. EMBO J 15:4613–4628

    PubMed  CAS  Google Scholar 

  • MacNeill SA, Baldacci G, Burgers PM, Hubscher U (2001) A unified nomenclature for the subunits of eukaryotic DNA polymerase δ. Trends Biochem Sci 26:16–17

    Article  PubMed  CAS  Google Scholar 

  • Makiniemi M, Pospiech H, Kilpelainen S, Jokela M, Vihinen M, Syvaoja JE (1999) A novel family of DNA-polymerase-associated B subunits. Trends Biochem Sci 24:14–16

    Article  PubMed  CAS  Google Scholar 

  • Meng X, Zhou Y, Zhang S, Lee EY, Frick DN, Lee MY (2009) DNA damage alters DNA polymerase δ to a form that exhibits increased discrimination against modified template bases and mismatched primers. Nucleic Acids Res 37:647–657

    Article  PubMed  CAS  Google Scholar 

  • Meng X, Zhou Y, Lee EY, Lee MY, Frick DN (2010) The p12 subunit of human polymerase δ modulates the rate and fidelity of DNA synthesis. Biochemistry 49:3545–3554

    Article  PubMed  CAS  Google Scholar 

  • Mo J, Liu L, Leon A, Mazloum N, Lee MY (2000) Evidence that DNA polymerase δ isolated by immunoaffinity chromatography exhibits high-molecular weight characteristics and is associated with the KIAA0039 protein and RPA. Biochemistry 39:7245–7254

    Article  PubMed  CAS  Google Scholar 

  • Murzin AG (1993) OB(oligonucleotide/oligosaccharide binding)-fold: common structural and functional solution for non-homologous sequences. EMBO J 12:861–867

    PubMed  CAS  Google Scholar 

  • Netz DJ, Stith CM, Stumpfig M, Kopf G, Vogel D, Genau HM, Stodola JL, Lill R, Burgers PM, Pierik AJ (2011) Eukaryotic DNA polymerases require an iron-sulfur cluster for the formation of active complexes. Nat Chem Biol 8:125–132

    Article  PubMed  Google Scholar 

  • Pavlov YI, Newlon CS, Kunkel TA (2002) Yeast origins establish a strand bias for replicational mutagenesis. Mol Cell 10:207–213

    Article  PubMed  CAS  Google Scholar 

  • Pavlov YI, Shcherbakova PV, Rogozin IB (2006) Roles of DNA polymerases in replication, repair, and recombination in eukaryotes. Int Rev Cytol 255:41–132

    Article  PubMed  CAS  Google Scholar 

  • Pignede G, Bouvier D, de Recondo AM, Baldacci G (1991) Characterization of the POL3 gene product from Schizosaccharomyces pombe indicates inter-species conservation of the catalytic subunit of DNA polymerase delta. J Mol Biol 222:209–218

    Article  PubMed  CAS  Google Scholar 

  • Podust VN, Chang LS, Ott R, Dianov GL, Fanning E (2002) Reconstitution of human DNA polymerase delta using recombinant baculoviruses: the p12 subunit potentiates DNA polymerizing activity of the four-subunit enzyme. J Biol Chem 277:3894–3901

    Article  PubMed  CAS  Google Scholar 

  • Pohler JR, Otterlei M, Warbrick E (2005) An in vivo analysis of the localisation and interactions of human p66 DNA polymerase δ subunit. BMC Mol Biol 6:17

    Article  PubMed  Google Scholar 

  • Popanda O, Flohr T, Fox G, Thielmann HW (1999) A mutation detected in DNA polymerase δ cDNA from Novikoff hepatoma cells correlates with abnormal catalytic properties of the enzyme. J Cancer Res Clin Oncol 125:598–608

    Article  PubMed  CAS  Google Scholar 

  • Reynolds N, Watt A, Fantes PA, MacNeill SA (1998) Cdm1, the smallest subunit of DNA polymerase δ in the fission yeast Schizosaccharomyces pombe, is non-essential for growth and division. Curr Genet 34:250–258

    Article  PubMed  CAS  Google Scholar 

  • Sanchez Garcia J, Ciufo LF, Yang X, Kearsey SE, MacNeill SA (2004) The C-terminal zinc finger of the catalytic subunit of DNA polymerase δ is responsible for direct interaction with the B-subunit. Nucleic Acids Res 32:3005–3016

    Article  PubMed  CAS  Google Scholar 

  • Sanchez Garcia J, Baranovskiy AG, Knatko EV, Gray FC, Tahirov TH, MacNeill SA (2009) Functional mapping of the fission yeast DNA polymerase δ B-subunit Cdc1 by site-directed and random pentapeptide insertion mutagenesis. BMC Mol Biol 10:82

    Article  PubMed  Google Scholar 

  • Selak N, Bachrati CZ, Shevelev I, Dietschy T, van Loon B, Jacob A, Hubscher U, Hoheisel JD, Hickson ID, Stagljar I (2008) The Bloom’s syndrome helicase (BLM) interacts physically and functionally with p12, the smallest subunit of human DNA polymerase δ. Nucleic Acids Res 36:5166–5179

    Article  PubMed  CAS  Google Scholar 

  • Shamoo Y, Steitz TA (1999) Building a replisome from interacting pieces: sliding clamp complexed to a peptide from DNA polymerase and a polymerase editing complex. Cell 99:155–166

    Article  PubMed  CAS  Google Scholar 

  • Simon M, Giot L, Faye G (1991) The 3′ to 5′ exonuclease activity located in the DNA polymerase δ subunit of Saccharomyces cerevisiae is required for accurate replication. EMBO J 10:2165–2170

    PubMed  CAS  Google Scholar 

  • Stocki SA, Nonay RL, Reha-Krantz LJ (1995) Dynamics of bacteriophage T4 DNA polymerase function: identification of amino acid residues that affect switching between polymerase and 3′ → 5′ exonuclease activities. J Mol Biol 254:15–28

    Article  PubMed  CAS  Google Scholar 

  • Swan MK, Johnson RE, Prakash L, Prakash S, Aggarwal AK (2009) Structural basis of high-fidelity DNA synthesis by yeast DNA polymerase δ. Nat Struct Mol Biol 16:979–986

    Article  PubMed  CAS  Google Scholar 

  • Venkatesan RN, Treuting PM, Fuller ED, Goldsby RE, Norwood TH, Gooley TA, Ladiges WC, Preston BD, Loeb LA (2007) Mutation at the polymerase active site of mouse DNA polymerase δ increases genomic instability and accelerates tumorigenesis. Mol Cell Biol 27:7669–7682

    Article  PubMed  CAS  Google Scholar 

  • Vijeh Motlagh ND, Seki M, Branzei D, Enomoto T (2006) Mgs1 and Rad18/Rad5/Mms2 are required for survival of Saccharomyces cerevisiae mutants with novel temperature/cold sensitive alleles of the DNA polymerase δ subunit, Pol31. DNA Repair (Amst) 5:1459–1474

    Article  CAS  Google Scholar 

  • Waga S, Hannon GJ, Beach D, Stillman B (1994) The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA. Nature 369:574–578

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Sattar AK, Wang CC, Karam JD, Konigsberg WH, Steitz TA (1997) Crystal structure of a pol α family replication DNA polymerase from bacteriophage RB69. Cell 89:1087–1099

    Article  PubMed  CAS  Google Scholar 

  • Warbrick E (2000) The puzzle of PCNA’s many partners. Bioessays 22:997–1006

    Article  PubMed  CAS  Google Scholar 

  • Xie B, Mazloum N, Liu L, Rahmeh A, Li H, Lee MY (2002) Reconstitution and characterization of the human DNA polymerase δ four-subunit holoenzyme. Biochemistry 41:13133–13142

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Chung DW, Tan CK, Downey KM, Davie EW, So AG (1991) Primary structure of the catalytic subunit of calf thymus DNA polymerase δ: sequence similarities with other DNA polymerases. Biochemistry 30:11742–11750

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Tan CK, McMullen B, Downey KM, So AG (1995) Cloning of the cDNAs for the small subunits of bovine and human DNA polymerase delta and chromosomal location of the human gene (POLD2). Genomics 29:179–186

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Zhou Y, Trusa S, Meng X, Lee EY, Lee MY (2007) A novel DNA damage response: rapid degradation of the p12 subunit of DNA polymerase δ. J Biol Chem 282:15330–15340

    Article  PubMed  CAS  Google Scholar 

  • Zhong X, Garg P, Stith CM, Nick McElhinny SA, Kissling GE, Burgers PM, Kunkel TA (2006) The fidelity of DNA synthesis by yeast DNA polymerase ζ alone and with accessory proteins. Nucleic Acids Res 34:4731–4742

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Chen H, Li X, Wang Y, Chen K, Zhang S, Meng X, Lee EY, Lee MY (2011) Production of recombinant human DNA polymerase δ in a Bombyx mori bioreactor. PLoS One 6:e22224

    Article  PubMed  CAS  Google Scholar 

  • Zuo S, Gibbs E, Kelman Z, Wang TS, O’Donnell M, MacNeill SA, Hurwitz J (1997) DNA polymerase δ isolated from Schizosaccharomyces pombe contains five subunits. Proc Natl Acad Sci U S A 94:11244–11249

    Article  PubMed  CAS  Google Scholar 

  • Zuo S, Bermudez V, Zhang G, Kelman Z, Hurwitz J (2000) Structure and activity associated with multiple forms of Schizosaccharomyces pombe DNA polymerase δ. J Biol Chem 275:5153–5162

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tahir H. Tahirov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tahirov, T.H. (2012). Structure and Function of Eukaryotic DNA Polymerase δ. In: MacNeill, S. (eds) The Eukaryotic Replisome: a Guide to Protein Structure and Function. Subcellular Biochemistry, vol 62. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4572-8_12

Download citation

Publish with us

Policies and ethics