Skip to main content

The Structure and Function of Replication Protein A in DNA Replication

  • Chapter
  • First Online:
The Eukaryotic Replisome: a Guide to Protein Structure and Function

Part of the book series: Subcellular Biochemistry ((SCBI,volume 62))

Abstract

In all organisms from bacteria and archaea to eukarya, single-stranded DNA binding proteins play an essential role in most, if not all, nuclear metabolism involving single-stranded DNA (ssDNA). Replication protein A (RPA), the major eukaryotic ssDNA binding protein, has two important roles in DNA metabolism: (1) in binding ssDNA to protect it and to keep it unfolded, and (2) in coordinating the assembly and disassembly of numerous proteins and protein complexes during processes such as DNA replication. Since its discovery as a vital player in the process of replication, RPAs roles in recombination and DNA repair quickly became evident. This chapter summarizes the current understanding of RPA’s roles in replication by reviewing the available structural data, DNA-binding properties, interactions with various replication proteins, and interactions with DNA repair proteins when DNA replication is stalled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anciano Granadillo VJ, Earley JN, Shuck SC, Georgiadis MM, Fitch RW, Turchi JJ (2010) Targeting the OB-folds of replication protein A with small molecules. J Nucleic Acids 2010:304035

    PubMed  Google Scholar 

  • Arunkumar AI, Klimovich V, Jiang X, Ott RD, Mizoue L, Fanning E, Chazin WJ (2005) Insights into hRPA32 C-terminal domain-mediated assembly of the simian virus 40 replisome. Nat Struct Mol Biol 12:332–339

    PubMed  CAS  Google Scholar 

  • Bae SH, Bae KH, Kim JA, Seo YS (2001) RPA governs endonuclease switching during processing of Okazaki fragments in eukaryotes. Nature 412:456–461

    PubMed  CAS  Google Scholar 

  • Bae KH, Kim HS, Bae SH, Kang HY, Brill S, Seo YS (2003) Bimodal interaction between replication-protein A and Dna2 is critical for Dna2 function both in vivo and in vitro. Nucleic Acids Res 31:3006–3015

    PubMed  CAS  Google Scholar 

  • Bansbach CE, Betous R, Lovejoy CA, Glick GG, Cortez D (2009) The annealing helicase SMARCAL1 maintains genome integrity at stalled replication forks. Genes Dev 23:2405–2414

    PubMed  CAS  Google Scholar 

  • Bastin-Shanower SA, Brill SJ (2001) Functional analysis of the four DNA binding domains of replication protein A. The role of RPA2 in ssDNA binding. J Biol Chem 276:36446–36453

    PubMed  CAS  Google Scholar 

  • Binz SK, Sheehan AM, Wold MS (2004) Replication protein A phosphorylation and the cellular response to DNA damage. DNA Repair (Amst) 3:1015–1024

    CAS  Google Scholar 

  • Bissler JJ (2007) Triplex DNA and human disease. Front Biosci 12:4536–4546

    PubMed  CAS  Google Scholar 

  • Blackwell LJ, Borowiec JA, Mastrangelo IA (1996) Single-stranded-DNA binding alters human replication protein A structure and facilitates interaction with DNA-dependent protein kinase. Mol Cell Biol 16:4798–4807

    PubMed  CAS  Google Scholar 

  • Bochkarev A, Bochkareva E (2004) From RPA to BRCA2: lessons from single-stranded DNA binding by the OB-fold. Curr Opin Struct Biol 14:36–42

    PubMed  CAS  Google Scholar 

  • Bochkarev A, Pfuetzner RA, Edwards AM, Frappier L (1997) Structure of the single-stranded-DNA-binding domain of replication protein A bound to DNA. Nature 385:176–181

    PubMed  CAS  Google Scholar 

  • Bochkarev A, Bochkareva E, Frappier L, Edwards AM (1999) The crystal structure of the complex of replication protein A subunits RPA32 and RPA14 reveals a mechanism for single-stranded DNA binding. EMBO J 18:4498–4504

    PubMed  CAS  Google Scholar 

  • Bochkareva E, Korolev S, Bochkarev A (2000) The role for zinc in replication protein A. J Biol Chem 275:27332–27338

    PubMed  CAS  Google Scholar 

  • Bochkareva E, Belegu V, Korolev S, Bochkarev A (2001) Structure of the major single-stranded DNA-binding domain of replication protein A suggests a dynamic mechanism for DNA binding. EMBO J 20:612–618

    PubMed  CAS  Google Scholar 

  • Bochkareva E, Korolev S, Lees-Miller SP, Bochkarev A (2002) Structure of the RPA trimerization core and its role in the multistep DNA-binding mechanism of RPA. EMBO J 21:1855–1863

    PubMed  CAS  Google Scholar 

  • Bochkareva E, Kaustov L, Ayed A, Yi GS, Lu Y, Pineda-Lucena A, Liao JC, Okorokov AL, Milner J, Arrowsmith CH, Bochkarev A (2005) Single-stranded DNA mimicry in the p53 transactivation domain interaction with replication protein A. Proc Natl Acad Sci USA 102:15412–15417

    PubMed  CAS  Google Scholar 

  • Braun KA, Lao Y, He Z, Ingles CJ, Wold MS (1997) Role of protein-protein interactions in the function of replication protein A (RPA): RPA modulates the activity of DNA polymerase α by multiple mechanisms. Biochemistry 36:8443–8454

    PubMed  CAS  Google Scholar 

  • Broderick S, Rehmet K, Concannon C, Nasheuer HP (2010) Eukaryotic single-stranded DNA binding proteins: central factors in genome stability. Subcell Biochem 50:143–163

    PubMed  CAS  Google Scholar 

  • Brosey CA, Chagot ME, Ehrhardt M, Pretto DI, Weiner BE, Chazin WJ (2009) NMR analysis of the architecture and functional remodeling of a modular multidomain protein, RPA. J Am Chem Soc 131:6346–6347

    PubMed  CAS  Google Scholar 

  • Brosh RM Jr, Orren DK, Nehlin JO, Ravn PH, Kenny MK, Machwe A, Bohr VA (1999) Functional and physical interaction between WRN helicase and human replication protein A. J Biol Chem 274:18341–18350

    PubMed  CAS  Google Scholar 

  • Campbell JL (1986) Eukaryotic DNA replication. Annu Rev Biochem 55:733–771

    PubMed  CAS  Google Scholar 

  • Chedin F, Seitz EM, Kowalczykowski SC (1998) Novel homologs of replication protein A in archaea: implications for the evolution of ssDNA-binding proteins. Trends Biochem Sci 23:273–277

    PubMed  CAS  Google Scholar 

  • Clugston CK, McLaughlin K, Kenny MK, Brown R (1992) Binding of human single-stranded DNA binding protein to DNA damaged by the anticancer drug cis-diamminedichloroplatinum (II). Cancer Res 52:6375–6379

    PubMed  CAS  Google Scholar 

  • Constantinou A, Tarsounas M, Karow JK, Brosh RM, Bohr VA, Hickson ID, West SC (2000) Werner’s syndrome protein (WRN) migrates Holliday junctions and co-localizes with RPA upon replication arrest. EMBO Rep 1:80–84

    PubMed  CAS  Google Scholar 

  • Cummings CJ, Zoghbi HY (2000) Fourteen and counting: unraveling trinucleotide repeat diseases. Hum Mol Genet 9:909–916

    PubMed  CAS  Google Scholar 

  • Dai J, Hatzakis E, Hurley LH, Yang D (2010) I-motif structures formed in the human c-MYC promoter are highly dynamic–insights into sequence redundancy and I-motif stability. PLoS One 5:e11647

    PubMed  Google Scholar 

  • de Laat WL, Appeldoorn E, Sugasawa K, Weterings E, Jaspers NG, Hoeijmakers JH (1998) DNA-binding polarity of human replication protein A positions nucleases in nucleotide excision repair. Genes Dev 12:2598–2609

    PubMed  Google Scholar 

  • Deng X, Habel JE, Kabaleeswaran V, Snell EH, Wold MS, Borgstahl GE (2007) Structure of the full-length human RPA14/32 complex gives insights into the mechanism of DNA binding and complex formation. J Mol Biol 374:865–876

    PubMed  CAS  Google Scholar 

  • Deng X, Prakash A, Dhar K, Baia GS, Kolar C, Oakley GG, Borgstahl GE (2009) Human replication protein A-Rad52-single-stranded DNA complex: stoichiometry and evidence for strand transfer regulation by phosphorylation. Biochemistry 48:6633–6643

    PubMed  CAS  Google Scholar 

  • Dickson AM, Krasikova Y, Pestryakov P, Lavrik O, Wold MS (2009) Essential functions of the 32 kDa subunit of yeast replication protein A. Nucleic Acids Res 37:2313–2326

    PubMed  CAS  Google Scholar 

  • Din S, Brill SJ, Fairman MP, Stillman B (1990) Cell-cycle-regulated phosphorylation of DNA replication factor A from human and yeast cells. Genes Dev 4:968–977

    PubMed  CAS  Google Scholar 

  • Doherty KM, Sommers JA, Gray MD, Lee JW, von Kobbe C, Thoma NH, Kureekattil RP, Kenny MK, Brosh RM Jr (2005) Physical and functional mapping of the replication protein a interaction domain of the Werner and Bloom syndrome helicases. J Biol Chem 280:29494–29505

    PubMed  CAS  Google Scholar 

  • Dornreiter I, Erdile LF, Gilbert IU, von Winkler D, Kelly TJ, Fanning E (1992) Interaction of DNA polymerase α-primase with cellular replication protein A and SV40 T antigen. EMBO J 11:769–776

    PubMed  CAS  Google Scholar 

  • Eddy J, Maizels N (2006) Gene function correlates with potential for G4 DNA formation in the human genome. Nucleic Acids Res 34:3887–3896

    PubMed  CAS  Google Scholar 

  • Eddy J, Maizels N (2009) Selection for the G4 DNA motif at the 5′ end of human genes. Mol Carcinog 48:319–325

    PubMed  CAS  Google Scholar 

  • Fairman MP, Stillman B (1988) Cellular factors required for multiple stages of SV40 DNA replication in vitro. EMBO J 7:1211–1218

    PubMed  CAS  Google Scholar 

  • Fan JH, Bochkareva E, Bochkarev A, Gray DM (2009) Circular dichroism spectra and electrophoretic mobility shift assays show that human replication protein A binds and melts intramolecular G-quadruplex structures. Biochemistry 48:1099–1111

    PubMed  CAS  Google Scholar 

  • Fanning E, Klimovich V, Nager AR (2006) A dynamic model for replication protein A (RPA) function in DNA processing pathways. Nucleic Acids Res 34:4126–4137

    PubMed  CAS  Google Scholar 

  • Fotedar R, Roberts JM (1992) Cell cycle regulated phosphorylation of RPA-32 occurs within the replication initiation complex. EMBO J 11:2177–2187

    PubMed  CAS  Google Scholar 

  • Gellert M, Lipsett MN, Davies DR (1962) Helix formation by guanylic acid. Proc Natl Acad Sci USA 48:2013–2018

    PubMed  CAS  Google Scholar 

  • Glanzer JG, Liu S, Oakley GG (2011) Small molecule inhibitor of the RPA70 N-terminal protein interaction domain discovered using in silico and in vitro methods. Bioorg Med Chem 19:2589–2595

    PubMed  CAS  Google Scholar 

  • Gomes XV, Wold MS (1995) Structural analysis of human replication protein A. Mapping functional domains of the 70-kDa subunit. J Biol Chem 270:4534–4543

    PubMed  CAS  Google Scholar 

  • Gomes XV, Wold MS (1996) Functional domains of the 70-kilodalton subunit of human replication protein A. Biochemistry 35:10558–10568

    PubMed  CAS  Google Scholar 

  • Gomes XV, Henricksen LA, Wold MS (1996) Proteolytic mapping of human replication protein A: evidence for multiple structural domains and a conformational change upon interaction with single-stranded DNA. Biochemistry 35:5586–5595

    PubMed  CAS  Google Scholar 

  • Gottifredi V, Prives C (2005) The S phase checkpoint: when the crowd meets at the fork. Semin Cell Dev Biol 16:355–368

    PubMed  CAS  Google Scholar 

  • Grudic A, Jul-Larsen A, Haring SJ, Wold MS, Lonning PE, Bjerkvig R, Boe SO (2007) Replication protein A prevents accumulation of single-stranded telomeric DNA in cells that use alternative lengthening of telomeres. Nucleic Acids Res 35:7267–7278

    PubMed  CAS  Google Scholar 

  • Han Y, Loo YM, Militello KT, Melendy T (1999) Interactions of the papovavirus DNA replication initiator proteins, bovine papillomavirus type 1 E1 and simian virus 40 large T antigen, with human replication protein A. J Virol 73:4899–4907

    PubMed  CAS  Google Scholar 

  • Haring SJ, Mason AC, Binz SK, Wold MS (2008) Cellular functions of human RPA1. Multiple roles of domains in replication, repair, and checkpoints. J Biol Chem 283:19095–19111

    PubMed  CAS  Google Scholar 

  • Haring SJ, Humphreys TD, Wold MS (2010) A naturally occurring human RPA subunit homolog does not support DNA replication or cell-cycle progression. Nucleic Acids Res 38:846–858

    PubMed  CAS  Google Scholar 

  • He Z, Brinton BT, Greenblatt J, Hassell JA, Ingles CJ (1993) The transactivator proteins VP16 and GAL4 bind replication factor A. Cell 73:1223–1232

    PubMed  CAS  Google Scholar 

  • He Z, Henricksen LA, Wold MS, Ingles CJ (1995) RPA involvement in the damage-recognition and incision steps of nucleotide excision repair. Nature 374:566–569

    PubMed  CAS  Google Scholar 

  • Hermanson-Miller IL, Turchi JJ (2002) Strand-specific binding of RPA and XPA to damaged duplex DNA. Biochemistry 41:2402–2408

    PubMed  CAS  Google Scholar 

  • Huppert JL (2008) Four-stranded nucleic acids: structure, function and targeting of G-quadruplexes. Chem Soc Rev 37:1375–1384

    PubMed  CAS  Google Scholar 

  • Huppert JL, Balasubramanian S (2007) G-quadruplexes in promoters throughout the human genome. Nucleic Acids Res 35:406–413

    PubMed  CAS  Google Scholar 

  • Hyrien O (2000) Mechanisms and consequences of replication fork arrest. Biochimie 82:5–17

    PubMed  CAS  Google Scholar 

  • Iftode C, Daniely Y, Borowiec JA (1999) Replication protein A (RPA): the eukaryotic SSB. Crit Rev Biochem Mol Biol 34:141–180

    PubMed  CAS  Google Scholar 

  • Jackson D, Dhar K, Wahl JK, Wold MS, Borgstahl GE (2002) Analysis of the human replication protein A:Rad52 complex: evidence for crosstalk between RPA32, RPA70, Rad52 and DNA. J Mol Biol 321:133–148

    PubMed  CAS  Google Scholar 

  • Jacobs DM, Lipton AS, Isern NG, Daughdrill GW, Lowry DF, Gomes X, Wold MS (1999) Human replication protein A: global fold of the N-terminal RPA-70 domain reveals a basic cleft and flexible C-terminal linker. J Biomol NMR 14:321–331

    PubMed  CAS  Google Scholar 

  • Jain A, Wang G, Vasquez KM (2008) DNA triple helices: biological consequences and therapeutic potential. Biochimie 90:1117–1130

    PubMed  CAS  Google Scholar 

  • Jiang X, Klimovich V, Arunkumar AI, Hysinger EB, Wang Y, Ott RD, Guler GD, Weiner B, Chazin WJ, Fanning E (2006) Structural mechanism of RPA loading on DNA during activation of a simple pre-replication complex. EMBO J 25:5516–5526

    PubMed  CAS  Google Scholar 

  • Kanakis D, Levidou G, Gakiopoulou H, Eftichiadis C, Thymara I, Fragkou P, Trigka EA, Boviatsis E, Patsouris E, Korkolopoulou P (2011) Replication protein A: a reliable biologic marker of prognostic and therapeutic value in human astrocytic tumors. Hum Pathol 10:1545–1553

    Google Scholar 

  • Kemp M, Sancar A (2009) DNA distress: just ring 9-1-1. Curr Biol 19:R733–R734

    PubMed  CAS  Google Scholar 

  • Kemp MG, Mason AC, Carreira A, Reardon JT, Haring SJ, Borgstahl GE, Kowalczykowski SC, Sancar A, Wold MS (2010) An alternative form of replication protein a expressed in normal human tissues supports DNA repair. J Biol Chem 285:4788–4797

    PubMed  CAS  Google Scholar 

  • Kenny MK, Schlegel U, Furneaux H, Hurwitz J (1990) The role of human single-stranded DNA binding protein and its individual subunits in simian virus 40 DNA replication. J Biol Chem 265:7693–7700

    PubMed  CAS  Google Scholar 

  • Kim HS, Brill SJ (2001) Rfc4 interacts with Rpa1 and is required for both DNA replication and DNA damage checkpoints in Saccharomyces cerevisiae. Mol Cell Biol 21:3725–3737

    PubMed  CAS  Google Scholar 

  • Kim C, Snyder RO, Wold MS (1992) Binding properties of replication protein A from human and yeast cells. Mol Cell Biol 12:3050–3059

    PubMed  CAS  Google Scholar 

  • Kim C, Paulus BF, Wold MS (1994) Interactions of human replication protein A with oligonucleotides. Biochemistry 33:14197–14206

    PubMed  CAS  Google Scholar 

  • Kobayashi Y, Sato K, Kibe T, Seimiya H, Nakamura A, Yukawa M, Tsuchiya E, Ueno M (2010) Expression of mutant RPA in human cancer cells causes telomere shortening. Biosci Biotechnol Biochem 74:382–385

    PubMed  CAS  Google Scholar 

  • Kolpashchikov DM, Ivanova TM, Boghachev VS, Nasheuer HP, Weisshart K, Favre A, Pestryakov PE, Lavrik OI (2000a) Synthesis of base-substituted dUTP analogues carrying a photoreactive group and their application to study human replication protein A. Bioconjug Chem 11:445–451

    PubMed  CAS  Google Scholar 

  • Kolpashchikov DM, Pestryakov PE, Wlassoff WA, Khodyreva SN, Lavrik OI (2000b) Study of interaction of human replication factor A with DNA using new photoreactive analogs of dTTP. Biochemistry (Mosc) 65:160–163

    CAS  Google Scholar 

  • Krishna SS, Majumdar I, Grishin NV (2003) Structural classification of zinc fingers: survey and summary. Nucleic Acids Res 31:532–550

    PubMed  CAS  Google Scholar 

  • Kunkel TA, Burgers PM (2008) Dividing the workload at a eukaryotic replication fork. Trends Cell Biol 18:521–527

    PubMed  CAS  Google Scholar 

  • Lahue RS, Slater DL (2003) DNA repair and trinucleotide repeat instability. Front Biosci 8:s653–s665

    PubMed  CAS  Google Scholar 

  • Liu Y, Vaithiyalingam S, Shi Q, Chazin WJ, Zinkel SS (2011) BID binds to replication protein A and stimulates ATR function following replicative stress. Mol Cell Biol 31:4298–4309

    PubMed  CAS  Google Scholar 

  • Lopes J, Piazza A, Bermejo R, Kriegsman B, Colosio A, Teulade-Fichou MP, Foiani M, Nicolas A (2011) G-quadruplex-induced instability during leading-strand replication. EMBO J 30:4033–4046

    PubMed  CAS  Google Scholar 

  • Machwe A, Lozada E, Wold MS, Li GM, Orren DK (2011) Molecular cooperation between the Werner syndrome protein and replication protein A in relation to replication fork blockage. J Biol Chem 286:3497–3508

    PubMed  CAS  Google Scholar 

  • MacNeill SA (2001) DNA replication: partners in the Okazaki two-step. Curr Biol 11:R842–R844

    PubMed  CAS  Google Scholar 

  • Marathias VM, Bolton PH (1999) Determinants of DNA quadruplex structural type: sequence and potassium binding. Biochemistry 38:4355–4364

    PubMed  CAS  Google Scholar 

  • Mariappan SV, Silks LA 3rd, Chen X, Springer PA, Wu R, Moyzis RK, Bradbury EM, Garcia AE, Gupta G (1998) Solution structures of the Huntington’s disease DNA triplets, (CAG)n. J Biomol Struct Dyn 15:723–744

    PubMed  CAS  Google Scholar 

  • Mason AC, Roy R, Simmons DT, Wold MS (2010) Functions of alternative replication protein A in initiation and elongation. Biochemistry 49:5919–5928

    PubMed  CAS  Google Scholar 

  • Masuda-Sasa T, Polaczek P, Peng XP, Chen L, Campbell JL (2008) Processing of G4 DNA by Dna2 helicase/nuclease and replication protein A (RPA) provides insights into the mechanism of Dna2/RPA substrate recognition. J Biol Chem 283:24359–24373

    PubMed  CAS  Google Scholar 

  • McElhinny AS, Li JL, Wu L (2008) Mastermind-like transcriptional co-activators: emerging roles in regulating cross talk among multiple signaling pathways. Oncogene 27:5138–5147

    PubMed  CAS  Google Scholar 

  • Melendy T, Stillman B (1993) An interaction between replication protein A and SV40 T antigen appears essential for primosome assembly during SV40 DNA replication. J Biol Chem 268:3389–3395

    PubMed  CAS  Google Scholar 

  • Mer G, Bochkarev A, Chazin WJ, Edwards AM (2000a) Three-dimensional structure and function of replication protein A. Cold Spring Harb Symp Quant Biol 65:193–200

    PubMed  CAS  Google Scholar 

  • Mer G, Bochkarev A, Gupta R, Bochkareva E, Frappier L, Ingles CJ, Edwards AM, Chazin WJ (2000b) Structural basis for the recognition of DNA repair proteins UNG2, XPA, and RAD52 by replication factor RPA. Cell 103:449–456

    PubMed  CAS  Google Scholar 

  • Mirkin S (1999) Structure and biology of H DNA. In: Malvy C, Harel-Bellan A (eds) Triple helix forming oligonucleotides. Kluwer Academic, Norwell, pp 193–222

    Google Scholar 

  • Mirkin SM (2006) DNA structures, repeat expansions and human hereditary disorders. Curr Opin Struct Biol 16:351–358

    PubMed  CAS  Google Scholar 

  • Mirkin SM (2007) Expandable DNA repeats and human disease. Nature 447:932–940

    PubMed  CAS  Google Scholar 

  • Mirkin SM (2008) Discovery of alternative DNA structures: a heroic decade (1979–1989). Front Biosci 13:1064–1071

    PubMed  CAS  Google Scholar 

  • Nuss JE, Sweeney DJ, Alter GM (2006) Reactivity-based analysis of domain structures in native replication protein A. Biochemistry 45:9804–9818

    PubMed  CAS  Google Scholar 

  • Nuss JE, Sweeney DJ, Alter GM (2009) Prediction of and experimental support for the three-dimensional structure of replication protein A. Biochemistry 48:7892–7905

    PubMed  CAS  Google Scholar 

  • Oakley GG, Patrick SM (2010) Replication protein A: directing traffic at the intersection of replication and repair. Front Biosci 15:883–900

    PubMed  CAS  Google Scholar 

  • Oakley GG, Loberg LI, Yao J, Risinger MA, Yunker RL, Zernik-Kobak M, Khanna KK, Lavin MF, Carty MP, Dixon K (2001) UV-induced hyperphosphorylation of replication protein a depends on DNA replication and expression of ATM protein. Mol Biol Cell 12:1199–1213

    PubMed  CAS  Google Scholar 

  • Parrilla-Castellar ER, Karnitz LM (2003) Cut5 is required for the binding of ATR and DNA polymerase α to genotoxin-damaged chromatin. J Biol Chem 278:45507–45511

    PubMed  CAS  Google Scholar 

  • Patel DJ, Phan AT, Kuryavyi V (2007) Human telomere, oncogenic promoter and 5′-UTR G-quadruplexes: diverse higher order DNA and RNA targets for cancer therapeutics. Nucleic Acids Res 35:7429–7455

    PubMed  CAS  Google Scholar 

  • Patrick SM, Turchi JJ (1998) Human replication protein A preferentially binds cisplatin-damaged duplex DNA in vitro. Biochemistry 37:8808–8815

    PubMed  CAS  Google Scholar 

  • Pestryakov PE, Lavrik OI (2008) Mechanisms of single-stranded DNA-binding protein functioning in cellular DNA metabolism. Biochemistry (Mosc) 73:1388–1404

    CAS  Google Scholar 

  • Pestryakov PE, Weisshart K, Schlott B, Khodyreva SN, Kremmer E, Grosse F, Lavrik OI, Nasheuer HP (2003) Human replication protein A. The C-terminal RPA70 and the central RPA32 domains are involved in the interactions with the 3′-end of a primer-template DNA. J Biol Chem 278:17515–17524

    PubMed  CAS  Google Scholar 

  • Pestryakov PE, Khlimankov DY, Bochkareva E, Bochkarev A, Lavrik OI (2004) Human replication protein A (RPA) binds a primer-template junction in the absence of its major ssDNA-binding domains. Nucleic Acids Res 32:1894–1903

    PubMed  CAS  Google Scholar 

  • Pestryakov PE, Krasikova YS, Petruseva IO, Khodyreva SN, Lavrik OI (2007) The role of p14 subunit of replication protein A in binding to single-stranded DNA. Dokl Biochem Biophys 412:4–7

    PubMed  CAS  Google Scholar 

  • Pfuetzner RA, Bochkarev A, Frappier L, Edwards AM (1997) Replication protein A. Characterization and crystallization of the DNA binding domain. J Biol Chem 272:430–434

    PubMed  CAS  Google Scholar 

  • Potterton L, McNicholas S, Krissinel E, Gruber J, Cowtan K, Emsley P, Murshudov GN, Cohen S, Perrakis A, Noble M (2004) Developments in the CCP4 molecular-graphics project. Acta Crystallogr D Biol Crystallogr 60:2288–2294

    PubMed  Google Scholar 

  • Prakash A, Kieken F, Marky LA, Borgstahl GE (2011a) Stabilization of a G-quadruplex from unfolding by replication protein A using potassium and the porphyrin TMPyP4. J Nucleic Acids 2011:529828

    PubMed  Google Scholar 

  • Prakash A, Natarajan A, Marky LA, Ouellette MM, Borgstahl GE (2011b) Identification of the DNA-binding domains of human replication protein A that recognize G-quadruplex DNA. J Nucleic Acids 2011:896947

    PubMed  Google Scholar 

  • Pretto DI, Tsutakawa S, Brosey CA, Castillo A, Chagot ME, Smith JA, Tainer JA, Chazin WJ (2010) Structural dynamics and single-stranded DNA binding activity of the three N-terminal domains of the large subunit of replication protein A from small angle X-ray scattering. Biochemistry 49:2880–2889

    PubMed  CAS  Google Scholar 

  • Richard DJ, Bolderson E, Cubeddu L, Wadsworth RI, Savage K, Sharma GG, Nicolette ML, Tsvetanov S, McIlwraith MJ, Pandita RK, Takeda S, Hay RT, Gautier J, West SC, Paull TT, Pandita TK, White MF, Khanna KK (2008) Single-stranded DNA-binding protein hSSB1 is critical for genomic stability. Nature 453:677–681

    PubMed  CAS  Google Scholar 

  • Sakaguchi K, Ishibashi T, Uchiyama Y, Iwabata K (2009) The multi-replication protein A (RPA) system-a new perspective. FEBS J 276:943–963

    PubMed  CAS  Google Scholar 

  • Salas TR, Petruseva I, Lavrik O, Bourdoncle A, Mergny JL, Favre A, Saintome C (2006) Human replication protein A unfolds telomeric G-quadruplexes. Nucleic Acids Res 34:4857–4865

    PubMed  CAS  Google Scholar 

  • Salas TR, Petruseva I, Lavrik O, Saintome C (2009) Evidence for direct contact between the RPA3 subunit of the human replication protein A and single-stranded DNA. Nucleic Acids Res 37:38–46

    PubMed  CAS  Google Scholar 

  • Schweizer U, Hey T, Lipps G, Krauss G (1999) Photocrosslinking locates a binding site for the large subunit of human replication protein A to the damaged strand of cisplatin-modified DNA. Nucleic Acids Res 27:3183–3189

    PubMed  CAS  Google Scholar 

  • Seroussi E, Lavi S (1993) Replication protein A is the major single-stranded DNA binding protein detected in mammalian cell extracts by gel retardation assays and UV cross-linking of long and short single-stranded DNA molecules. J Biol Chem 268:7147–7154

    PubMed  CAS  Google Scholar 

  • Shuck SC, Turchi JJ (2010) Targeted inhibition of replication protein A reveals cytotoxic activity, synergy with chemotherapeutic DNA-damaging agents, and insight into cellular function. Cancer Res 70:3189–3198

    PubMed  CAS  Google Scholar 

  • Sleeth KM, Sorensen CS, Issaeva N, Dziegielewski J, Bartek J, Helleday T (2007) RPA mediates recombination repair during replication stress and is displaced from DNA by checkpoint signalling in human cells. J Mol Biol 373:38–47

    PubMed  CAS  Google Scholar 

  • Sogo JM, Lopes M, Foiani M (2002) Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects. Science 297:599–602

    PubMed  CAS  Google Scholar 

  • Stigger E, Drissi R, Lee SH (1998) Functional analysis of human replication protein A in nucleotide excision repair. J Biol Chem 273:9337–9343

    PubMed  CAS  Google Scholar 

  • Taneja P, Boche I, Hartmann H, Nasheuer HP, Grosse F, Fanning E, Weisshart K (2007) Different activities of the largest subunit of replication protein A cooperate during SV40 DNA replication. FEBS Lett 581:3973–3978

    PubMed  CAS  Google Scholar 

  • Treuner K, Ramsperger U, Knippers R (1996) Replication protein A induces the unwinding of long double-stranded DNA regions. J Mol Biol 259:104–112

    PubMed  CAS  Google Scholar 

  • Turchi JJ, Henkels KM, Hermanson IL, Patrick SM (1999) Interactions of mammalian proteins with cisplatin-damaged DNA. J Inorg Biochem 77:83–87

    PubMed  CAS  Google Scholar 

  • Vassin VM, Wold MS, Borowiec JA (2004) Replication protein A (RPA) phosphorylation prevents RPA association with replication centers. Mol Cell Biol 24:1930–1943

    PubMed  CAS  Google Scholar 

  • Voineagu I, Narayanan V, Lobachev KS, Mirkin SM (2008) Replication stalling at unstable inverted repeats: interplay between DNA hairpins and fork stabilizing proteins. Proc Natl Acad Sci USA 105:9936–9941

    PubMed  CAS  Google Scholar 

  • Voineagu I, Freudenreich CH, Mirkin SM (2009) Checkpoint responses to unusual structures formed by DNA repeats. Mol Carcinog 48:309–318

    PubMed  CAS  Google Scholar 

  • Waga S, Stillman B (1994) Anatomy of a DNA replication fork revealed by reconstitution of SV40 DNA replication in vitro. Nature 369:207–212

    PubMed  CAS  Google Scholar 

  • Weinberg DH, Collins KL, Simancek P, Russo A, Wold MS, Virshup DM, Kelly TJ (1990) Reconstitution of simian virus 40 DNA replication with purified proteins. Proc Natl Acad Sci USA 87:8692–8696

    PubMed  CAS  Google Scholar 

  • Weisshart K, Taneja P, Fanning E (1998) The replication protein A binding site in simian virus 40 (SV40) T antigen and its role in the initial steps of SV40 DNA replication. J Virol 72:9771–9781

    PubMed  CAS  Google Scholar 

  • Weisshart K, Pestryakov P, Smith RW, Hartmann H, Kremmer E, Lavrik O, Nasheuer HP (2004) Coordinated regulation of replication protein A activities by its subunits p14 and p32. J Biol Chem 279:35368–35376

    PubMed  CAS  Google Scholar 

  • Wells RD (2007) Non-B DNA conformations, mutagenesis and disease. Trends Biochem Sci 32:271–278

    PubMed  CAS  Google Scholar 

  • Wold MS (1997) Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu Rev Biochem 66:61–92

    PubMed  CAS  Google Scholar 

  • Wold MS (2010) Eukaryotic replication protein A. Encyclopedia of life science. Wiley, Chichester

    Google Scholar 

  • Wold MS, Kelly T (1988) Purification and characterization of replication protein A, a cellular protein required for in vitro replication of simian virus 40 DNA. Proc Natl Acad Sci USA 85:2523–2527

    PubMed  CAS  Google Scholar 

  • Wu Y, Rawtani N, Thazhathveetil AK, Kenny MK, Seidman MM, Brosh RM Jr (2008) Human replication protein A melts a DNA triple helix structure in a potent and specific manner. Biochemistry 47:5068–5077

    PubMed  CAS  Google Scholar 

  • Xu X, Vaithiyalingam S, Glick GG, Mordes DA, Chazin WJ, Cortez D (2008) The basic cleft of RPA70N binds multiple checkpoint proteins, including RAD9, to regulate ATR signaling. Mol Cell Biol 28:7345–7353

    PubMed  CAS  Google Scholar 

  • Yuzhakov A, Kelman Z, Hurwitz J, O’Donnell M (1999) Multiple competition reactions for RPA order the assembly of the DNA polymerase δ holoenzyme. EMBO J 18:6189–6199

    PubMed  CAS  Google Scholar 

  • Zou L, Elledge SJ (2003) Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300:1542–1548

    PubMed  CAS  Google Scholar 

  • Zou Y, Liu Y, Wu X, Shell SM (2006) Functions of human replication protein A (RPA): from DNA replication to DNA damage and stress responses. J Cell Physiol 208:267–273

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the American Cancer Society [RSG-02-162-01-GMC], NCI Eppley Cancer Center Support Grant [P30CA036727] and the Nebraska Department of Health and Human Services grants [2011-05 & 2012-04]. Aishwarya Prakash was supported by a University of Nebraska Medical Center graduate fellowship and Presidential graduate fellowship and would also like to thank Dr. Sylvie Doubliè for her support [NIH/NCI P01CA098993].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gloria E. O. Borgstahl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Prakash, A., Borgstahl, G.E.O. (2012). The Structure and Function of Replication Protein A in DNA Replication. In: MacNeill, S. (eds) The Eukaryotic Replisome: a Guide to Protein Structure and Function. Subcellular Biochemistry, vol 62. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4572-8_10

Download citation

Publish with us

Policies and ethics