Skip to main content

Liposomes and Other Nanoparticles as Cancer Vaccines and Immunotherapeutics

  • Chapter
  • First Online:
Innovation in Vaccinology

Abstract

The uptake, processing and presentation of antigen by antigen presenting cells (APCs) such as macrophages and dendritic cells (DCs) plays a crucial role in the development of vaccines and immunotherapies against infectious diseases and cancer. Liposomes are nanoparticles composed of lipids/phospholipids that can be produced to exhibit properties mimicking those seen in pathogens; thus empowering liposomes with an inherent adjuvant activity and an ability to induce both humoral and cell-mediated immune responses. In addition to their adjuvanticity, liposomes can deliver to APCs large amounts of antigen, and immunostimulatory factors; they can readily incorporate “danger” or DC maturation signals, and be surface-modified to promote their active targeting to specific receptors on cells. Liposomes can also encapsulate or form complexes (lipoplexes) with plasmid DNA and small interfering RNA, enabling targeting of these nucleic acids directly to APCs as a DNA vaccine or to enhance immune responses. Since liposomes can be readily manipulated, are biocompatible and biodegradable, and are efficacious with a good record of safety, they clearly exhibit the attributes of potent arsenals for manipulating immune function and for developing more effective cancer vaccines and immunotherapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aaltonen LM, Wahlström T, Rihkanen H, Vaheri A (1998) A novel method to culture laryngeal human papillomavirus-positive epithelial cells produces papilloma-type cytology on collagen rafts. Eur J Cancer 34:1111–1116

    Article  PubMed  CAS  Google Scholar 

  • Abtin A, Eckhart L, Mildner M, Gruber F, Schroder JM, Tschachler E (2008) Flagellin is principal inducer of the anti-microbial peptide S100A7c in human epidermal keratinocytes exposed to Escherichia. coli. FASEB J 22:2168–2176

    Article  PubMed  CAS  Google Scholar 

  • Akbari O, Panjwani N, Garcia S, Tascon R, Lowrie D, Stockinger B (1999) DNA vaccination: transfection and activation of dendritic cells as key events for immunity. J Exp Med 189:169–177

    Article  PubMed  CAS  Google Scholar 

  • Akira S (2003) Mammalian Toll-like receptors. Curr Opin Immunol 15:5–11

    Article  PubMed  CAS  Google Scholar 

  • Al-Deen FN, Ho J, Selomulya C, Ma C, Coppel R (2011) Superparamagnetic nanoparticles for effective delivery of malaria DNA vaccine. Langmuir 27:3703–3712

    Article  PubMed  CAS  Google Scholar 

  • Alexander WS, Hilton DJ (2004) The role of suppressors of cytokine signalling (SOCS) proteins in the regulation of the immune response. Annu Rev Immunol 22:503–529

    Article  PubMed  CAS  Google Scholar 

  • Aline F, Bout D, Amigorena S, Roingeard P, Dimier-Poisson I (2004) Toxoplasma gondii antigen-pulsed-dendritic cell-derived exosomes induce a protective immune response against T. gondii infection. Infect Immun 72:4127–4137

    Article  PubMed  CAS  Google Scholar 

  • Allen TM, Hansen C, Martin F, Redemann C, Yau-Young A (1991) Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half-lives in vivo. Biochim Biophys Acta 1066:29–36

    Article  PubMed  CAS  Google Scholar 

  • Altin JG, Parish CR (2006) Liposomal vaccines – targeting the delivery of antigen. Methods 40:39–52

    Article  PubMed  CAS  Google Scholar 

  • Altin JG, van Broekhoven CL, Parish CR (2004) Targeting dendritic cells with antigen-containing liposomes. Expert Opin Biol Ther 4:1735–1747

    Article  PubMed  CAS  Google Scholar 

  • Alving CR (1990) Liposomes as carriers of antigen and adjuvant. J Immunol Methods 140:1–13

    Article  Google Scholar 

  • Ambrosch F, Wiedermann G, Jonas S, Althaus B, Finkle B, Gluck R, Herzog C (1997) Immunogenicity and protectivity of a new liposomal hepatitis A vaccine. Vaccine 15:1209–1213

    Article  PubMed  CAS  Google Scholar 

  • Ardavin C, Amigorena S, Reis e Sousa C (2004) Dendritic cells: immunobiology and cancer immunotherapy. Immunity 20:17–23

    Article  PubMed  CAS  Google Scholar 

  • Arie S (2011) Global HPV vaccination. BMJ 342:d1042

    Article  PubMed  Google Scholar 

  • Bachmann MF, Jennings GT (2010) Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nature Rev Immunol 10:787–796

    Google Scholar 

  • Bachmann MF, Beerli RR, Agnellini P, Wolint P, Schwarz K, Oxenius A (2006) Long-lived memory CD8+ T cells are programmed by prolonged antigen exposure and low levels of cellular activation. Eur J Immunol 36:842–854

    Article  PubMed  CAS  Google Scholar 

  • Badiee A, Davies N, McDonald K, Radford K, Michiue H, Hart D, Kato M (2007) Enhanced delivery of immunoliposomes to human dendritic cells by targeting the multilectin receptor DEC-205. Vaccine 25:4757–4766

    Article  PubMed  CAS  Google Scholar 

  • Baldridge JR, Crane RT (1999) Monophosphoryl lipid A (MPL) formulations for the next generation of vaccines. Methods 19:103–107

    Article  PubMed  CAS  Google Scholar 

  • Bartenschlager R (2006) Hepatitis C virus molecular clones: from cDNA to infectious virus particles in cell culture. Curr Opin Microbiol 9:416–422

    Article  PubMed  CAS  Google Scholar 

  • Bege N, Renette T, Jansch M, Reul R, Merkel O, Petersen H, Curdy C, Müller RH, Kissel T (2011) Biodegradable poly(ethylene carbonate) nanoparticles as a promising drug delivery system with “stealth” potential. Macromol Biosci 11:897–904

    Article  PubMed  CAS  Google Scholar 

  • Bei R, Scardino A (2010) TAA polyepitope DNA-based vaccines: a potential tool for cancer therapy. J Biomed Biotech Article ID 102758:1–12

    Google Scholar 

  • Bodles-Brakhop AM, Draghia-Akli R (2008) DNA vaccination and gene therapy: optimization and delivery for cancer therapy. Expert Rev Vaccines 7:1085–1101

    Article  PubMed  CAS  Google Scholar 

  • Bousso P, Robey E (2003) T cell priming by dendritic cells in intact lymph nodes. Nat Immunol 4:579–585

    Article  PubMed  CAS  Google Scholar 

  • Buonaguro FM, Tornesello ML, Buonaguro L (2009) Virus-like particle vaccines and adjuvants: the HPV paradigm. Expert Rev Vaccines 8:1379–1398

    Article  PubMed  CAS  Google Scholar 

  • Buonaguro L, Tagliamonte M, Tornesello ML, Buonaguro FM (2011) Developments in virus-like particle-based vaccines for infectious diseases and cancer. Expert Rev Vaccines 10:1569–1583

    Article  PubMed  CAS  Google Scholar 

  • Butts C, Murray N, Maksymiuk A, Goss G, Marshall E, Soulieres D, Cormier Y, Ellis P, Price A, Sawhney R, Davis M, Mansi J, Smith C, Vergidis D, Ellis P, MacNeil M, Palmer M (2005) Randomized phase IIB trial of BLP25 liposome vaccine in stage IIIB and stage IV non-small-cell lung cancer. J Clin Oncol 23:6674–6681

    Article  PubMed  CAS  Google Scholar 

  • Butts C, Maksymiuk A, Goss G, Soulieres D, Marshall E, Cormier Y, Ellis PM, Price A, Sawhney R, Beier F, Falk M, Murray N (2011) Updated survival analysis in patients with stage IIIB or IV non-small-cell lung cancer receiving BLP25 liposome vaccine (L-BLP25): phase IIB randomized, multicenter, open-label trial. J Cancer Res Clin Oncol 137:1337–1342

    Article  PubMed  CAS  Google Scholar 

  • Caby MP, Lankar D, Vincendeau-Scherrer C, Raposo G, Bonnerot C (2005) Exosomal-like vesicles are present in human blood plasma. Int Immunol 17:879–887

    Article  PubMed  CAS  Google Scholar 

  • Cannon G, Weissman D (2002) RNA based vaccines. DNA Cell Biol 21:953–961

    Article  PubMed  CAS  Google Scholar 

  • Chan K, Lee DJ, Schubert A, Tang CM, Crain B, Schoenberger SP, Corr M (2001) The roles of MHC class II, CD40, and B7 costimulation in CTL induction by plasmid DNA. J Immunol 166:3061–3066

    PubMed  CAS  Google Scholar 

  • Chen J, Ni G, Liu XS (2011) Papillomavirus virus like particle-based therapeutic vaccine against human papillomavirus infection related diseases: immunological problems and future directions. Cell Immunol 269:5–9

    Article  PubMed  CAS  Google Scholar 

  • Cheng WW, Allen TM (2010) The use of single chain Fv as targeting agents for immunoliposomes: an update on immunoliposomal drugs for cancer treatment. Expert Opin Drug Deliv 7:461–478

    Article  PubMed  CAS  Google Scholar 

  • Cheng P, Corzo CA, Luetteke N, Yu B, Nagaraj S, Bui MM, Ortiz M, Nachen W, Song C, Vogl T, Roth J, Gabrilovich DI (2008) Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer. J Exp Med 205:2235–2249

    Article  PubMed  CAS  Google Scholar 

  • Chhabra A, Chakraborty NG, Mukherji B (2008) Silencing of endogenous IL-10 in human dendritic cells leads to generation of improved CTL response against human melanoma epitope MART-127–35. Clin Immunol 126:251–259

    Article  PubMed  CAS  Google Scholar 

  • Christ D, Famm K, Winter G (2007) Repertoires of aggregation-resistant human antibody domains. Protein Eng Des Sel 20:413–416

    Article  PubMed  CAS  Google Scholar 

  • Christensen D, Agger EM, Andreasen LV, Kirby D, Andersen P, Perrie Y (2009) Liposome-based cationic adjuvant formulations (CAF): past, present, and future. J Liposome Res 19:2–11

    Article  PubMed  CAS  Google Scholar 

  • Christensen D, Korsholm KS, Andersen P, Agger EM (2011) Cationic liposomes as vaccine adjuvants. Expert Rev Vaccines 10:513–521

    Article  PubMed  CAS  Google Scholar 

  • Corrales-Rodriguez L, Blais N, Soulières D (2011) Emepepimut-S for non-small cell lung cancer. Expert Opin Biol Ther 11:1091–1097

    Article  PubMed  CAS  Google Scholar 

  • Cox JC, Sjölander A, Barr IG (1998) ISCOMs and other saponin based adjuvants. Adv Drug Deliv Rev 32:247–271

    Article  PubMed  Google Scholar 

  • Cruz LJ, Rueda F, Cordobilla B, Simon L, Hosta L, Albericio F, Domingo JC (2010) Targeting nanosystems to human DCs via Fc receptor as an effective strategy to deliver antigen for immunotherapy. Mol Pharm 8:104–116

    Article  PubMed  CAS  Google Scholar 

  • Curtis KK, Connolly MK, Northfelt DW (2008) Live, attenuated varicella zoster vaccination of an immunocompromised patient. J Gen Intern Med 23:648–649

    Article  PubMed  Google Scholar 

  • Daudel D, Weidinger G, Spreng S (2007) Use of attenuated bacteria as delivery vectors for DNA vaccines. Expert Rev Vaccines 6:97–110

    Article  PubMed  CAS  Google Scholar 

  • Davis ID, Chen W, Jackson H, Parente P, Shackleton M, Hopkins W, Chen Q, Dimopoulos N, Luke T, Murphy R, Scott AM, Maraskovsky E, McArthur G, MacGregor D, Sturrock S, Tai TY, Green S, Cuthbertson A, Maher D, Miloradovic L, Mitchell SV, Ritter G, Jungbluth AA, Chen YT, Gnjatic S, Hoffman EW, Old LJ, Cebon JS (2005) Recombinant NY-ESO-1 protein with ISCOMATRIX adjuvant induces broad integrated antibody and CD4(+) and CD8(+) T cell responses in humans. Proc Natl Acad Sci USA 102:10697–10702

    Google Scholar 

  • de Gassart A, Geminard C, Fevrier B, Raposo G, Vidal M (2003) Lipid raft-associated protein sorting in exosomes. Blood 102:4336–4344

    Article  PubMed  CAS  Google Scholar 

  • de Lima MC, Simoes S, Pires P, Gaspar R, Slepushkin V, Duzgunes N (1999) Gene delivery mediated by cationic liposomes: from biophysical aspects to enhancement of transfection. Mol Membr Biol 16:103–109

    Article  PubMed  Google Scholar 

  • Demento SL, Siefert AL, Bandyopadhyay A, Sharp FA, Fahmy TM (2011) Pathogen-associated molecular patterns on biomaterials: a paradigm for engineering new vaccines. Trends Biotechnol 29:294–306

    Article  PubMed  CAS  Google Scholar 

  • Di D, Teoh WY, Gooding JI, Selomulya C, Amal R (2010) Functionization strategies for protease immobilization on magnetic nanoparticles. Adv Funct Mater 20:1767–1777

    Article  CAS  Google Scholar 

  • Di Lorenzo G, Buonerba C, Kantoff PW (2011) Immunotherapy for the treatment of prostate cancer. Nat Rev Clin Oncol 8:551–561

    Article  PubMed  CAS  Google Scholar 

  • Drake CG (2010) Prostate cancer as a model for tumour immunotherapy. Nat Rev Immunol 10:580–593

    Article  PubMed  CAS  Google Scholar 

  • Eisenbarth SC (2008) Use and limitations of alum-based models of allergy. Clin Exp Allergy 38:1572–1575

    Article  PubMed  CAS  Google Scholar 

  • Eisenbarth SC, Colegio OR, O’Connor W, Sutterwala FS, Flavell RA (2008) Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453:1122–1126

    Article  PubMed  CAS  Google Scholar 

  • Elamanchili P, Diwan M, Cao M, Samuel J (2004) Characterization of poly(D, L-lactic-co-glycolic acid) based nanoparticulate system for enhanced delivery of antigens to dendritic cells. Vaccine 22:2406–2412

    Article  PubMed  CAS  Google Scholar 

  • El-Aneed A (2004) An overview of current delivery systems in cancer gene therapy. J Control Release 94:1–14

    Article  PubMed  CAS  Google Scholar 

  • Eliasson DG, Helgeby A, Schon K, Nygren C, El-Bakkouri K, Fiers W, Saelens X, Lövgren KB, Nyström I, Lycke NY (2011) A novel non-toxic combined CTA1-DD and ISCOMS adjuvant vector for effective mucosal immunization against influenza virus. Vaccine 29:3951–3961

    Article  PubMed  CAS  Google Scholar 

  • Erikçi E, Gursel M, Gürsel I (2011) Differential immune activation following encapsulation of immunostimulatory CpG oligodeoxynucleotide in nanoliposomes. Biomaterials 32:1715–1723

    Article  PubMed  CAS  Google Scholar 

  • Espuelas S, Thumann C, Heurtault B, Schuber F, Frisch B (2008) Influence of ligand valency on the targeting of immature human dendritic cells by mannosylated liposomes. Bioconjug Chem 19:2385–2393

    Article  PubMed  CAS  Google Scholar 

  • Faham A, Altin JG (2010) Antigen-containing liposomes engrafted with flagellin-related peptides are effective vaccines that can induce potent antitumor immunity and immunotherapeutic effect. J Immunol 185:1744–1754

    Article  PubMed  CAS  Google Scholar 

  • Faham A, Altin JG (2011) Ag-bearing liposomes engrafted with peptides that interact with CD11c/CD18 induce potent Ag-specific and antitumor immunity. Int J Cancer 129:1391–1403

    Article  PubMed  CAS  Google Scholar 

  • Faham A, Bennett D, Altin JG (2009) Liposomal Ag engrafted with peptides of sequence derived from HMGB1 induce potent Ag-specific and anti-tumour immunity. Vaccine 27:5846–5854

    Article  PubMed  CAS  Google Scholar 

  • Faham A, Herringson T, Parish C, Suhrbier A, Khromykh AA, Altin JG (2011) PDNA-lipoplexes engrafted with flagellin-related peptide induce potent immunity and anti-tumour effects. Vaccine 29:6911–6919

    Article  PubMed  CAS  Google Scholar 

  • Fehr T, Skrastina D, Pumpens P, Zinkernagel RM (1998) T cell-independent type I antibody response against B cell epitopes expressed repetitively on recombinant virus particles. Proc Natl Acad Sci USA 95:9477–9481

    Article  PubMed  CAS  Google Scholar 

  • Ferlazzo C, Tsang ML, Moretta L, Melioi G, Steinman RM, Munz C (2002) Human dendritic cells activate resting natural killer (NK) cells and are recognized via the NKp30 receptor by activated NK cells. J Exp Med 195:343–351

    Article  PubMed  CAS  Google Scholar 

  • Feuillet V, Medjane S, Mondor I, Demaria O, Pagni PP, Galan JE, Flavell RA, Alexopoulou L (2006) Involvement of toll-like receptor 5 in the recognition of flagellated bacteria. Proc Natl Acad Sci USA 103:12487–12492

    Article  PubMed  CAS  Google Scholar 

  • Fifis T, Gamvrellis A, Crimeen-Irwin B, Pietersz GA, Li J, Mottram PL, McKenzie IF, Plebanski M (2004a) Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors. J Immunol 173:3148–3154

    PubMed  CAS  Google Scholar 

  • Fifis T, Mottram P, Bogdanoska V, Hanley J, Plebanski M (2004b) Short peptide sequences containing MHC class I and/or class II epitopes linked to nano-beads induce strong immunity and inhibition of growth of antigen-specific tumour challenge in mice. Vaccine 23:258–266

    Article  PubMed  CAS  Google Scholar 

  • Figdor CG, de Vries IJM, Lesterhuis WJ, Melief CJM (2004) Dendritic cell immunotherapy: mapping the way. Nat Med 10:475–480

    Article  PubMed  CAS  Google Scholar 

  • Flavell RA, Sanjabi S, Wrzesinski SH, Licona-Limon P (2010) The polarization of immune cells in the tumour environment by TGF&UF062. Nat Rev Immunol 10:554–567

    Article  PubMed  CAS  Google Scholar 

  • Foged C, Arigita C, Sundblad A, Jiskoot W, Storm G, Frokjaer S (2004) Interaction of dendritic cells with antigen-containing liposomes: effect of bilayer composition. Vaccine 22:1903–1913

    Article  PubMed  CAS  Google Scholar 

  • Fong L, Engleman EG (2000) Dendritic cells in cancer immunotherapy. Annu Rev Immunol 18:245–273

    Article  PubMed  CAS  Google Scholar 

  • Fooks AR (2000) Development of oral vaccines for human use. Curr Opin Mol Ther 2:80–86

    PubMed  CAS  Google Scholar 

  • Foster N, Hirst BH (2005) Exploiting receptor biology for oral vaccination with biodegradable particulates. Adv Drug Deliv Rev 57:431–450

    Article  PubMed  CAS  Google Scholar 

  • Frazer IH, Levin MJ (2011) Paradigm shifting vaccines: prophylactic vaccines against latent varicella-zoster virus infection and against HPV-associated cancer. Curr Opin Virol 1:268–279

    Article  PubMed  CAS  Google Scholar 

  • Freeman GJ, Casasnovas JM, Umetsu DT, DeKruyff RH (2010) TIM genes: a family of cell surface phosphatidylserine receptors that regulate innate and adaptive immunity. Immunol Rev 235:172–189

    PubMed  CAS  Google Scholar 

  • GabizonA PD (1992) The role of surface charge and hydrophilic groups on liposome clearance in vivo. Biochim Biophys Acta 1103:94–100

    Article  Google Scholar 

  • Geijtenbeek TBH, Gringhuis SI (2009) Signalling through C-type lectin receptors: shaping the immune responses. Nat Rev Immunol 9:465–479

    Article  PubMed  CAS  Google Scholar 

  • Ghosh P, Han G, De M, Kim CK, Rotello VM (2008) Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 60:1307–1315

    Article  PubMed  CAS  Google Scholar 

  • Gordon S (2002) Pattern recognition receptors. Cell 111:927–930

    Article  PubMed  CAS  Google Scholar 

  • Gram GJ, Karlsson I, Agger EM, Andersen P, Fomsgaard A (2009) A novel liposome-based adjuvant CAF01 for induction of CD8+ cytotoxic T-lymphocytes (CTL) to HIV-1 minimal CTL peptides in HLA-A*0201 transgenic mice. PLoS One 4:e6950

    Article  PubMed  CAS  Google Scholar 

  • Greenwood DLV, Dynon K, Kalkanidis M, Xiang S, Plebanski M, Scheerlinck J-P Y (2008) Vaccination against foot-and-mouth disease virus using peptides conjugated to nano-beads. Vaccine 26:2706–2713

    Article  PubMed  CAS  Google Scholar 

  • Gregoriadis G (1994) The immunological adjuvant and vaccine carrier properties of liposomes. J Drug Target 2:351–356

    Article  PubMed  CAS  Google Scholar 

  • Guermonprez P, Valladeau J, Zitvogel L, Thery C, Amigorena S (2002) Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol 20:621–667

    Article  PubMed  CAS  Google Scholar 

  • Gursel I, Gursel M, Ishii KJ, Klinman DM (2001) Sterically stabilized cationic liposomes improve the uptake and immunostimulatory activity of CpG oligonucleotides. J Immunol 167:3324–3328

    PubMed  CAS  Google Scholar 

  • Hamdy S, Molavi O, Ma Z, Haddadi A, Alshamsan A, Gobti Z, Elhasi S, Samuel J, Lavasanifar A (2008) Co-delivery of cancer-associated antigen and Toll-like receptor 4 ligand in PLGA nanoparticles induces potent CD8+ T cell-mediated anti-tumor immunity. Vaccine 26:5046–5057

    Article  PubMed  CAS  Google Scholar 

  • Hamdy S, Haddadi A, Hung RW, Lavasanifar A (2011) Targeting dendritic cells with nano-particulate PLGA cancer vaccine formulations. Adv Drug Deliv Rev 63:943–955

    Article  PubMed  CAS  Google Scholar 

  • Hamzah J, Altin JG, Herringson T, Parish CR, Hammerling GJ, O’Donoghue H, Ganns R (2009) Targeted liposomal delivery of TLR9 ligands activates spontaneous antitumor immunity in an autochthonous cancer model. J Immunol 183:1091–1098

    Article  PubMed  CAS  Google Scholar 

  • Hanley C, Thurber A, Hanna C, Punnoose A, Zhang J, Wingett DG (2009) The influences of cell type and ZnO nanoparticle size on immune cell cytotoxicity and cytokine induction. Nanoscale Res Lett 4:1409–1420

    Article  PubMed  CAS  Google Scholar 

  • Hansen CB, Kao GY, Moase EH, Zalipsky S, Allen TM (1995) Attachment of antibodies to sterically stabilized liposomes: evaluation, comparison and optimization of coupling procedures. Biochim Biophys Acta 1239:133–144

    Article  PubMed  Google Scholar 

  • Hansen J, Lindenstrøm T, Lindberg-Levin J, Aagaard C, Andersen P, Agger EM (2011) CAF05: cationic liposomes that incorporate synthetic cord factor and poly(I:C) induce CTL immunity and reduce tumor burden in mice. Cancer Immunol Immunother [Epub ahead of print] PMID: 22095092

    Google Scholar 

  • Harper DM (2009) Currently approved prophylactic HPV vaccines. Expert Rev Vaccines 8:1663–1679

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto M, Avada T, Kinjvo I, Hiwatashi K, Yoshida H, Okada Y, Kobayashi T, Yoshimura A (2009) Silencing SOCS1 in macrophages suppresses tumour development by antitumor inflammation. Cancer Sci 100:730–736

    Article  PubMed  CAS  Google Scholar 

  • Heath WR, Carbone FR (2009) Dendritic cell subsets in primary and secondary T cell responses at body surfaces. Nat Immunol 10:1237–1244

    Article  PubMed  CAS  Google Scholar 

  • Heath WR, Belz GT, Behrens GMN, Smith CM, Forehan SP, Parish IA, Davey GM, Wilson NS, Carbone FR, Villandangos JA (2004) Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol Rev 199:9–26

    Article  PubMed  CAS  Google Scholar 

  • Heffernan MJ, Zaharoff DA, Fallon JK, Schlom J, Greiner JW (2011) In vivo efficacy of a chitosan/IL-12 adjuvant system for protein-based vaccines. Biomaterials 321:926–932

    Article  CAS  Google Scholar 

  • Henriksen-Lacey M, Korsholm KS, Andersen P, Perrie Y, Christensen D (2011) Liposomal vaccine delivery systems. Expert Opin Drug Deliv 8:505–519

    Article  PubMed  CAS  Google Scholar 

  • Herringson TP, Altin JG (2009) Convenient targeting of stealth siRNA-lipoplexes to cells with chelator lipid-anchored molecules. J Control Release 39:229–238

    Article  CAS  Google Scholar 

  • Herringson TP, Patlolla RR, Altin JG (2009) Targeting of plasmid DNA-lipoplexes to cells with molecules anchored via a metal chelator lipid. J Gene Med 11:1048–1063

    Article  PubMed  CAS  Google Scholar 

  • Hiwatashi K, Yoshida H, Okada Y et al (2009) Silencing SOCS1 in macrophages suppresses tumour development by antitumor inflammation. Cancer Sci 100:730–736

    Article  PubMed  CAS  Google Scholar 

  • Ho J, Al-Deen FM, Al-Abboodi A, Selomulya C, Xiang SD, Plebanski M, Forde GM (2011) N, N’-Carbonyldiimidazole-mediated functionalization of superparamagnetic nanoparticles as vaccine carrier. Colloids Surf B Biointerfaces 83:83–90

    Article  PubMed  CAS  Google Scholar 

  • Hong B, Ren W, Song XT, Evel-Kabier K, Chen SY, Huang XF (2009) Human suppressor of cytokine signalling 1 controls immunostimulatory activity of monocyte-derived dendritic cells. Cancer Res 69:8076–8084

    Article  PubMed  CAS  Google Scholar 

  • Hou W-S, Van Parijs L (2004) A Bcl-2-dependent molecular timer regulates the lifespan and immunogenicity of dendritic cells. Nat Immunol 5:583–589

    Article  PubMed  CAS  Google Scholar 

  • Immordino ML, Dosio F, Catlel L (2006) Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int J Nanomedicine 1:297–315

    Article  PubMed  CAS  Google Scholar 

  • Jackson H, Dimopoulos N, Mifsud NA, Tai TY, Chen Q, Svobodova S, Browning J, Luescher I, Stockert L, Old LJ, Davis ID, Cebon J, Chen W (2006) Striking immunodominance hierarchy of naturally occurring CD8+ and CD4+ T cell responses to tumor antigen NY-ESO-1. J Immunol 176:5908–5917

    PubMed  CAS  Google Scholar 

  • Jain S, O’Hagan DT, Singh M (2011) The long-term potential of biodegradable poly(lactide-co-glycolide) microparticles as the next-generation vaccine adjuvant. Expert Rev Vaccines 10:1731–1742

    Article  PubMed  CAS  Google Scholar 

  • Janes KA, Calvo P, Alonso MJ (2001) Polysaccharide colloidal particles as delivery systems for macromolecules. Adv Drug Del Rev 47:83–97

    Article  CAS  Google Scholar 

  • Jensen-Jarolim E, Singer J (2011) Cancer vaccines inducing antibody production: more pros than cons. Expert Rev Vaccines 10:1281–1289

    Article  PubMed  CAS  Google Scholar 

  • Jespers L, Schon O, Famm K, Winter G (2004) Aggregation-resistant domain antibodies selected on phage by heat denaturation. Nat Biotechnol 22:1161–1165

    Article  PubMed  CAS  Google Scholar 

  • Jiang W, Swiggard WJ, Heufler C, Peng M, Steinman RM, Nussenzweig MC (1995) The receptor DEC-205 expressed by dendritic cells and thymic epithelium cells is involved in antigen processing. Nature 375:151–155

    Article  PubMed  CAS  Google Scholar 

  • Jin MS, Lee J-O (2008) Structures of the Toll-like receptor family and its ligand complexes. Immunity 29:182–191

    Article  PubMed  CAS  Google Scholar 

  • Johansen P, Storni T, Rettig L, Qiu Z, Der-Sarkissian A, Smith KA, Manolova V, Lang KS, Senti G, Mullhaupt B, Gerlach T, Speck RF, Bot A, Kundig TM (2008) Antigen kinetics determines immune reactivity. Proc Natl Acad Sci USA 105:5189–5194

    Article  PubMed  CAS  Google Scholar 

  • Kaisho T, Akira S (2002) Toll-like receptors as adjuvant receptors. Biochim Biophys Acta 1589:1–13

    Article  PubMed  CAS  Google Scholar 

  • Kamath AT, Rochat AF, Christensen D, Agger EM, Andersen P, Lambert PH, Siegrist CA (2009) A liposome-based mycobacterial vaccine induces potent adult and neonatal multifunctional T cells through the exquisite targeting of dendritic cells. PLoS One 4:e5771

    Article  PubMed  CAS  Google Scholar 

  • Karkarda M, Weir GM, Quinton T, Feutes-Ortega A, Mansour M (2010) A liposome-based platform, Vaccimax, and its modified water-free platform DepoVax enhance efficacy of in vivo nucleic acid delivery. Vaccine 28:6176–6182

    Article  CAS  Google Scholar 

  • Kennedy R, Celis E (2008) Multiple roles for CD4+ T cells in anti-tumor immune responses. Immunol Rev 222:129–144

    Article  PubMed  CAS  Google Scholar 

  • Kersten G, Hirschberg H (2004) Antigen delivery systems. Expert Rev Vaccines 3:453–462

    Article  PubMed  CAS  Google Scholar 

  • Khatri K, Goyal AK, Gupta PN, Mishra N, Vyas SP (2008) Plasmid DNA loaded chitosan nanoparticles for nasal mucosal immunization against hepatitis B. Int J Pharm 354:235–241

    Article  PubMed  CAS  Google Scholar 

  • Kim TW, Lee J-H, He L, Boyd DA, Hardwick JM, Hung CF, Wu TC (2005) Modification of professional APCs with small interfering RNA in vivo to enhance cancer vaccine potency. Cancer Res 65:309–316

    PubMed  CAS  Google Scholar 

  • Kobayashi T, Yoshimura A (2005) Keeping DCs awake by putting SOCS1 to sleep. Trends Immunol 26:177–179

    Article  PubMed  CAS  Google Scholar 

  • Kool M, Pétrilli V, De Smedt T, Rolaz A, Hammad H, van Nimwegen M, Bergen IM, Castillo R, Lambrecht BN, Tschopp J (2008) Cutting edge: alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasome. J Immunol 181:3755–3759

    PubMed  CAS  Google Scholar 

  • Korsholm KS, Agger EM, Foged C, Christensen D, Dietrich J, Andersen CS, Geisler C, Andersen P (2007) The adjuvant mechanism of cationic dimethyldioctadecylammonium liposomes. Immunology 121:216–226

    Article  PubMed  CAS  Google Scholar 

  • Kotton CN (2008) Vaccination and immunization against travel-related diseases in immunocompromised hosts. Expert Rev Vaccines 7:663–672

    Article  PubMed  CAS  Google Scholar 

  • Krishnan SGD (2008) Archaeosome adjuvants: immunological capabilities and mechanism (s) of action. Vaccine 26:2043–2055

    Article  PubMed  CAS  Google Scholar 

  • Krishnan SS, Patel GB, Sprott GD (2000) Archaeosomes induce long-term CD8+ cytotoxic T cell response to entrapped soluble protein by the exogenous cytosolic pathway, in the absence of CD4+ T cell help. J Immunol 165:5177–5185

    PubMed  CAS  Google Scholar 

  • Krishnan L, Sad S, Patel GB, Sprott GD (2003) Archaeosomes induce enhanced cytotoxic T lymphocyte responses to entrapped soluble protein in the absence of interleukin 12 and protect against tumor challenge. Cancer Res 63:2526–2534

    PubMed  CAS  Google Scholar 

  • Kumar D, Kirimanjeswara G, Metzger DW (2011) Intranasal administration of an inactivated Yersinia pestis vaccine with interleukin-12 generates protective immunity against pneumonic plague. Clin Vaccine Immunol 18:1925–1935

    Article  PubMed  CAS  Google Scholar 

  • Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 75:1–18

    Article  PubMed  CAS  Google Scholar 

  • Lahoud MH, Ahmet F, Kitsoulis S, Wan SS, Vremec D, Lee CN, Phipson B, Shi W, Smyth GK, Lew AM, Kato Y, Mueller SN, Davey GM, Heath WR, Shortman K, Caminschi I (2011) Targeting antigen to mouse dendritic cells via Clec9A induces potent CD4 T cell responses biased toward a follicular helper phenotype. J Immunol 187:842–850

    Article  PubMed  CAS  Google Scholar 

  • Laing P, Bacon A, McCormack B, Bregoriadis G, Frisch B, Schber F (2006) The ‘co-delivery’ approach to liposomal vaccines: application to the development of influenza-A and hepatitis-B vaccine candidates. J Liposome Res 16:229–235

    Article  PubMed  CAS  Google Scholar 

  • Lasic DD, Papahadjopoulos D (1995) Liposomes revisited. Science 267:1275–1276

    Article  PubMed  CAS  Google Scholar 

  • Lasic DD, Martin FJ, Gabizon A, Huang SK, Papahadjopoulos D (1991) Sterically stabilized liposomes: a hypothesis on the molecular origin of the extended circulation times. Biochim Biophys Acta 1070:187–192

    Article  PubMed  CAS  Google Scholar 

  • Lee K-D, Hong K, Papahadjopoulos D (1992) Recognition of liposomes by cells: in vitro binding and endocytosis mediated by specific lipid headgroups and surface charge density. Biochim Biophys Acta 1103:185–197

    Article  PubMed  CAS  Google Scholar 

  • Lenarczyk A, Le TT, Drane D, Malliaros J, Pearse M, Hamilton R, Cox J, Luft T, Gardner J, Suhbrier A (2004) ISCOM based vaccines for cancer immunotherapy. Vaccine 22:963–974

    Article  PubMed  CAS  Google Scholar 

  • Lesterhuis WJ, Haanen JB, Punt CJ (2011) Cancer immunotherapy–revisited. Nat Rev Drug Discov 10:591–600

    Article  PubMed  CAS  Google Scholar 

  • Li WM, Bally MB, Schutze-Redelmeier MP (2001) Enhanced immune response to T-independent antigen by using CpG oligodeoxynucleotides encapsulated in liposomes. Vaccine 20:148–57

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Hu Y, Jin Y, Zang G, Wong J, Sun LQ, Wang M (2011) Prophylactic, therapeutic and immune enhancement effect of liposome-encapsulated PolyICLC on highly pathogenic H5N1 influenza infection. J Gene Med 13:60–72

    Article  PubMed  CAS  Google Scholar 

  • Lin YL, Liang YC, Chiang BL (2007) Placental growth factor down-regulates Th1 T immune response by modulating the function of dendritic cells. J Leukoc Biol 82:1473–1480

    Article  PubMed  CAS  Google Scholar 

  • Liu MA (2011) DNA vaccines: an historical perspective and view to the future. Immunol Rev 239:62–84

    Article  PubMed  CAS  Google Scholar 

  • Liu G, Ng H, Akasaki Y, Yuan X, Ehtesham M, Yin D, Black KL, Yu JS (2004) Small interference RNA modulation of IL-10 in human monocyte-derived DCs enhances the Th1 response. Eur J Immunol 171:691–696

    Google Scholar 

  • Lovgren Bengtsson K, Morein B, Osterhaus AD (2011) ISCOM technology-based Matrix MTM adjuvant: success in future vaccines relies on formulation. Expert Rev Vaccines 10:401–403

    Article  PubMed  Google Scholar 

  • Lu Y, Kawakami S, Yamashita F, Hashida M (2007) Development of an antigen-presenting cell-targeted DNA vaccine against melanoma by mannosylated liposomes. Biomaterials 28:3255–3262

    Article  PubMed  CAS  Google Scholar 

  • Lutsiak ME, Robinson DR, Coester C, Kwon GS, Samuel J (2002) Analysis of poly(D, L-lactic-co-glycolic acid) nanosphere uptake by human dendritic cells and macrophages in vitro. Pharm Res 19:1480–1487

    Article  PubMed  CAS  Google Scholar 

  • Ma Y, Zhuang Y, Xie X, Wang C, Wang F, Zhou D, Zeng J, Cai I (2011) The role of surface charge density in cationic liposome-promoted dendritic cell maturation and vaccine-induced immune responses. Nanoscale 3:2307–2314

    Article  PubMed  CAS  Google Scholar 

  • Maeda T, Balakrishnan K, Mehdi SQ (1983) A simple and rapid method for the preparation of plasma membranes. Biochim Biophys Acta 731:115–120

    Article  PubMed  CAS  Google Scholar 

  • Manjappa AS, Chaudhari KR, Venkataraju MP, Dantuluri P, Nanda B, Sidda C, Sawant KK, Ramachandra Murphy RS (2011) Antibody derivatization and conjugation strategies: application in preparation of stealth immunoliposome to target chemotherapeutics to tumor. J Control Release 150:2–22

    Article  PubMed  CAS  Google Scholar 

  • Manley CA, Leibman NF, Wolchok JD, Riviere IC, Barlido S, Craft DM, Bergman PJ (2011) Xenogeneic murine tyrosinase DNA vaccine for malignant melanoma of the digit of dogs. J Vet Intern Med 25:94–99

    Article  PubMed  CAS  Google Scholar 

  • Mansouri S, Lavigne P, Corsi K, Benderdour M, Beaumont E, Fernandes JC (2004) Chitosan-DNA nanoparticles as non-viral vectors in gene therapy: strategies to improve transfection efficacy. Eur J Pharm Biopharm 57:1–8

    Article  PubMed  CAS  Google Scholar 

  • Marigo I, Dolcetti L, Serafini P, Zanovello P, Bronte V (2008) Tumour-induced tolerance and immune suppression by myeloid derived suppressor cells. Immunol Rev 222:162–179

    Article  PubMed  CAS  Google Scholar 

  • Marrack P, McKee AS, Munks MW (2009) Towards an understanding of the adjuvant action of aluminium. Nat Rev Immunol 9:287–293

    Article  PubMed  CAS  Google Scholar 

  • Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10:417–426

    Article  PubMed  CAS  Google Scholar 

  • Marutama K, Kennel SJ, Huang L (1990) Lipid composition is important for highly efficient target binding and retention of immunoliposomes. Proc Natl Acad Sci USA 87:5744–5748

    Article  Google Scholar 

  • McManus MT, Sharp PA (2002) Gene silencing in mammals by small interfering RNAs. Nat Rev Genet 3:737–747

    Article  PubMed  CAS  Google Scholar 

  • Miller MJ, Hejazi AS, Wei SH, Cahalan MD, Parker I (2004) T cell repertoire scanning is promoted by dynamic dendritic cell behaviour and random T cell motility in the lymph node. Proc Natl Acad Sci USA 101:998–1003

    Article  PubMed  CAS  Google Scholar 

  • Minigo G, Scholzen A, Tang CK, Hanley JC, Kalkanidis M, Pietersz GA, Apostolopoulos V, Plebanski M (2007) Poly-L-lysine-coated nanoparticles: a potent delivery system to enhance DNA vaccine efficacy. Vaccine 25:1316–1327

    Article  PubMed  CAS  Google Scholar 

  • Miyanishi M, Tada K, Koike M, Uchiyama Y, Kitamura T, Nagata S (2007) Identification of Tim4 as a phosphatidylserine receptor. Nature 450:435–439

    Article  PubMed  CAS  Google Scholar 

  • Mockey M, Bourseau E, Chandrashekhar V, Chaudhuri S, Lafosse E, Le Cam E, Quesniaux VFJ, Ryffel B, Pichon C, Midoux P (2007) MRNA-based cancer vaccine: prevention of B16 melanoma progression and metastasis by systemic injection of MART1 mRNA histidylated lipopolyplexes mRNA-based cancer vaccine. Cancer Gene Ther 14:802–814

    Article  PubMed  CAS  Google Scholar 

  • Montecalvo A, Shufesky WJ, Stolz DB, Sullivan MG, Wang Z, Divito SJ, Papworth GD, Watkins SC, Robbins PD, Larrengina AT, Morelli AE (2008) Exosomes as a short-range mechanism to spread alloantigen between dendritic cells during T cell allorecognition. J Immunol 180:3081–3090

    PubMed  CAS  Google Scholar 

  • Montomoli E, Piccirella S, Khadang B, mennitto E, Camerini R, de Rosa A (2011) Current adjuvants and new perspectives in vaccine formulation. Expert Rev Vaccines 10:1053–1061

    Article  PubMed  CAS  Google Scholar 

  • Moser M, Murphy KM (2000) Dendritic cell regulation of TH1-TH2 development. Nat Immunol 1:199–205

    Article  PubMed  CAS  Google Scholar 

  • Mottram PL, Leong D, Crimeen-Irwin B, Gloster S, Xiang SD, Meanger J, Ghildyal R, Vardaxis N, Plebanski M (2007) Type 1 and 2 immunity following vaccination is influenced by nanoparticle size: formulation of a model vaccine for respiratory syncytial virus. Mol Pharm 4:73–84

    Article  PubMed  CAS  Google Scholar 

  • Mui B, Raney SG, Semple SC, Hope MJ (2001) Immune stimulation by a CpG-containing oligodeoxynucleotide is enhanced when encapsulated and delivered in lipid particles. J Pharmacol Exp Ther 298:1185–1192

    PubMed  CAS  Google Scholar 

  • Nakanishi T, Kunisawa J, Hayashi A, Tsutsumi Y, Kubo K, Nakagawa S, Nakanashi M, Tanaka K, Mayumi T (1999) Positively charged liposome functions as an efficient immunoadjuvant in inducing cell-mediated immune response to soluble proteins. J Control Release 61:233–240

    Article  PubMed  CAS  Google Scholar 

  • Naylor CJ, Jones RC (1994) Demonstration of a virulent subpopulation in a prototype live attenuated turkey rhinotracheitis vaccine. Vaccine 12:1225–1230

    Article  PubMed  CAS  Google Scholar 

  • Nchinda G, Zschornig O, Uberla K (2003) Increased non-viral gene transfer levels in mice by concentration of cationic lipid DNA complexes formed under optimized conditions. J Gene Med 5:712–722

    Article  PubMed  CAS  Google Scholar 

  • Nelson K, Janssen JM, Troy SB, Maldonado Y (2011) Intradermal fractional dose inactivated polio vaccine: a review of the literature. Vaccine 30:121–125

    Google Scholar 

  • Newman KD, Elamanchili P, Kwon GS, Samuel J (2002) Uptake of poly(D, L-lactic-coglycolic acid) microspheres by antigen-presenting cells in vivo. J Biomed Mater Res 60:480–486

    Article  PubMed  CAS  Google Scholar 

  • Nicholaou T, Chen W, Davis ID, Jackson HM, Dimopoulos N, Barrow C, Browning J, Macgregor D, Williams D, Hopkins W, Maraskovsky E, Venhaus R, Pan L, Hoffman EW, Old LJ, Cebon J (2011) Immunoediting and persistence of antigen-specific immunity in patients who have previously been vaccinated with NY-ESO-1 protein formulated in ISCOMATRIX™. Cancer Immunol Immunother 60:1625–1637

    Article  PubMed  CAS  Google Scholar 

  • Oszlánczi G, Papp A, Szabó A, Nagymajteny L, Sapi A, Konya Z, Paulik E, Vezer T (2011) Nervous system effects in rats on subacute exposure by lead-containing nanoparticles via the airways. Inhal Toxicol 23:173–181

    Article  PubMed  CAS  Google Scholar 

  • Oyewumi MO, Kumar A, Cui Z (2010) Nano-microparticles as immune adjuvants: correlating particle sizes and the resultant immune response. Expert Rev Vaccines 9:1095–1107

    Article  PubMed  CAS  Google Scholar 

  • Panda AK (2011) Induction of anti-tumor immunity and T-cell responses using nanodelivery systems engrafting TLR-5 ligand. Expert Rev Vaccines 10:155–157

    Article  PubMed  CAS  Google Scholar 

  • Papahadjopoulos D, Allen TM, Gabizon A, Mayhew E, Matthay K, Huang SK, Lee K-D, Woodle MC, Lasic DD, Redemann C, Martin FJ (1991) Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci USA 88:11460–11464

    Article  PubMed  CAS  Google Scholar 

  • Park D, Hochreiter-Hufford A, Ravichandran KS (2009) The phosphatidylserine receptor TIM-4 does not mediate direct signaling. Curr Biol 19:346–351

    Article  PubMed  CAS  Google Scholar 

  • Patel CW (2005) Archaeosome immunostimulatory vaccine delivery system. Curr Drug Deliv 2:407–421

    Article  PubMed  CAS  Google Scholar 

  • Patel GB, Chen W (2010) Archaeal lipid mucosal vaccine adjuvant and delivery system. Expert Rev Vaccines 9:431–440

    Article  PubMed  CAS  Google Scholar 

  • Patel ZH, Ponce A, Chen W (2007) Mucosal and systemic immune responses by intranasal immunization using archaeal lipid-adjuvanted vaccines. Vaccine 25:8622–8636

    Article  PubMed  CAS  Google Scholar 

  • Patel PA, Zhou H, Chen W (2008) Safety of intranasally administered archaeal lipid mucosal vaccine adjuvant and delivery (AMVAD) vaccine in mice. Int J Toxicol 27:329–339

    Article  PubMed  CAS  Google Scholar 

  • Pelkmans L (2005) Viruses as probes for systems analysis of cellular signalling, cytoskeleton reorganization and endocytosis. Curr Opin Microbiol 8:331–337

    Article  PubMed  CAS  Google Scholar 

  • Peng S, Kim TW, Lee JH, Yang M, He L, Hung CF, Wu TC (2005) Vaccination with dendritic cells transfected with BAK and BAX siRNA enhances antigen-specific immune responses by prolonging dendritic cell life. Hum Gene Ther 16:584–593

    Article  PubMed  CAS  Google Scholar 

  • Perche F, Gosset D, Mével M, Ml M, Yaouanc JJ, Pichon C, Benvegnu T, Jaffres PA, Midoux P (2011) Selective gene delivery in dendritic cells with mannosylated and histidylated lipopolyplexes. J Drug Target 19:315–325

    Article  PubMed  CAS  Google Scholar 

  • Peres J (2011) For cancers caused by HPV, two vaccines were just the beginning. J Natl Cancer Inst 103:360–362

    Article  PubMed  Google Scholar 

  • Piechocki MP, Ho Y-S, Pilon S, Wei W-Z (2003) Human ErbB-2 (Her-2) transgenic mice: a model system for testing Her-2 based vaccines. J Immunol 171:5787–5794

    PubMed  CAS  Google Scholar 

  • Pinzon-Charry A, Maxwell T, Lopez AJ (2005) Dendritic cell dysfunction in cancer: A mechanism for immunosuppression. Immunol Cell Biol 83:451–461

    Article  PubMed  CAS  Google Scholar 

  • Pirollo KF, Zon G, Rait A, Zhou Q, Yu W, Hogrefe R, Chang EH (2006) Tumour-targeting nanoimmunoliposome complex for short interfering RNA delivery. Hum Gene Ther 17:117–124

    Article  PubMed  CAS  Google Scholar 

  • Prasad S, Cody V, Saucier-Sawyer JK, Saltzman WM, Sasaki CT, Edelson RL, Birchall MA, Hanlon DJ (2011) Polymer nanoparticles containing tumor lysates as antigen delivery vehicles for dendritic cell-based antitumor immunotherapy. Nanomedicine 7:1–10

    Article  PubMed  CAS  Google Scholar 

  • Pulendran B, Tang H, Manicassamy S (2010) Programming dendritic cells to induce TH2 and tolerogenic responses. Nat Immunol 11:647–655

    Article  PubMed  CAS  Google Scholar 

  • Radkevich-Brown O, Jacob J, Kershaw M, Wei W-Z (2009) Genetic regulation of the response to Her-2 DNA vaccination in human Her-2 Tg mice. Cancer Res 69:212–218

    Article  PubMed  CAS  Google Scholar 

  • Reed SG, Berthalet S, Coler RN, Friede M (2008) New horizons in adjuvants for vaccine development. Trends Immunol 30:23–32

    Article  PubMed  CAS  Google Scholar 

  • Rice J, Ottensmeier CH, Stevenson FK (2008) DNA vaccines: precision tools for activating effective immunity against cancer. Nat Rev Cancer 8:108–120

    Article  PubMed  CAS  Google Scholar 

  • Rice-Ficht AC, Arenas-Gamboa AM, Kahl-McDonagh MM, Ficht TA (2010) Polymeric particles in vaccine delivery. Curr Opin Microbiol 13:106–112

    Article  PubMed  CAS  Google Scholar 

  • Rieux AD, Fievez V, Garinot M, Schneider Y-J, Preat V (2006) Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release 116:1–27

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez LL, Gay CG (2011) Development of vaccines toward the global control and eradication of foot-and-mouth disease. Expert Rev Vaccines 10:377–387

    Article  PubMed  CAS  Google Scholar 

  • Roldão A, Mellado MCM, Castilho LR, Carrondo MJT, Alves PM (2010) Virus-like particles in vaccine development. Expert Rev Vaccines 9:1149–1176

    Article  PubMed  Google Scholar 

  • Roman F, Clément F, Dewe W, Walravens K, Maes C, Willekens J, De Boever F, Hanon E, Leroux-Roels G (2011) Effect on cellular and humoral immune responses of the AS03 adjuvant system in an A/H1N1/2009 influenza virus vaccine administered to adults during two randomized controlled trials. Clin Vaccine Immunol 18:835–843

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg SA, Yang JC, Restifo NP (2004) Cancer immunotherapy: moving beyond current vaccines. Nat Med 10:909–915

    Article  PubMed  CAS  Google Scholar 

  • Sallusto F, Geginat J, Lanzavecchia A (2004) Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol 22:745–763

    Article  PubMed  CAS  Google Scholar 

  • Sangha R, Butts C (2007) L-BLP25: a peptide vaccine strategy in non-small cell lung cancer. Clin Cancer Res 13:s4652–s4654

    Article  PubMed  CAS  Google Scholar 

  • Sangha R, North S (2007) L-BLP25: a MUC1-targeted peptide vaccine therapy in prostate cancer. Expert Opin Biol Ther 7:1723–1730

    Article  PubMed  CAS  Google Scholar 

  • Sangha R, Price J, Butts CA (2010) Adjuvant therapy in non-small cell lung cancer: current and future directions. Oncologist 15:862–872

    Article  PubMed  CAS  Google Scholar 

  • Schijns VE, Degen WG (2007) Vaccine immunopotentiators of the future. Clin Pharmacol Ther 82:750–755

    Article  PubMed  CAS  Google Scholar 

  • Schliehe C, Schliehe C, Thiry M, Tromsdorf UI, Hentschel J, Weller H, Groettrup M (2011) Microencapsulation of inorganic nanocrystals into PLGA microsphere vaccines enables their intracellular localization in dendritic cells by electron and fluorescence microscopy. J Control Release 151:278–285

    Article  PubMed  CAS  Google Scholar 

  • Schwendener RA, Ludewig B, Cerny A, Engler O (2010) Liposome-based vaccines. Methods Mol Biol 605:163–175

    Article  PubMed  CAS  Google Scholar 

  • Serre K, Giraudo L, Leserman L, Machy P (2003) Liposomes targeted to Fc receptors for antigen presentation by dendritic cells in vitro and in vivo. Methods Enzymol 373:100–118

    Article  PubMed  CAS  Google Scholar 

  • Sharma A, Sharma US (1997) Liposomes in drug delivery: progress and limitations. Int J Pharm 154:123–140

    Article  CAS  Google Scholar 

  • Sharma S, Srivastava MK, Harris-White M, Lee JM, Dubinett S (2011) MUC1 peptide vaccine mediated antitumor activity in non-small cell lung cancer. Expert Opin Biol Ther 11:987–990

    Article  PubMed  CAS  Google Scholar 

  • Sharp FA, Ruane D, Claass B, Creagh E, Harris J, Malyala P, Singh M, O’Hagan DT, Petrilli V, Tschopp J, O’Neill LA, Lavelle EC (2009) Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome. Proc Natl Acad Sci USA 106:870–875

    Article  PubMed  CAS  Google Scholar 

  • Shedlock DJ, Weiner DB (2000) DNA vaccination: antigen presentation and the induction of immunity. J Leukoc Biol 68:793–806

    PubMed  CAS  Google Scholar 

  • Shen L, Evel-Kabler K, Strube R, Chen SY (2004) Silencing of SOCS1 enhances antigen presentation by dendritic cells and antigen-specific anti-tumor immunity. Nat Biotech 22(12):1546–1553

    Article  CAS  Google Scholar 

  • Shen L, Evel K, Strube R, Chen S-Y (2005) Critical regulation of Ag presentation by SOCS1 in dendritic cells and implications for vaccine development. Proc Amer Assoc Cancer Res Immunology 7:Dendritic cell-based immunotherapy. Abstract# 4235

    Google Scholar 

  • Shortman K, Heath WR (2010) The CD8+ dendritic cell subset. Immunol Rev 234:18–31

    Article  PubMed  CAS  Google Scholar 

  • Shortman K, Liu Y-J (2002) Mouse and human dendritic cell subtypes. Nat Rev Immunol 2:151–161

    Article  PubMed  CAS  Google Scholar 

  • Shortman K, Naik SH (2007) Steady-state and inflammatory dendritic-cell development. Nat Rev Immunol 7:19–30

    Article  PubMed  CAS  Google Scholar 

  • Shrivastava S, Lole KS, Tripathy AS, Shaligram US, Arankalle VA (2009) Development of candidate combination vaccine for hepatitis E and hepatitis B: A liposome encapsulation approach. Vaccine 27:6582–6588

    Article  PubMed  CAS  Google Scholar 

  • Signori E, Iurescia S, Massi E, Fioretti D, Chiarella P, De Robertis M, Rinaldi M, Tonon G, Fazio VM (2010) DNA vaccination strategies for anti-tumour effective gene therapy protocols. Cancer Immunol Immunother 59:1583–1591

    Article  PubMed  CAS  Google Scholar 

  • Skene CD, Sutton P (2006) Saponin-adjuvanted particulate vaccines for clinical use. Methods 40:53–59

    Article  PubMed  CAS  Google Scholar 

  • Skene CD, Doidge C, Sutton P (2008) Evaluation of ISCOMATRIX and ISCOM vaccines for immunisation against Helicobacter pylori. Vaccine 26:3880–3884

    Article  PubMed  CAS  Google Scholar 

  • Skwarczynski M, Toth I (2011) Peptide-based subunit nanovaccines. Curr Drug Deliv 8:282–289

    PubMed  CAS  Google Scholar 

  • Song E, Lee S-K, Wang J, Ince N, Ouyang N, Min J, Chen J, Shankar P, Lieberman J (2003) RNA interference targeting Fas protects mice from fulminant hepatitis. Nat Med 9:347–351

    Article  PubMed  CAS  Google Scholar 

  • Song E, Zhu P, Lee S-K, Chowdhury D, Kussman S, Dykxhoorn DM, Feng Y, Palliser D, Weiner DB, Shankar P, Marasco WA, Lieberman J (2005) Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotech 23:709–717

    Article  CAS  Google Scholar 

  • Sorensen DR, Leirdal M, Sioud M (2003) Gene silencing by systemic delivery of synthetic siRNAs in adult mice. J Mol Biol 327:761–766

    Article  PubMed  CAS  Google Scholar 

  • Soutschek J, Akinc A, Bramlage B, Charisse K, Constien R, Donoghue M, Elbashir S, Geick A, Hadwiger P, Harborth J, John M, Kesavan V, Lavine G, Pandey RK, Racie T, Rajeev KG, Röhl I, Toudjarska I, Wang G, Wuschko S, Bumcrot D, Koteliansky V, Limmer S, Manoharan M, Vornlocher HP (2004) Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432:173–178

    Article  PubMed  CAS  Google Scholar 

  • Stagg J, Sharkey J, Pommey S, Pommey S, Young R, Takeda K, Yagita H, Johnstone RW, Smyth MJ (2008) Antibodies targeted to TRAIL receptor-2 and Erb-2 synergise and induce an antitumor response. Proc Nat Acad Sci 105:16254–16259

    Article  PubMed  CAS  Google Scholar 

  • Steers NJ, Peachman KK, McClain S, Alving CR, Rao M (2009) Liposome-encapsulated HIV-1 Gag p24 containing lipid A induces effector CD4+ T-cells, memory CD8+ T-cells, and pro-inflammatory cytokines. Vaccine 27:6939–6949

    Article  PubMed  CAS  Google Scholar 

  • Steinhagen F, Kinjo T, Bode C, Klinman DM (2011) TLR-based immune adjuvants. Vaccine 29:3341–3355

    Article  PubMed  CAS  Google Scholar 

  • Steinman RM (2008) Dendritic cells in vivo: a key target for a new vaccine science. Immunity 29:319–324

    Article  PubMed  CAS  Google Scholar 

  • Steinman RM, Banchereau J (2007) Taking dendritic cells into medicine. Nature 449:419–426

    Article  PubMed  CAS  Google Scholar 

  • Steinman RM, Hemmi H (2006) Dendritic cells: translating innate to adaptive immunity. Curr Top Microbiol Immunol 311:17–58

    Article  PubMed  CAS  Google Scholar 

  • Steinman RM, Idoyaga J (2010) Features of the dendritic cell lineage. Immunol Rev 234:5–17

    Article  PubMed  CAS  Google Scholar 

  • Stobiecka M, Hepel M (2011) Double-shell gold nanoparticle-based DNA-carriers with poly-L-lysine binding surface. Biomaterials 32:3312–21

    Article  PubMed  CAS  Google Scholar 

  • Suhrbier A (2002) Polytope vaccines for the codelivery of multiple CD8 T-cell epitopes. Expert Rev Vaccines 1:207–213

    Article  PubMed  CAS  Google Scholar 

  • Sun J-Y, Krouse RS, Forman SJ, Senitzer D, Sniecinski I, Chatterjee S, Wong KK Jr (2002) Immunogenicity of a p210BCR-ABL fusion domain candidate DNA vaccine targeted to dendritic cells by a recombinant adeno-associated virus vector in vitro. Cancer Res 62:3175–3183

    PubMed  CAS  Google Scholar 

  • Tacken PJ, Torensma R, Figdor CG (2006) Targeting antigens to dendritic cells in vivo. Immunobiology 211:599–608

    Article  PubMed  CAS  Google Scholar 

  • Tacken PJ, de Vries IJM, Torensma R, Fidgor CG (2007) Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nat Rev Immunol 7:790–802

    Article  PubMed  CAS  Google Scholar 

  • Taneichi M, Ishida H, Kajino K, Ogasawara K, Tanaka Y, Kasai M, Mori M, Nishidia M, Yamamura H, Mizuguchi J, Uchida T (2006) Antigen chemically coupled to the surface of liposomes are cross-presented to CD8+ T cells and induce potent antitumor immunity. J Immunol 177:2324–2330

    PubMed  CAS  Google Scholar 

  • Tang C-K, Apostolopoulos V (2008) Strategies used for MUC1 immunotherapy: preclinical studies. Expert Rev Vaccines 7:951–962

    Article  PubMed  CAS  Google Scholar 

  • Tang CK, Sheng K-C, Pouniotis D, Esparon S, Son H-Y, Kim C-W, Pietersz GA, Apostolopoulos V (2008) Oxidised and reduced mannan mediated MUC1 DNA immunization induce effective anti-tumor responses. Vaccine 26:3827–3834

    Article  PubMed  CAS  Google Scholar 

  • Tefit JN, Serra V (2011) Outlining novel cellular adjuvant products for therapeutic vaccines against cancer. Expert Rev Vaccines 10:1207–1220

    Article  PubMed  CAS  Google Scholar 

  • Thery C, Zitvogel L, Amigorena S (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2:569–579

    PubMed  CAS  Google Scholar 

  • Thery C, Ostrowski M, Segura E (2009) Membrane vesicles as conveyers of immune responses. Nat Rev Immunol 9:581–593

    Article  PubMed  CAS  Google Scholar 

  • Thomann JS, Heurtault B, Weidner S, Braye M, Beyrath J, Fournel S, Schuber F, Frisch B (2011) Antitumor activity of liposomal ErbB2/HER2 epitope peptide-based vaccine constructs incorporating TLR agonists and mannose receptor targeting. Biomaterials 32:4574–4583

    Article  PubMed  CAS  Google Scholar 

  • Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4:145–160

    Article  PubMed  CAS  Google Scholar 

  • Torchilin VP (2008) Antibody-modified liposomes for cancer chemotherapy. Expert Opin Drug Deliv 5:1003–1025

    Article  PubMed  CAS  Google Scholar 

  • Tritto E, Mosca F, De Gregorio E (2009) Mechanism of action of licensed vaccine adjuvants. Vaccine 27:3331–3334

    Article  PubMed  CAS  Google Scholar 

  • U’Ren L, Kedl R, Dow S (2006) Vaccination with liposome-DNA complexes elicits enhanced anti-tumor immunity. Cancer Gene Ther 13:1033–1044

    Article  PubMed  CAS  Google Scholar 

  • Ulrich AS (2002) Biophysical aspects of using liposomes as delivery vehicles. Biosci Rep 22:129–150

    Article  PubMed  CAS  Google Scholar 

  • van Broekhoven CL, Altin JG (2002) A novel approach for modifying tumor cell-derived plasma membrane vesicles to contain encapsulated IL-2 and engrafted costimulatory molecules for use in tumor immunotherapy. Int J Cancer 98:63–72

    Article  PubMed  CAS  Google Scholar 

  • van Broekhoven CL, Altin JG (2005) The novel chelator lipid 3(nitrilotriacetic acid)-ditetradecylamine (NTA(3)-DTDA) promotes stable binding of His-tagged proteins to liposomal membranes: potent anti-tumor responses induced by simultaneously targeting antigen, cytokine and costimulatory signals to T cells. Biochim Biophys Acta 1716:104–116

    Article  PubMed  CAS  Google Scholar 

  • van Broekhoven CL, Parish CR, Demangel C, Britton WJ, Altin JG (2004) Targeting dendritic cells with antigen-containing liposomes: a highly effective procedure for inducing anti-tumour immunity and for tumour immunotherapy. Cancer Res 64:4357–4365

    Article  PubMed  Google Scholar 

  • van der Aar AM, Sylva-Steenland RM, Bos JD, Kapsenberg ML, de Jong EC, Teuissen MB (2007) Loss of TLR2, TLR4 and TLR5 on Langerhan cells abolishes bacterial recognition. J Immunol 178:1986–1990

    PubMed  Google Scholar 

  • Vangasseri DP, Cui Z, Chen W, Hokey DA, Falo LD, Huang L (2006) Immunostimulation of dendritic cells by cationic liposomes. Mol Membr Biol 23:385–395

    Article  PubMed  CAS  Google Scholar 

  • Villadangos JA, Schnorrer P (2007) Intrinsic and cooperative antigen-presenting functions of dendritic-cell subsets in vivo. Nat Rev Immunol 7:543–555

    Article  PubMed  CAS  Google Scholar 

  • Vyas SP, Goyal AK, Khatri K (2010) Mannosylated liposomes for targeted vaccines delivery. Methods Mol Biol 605:177–188

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Ge Q, Ting D, Nguyen D, Shen HR, Chen J, Eisen HN, Heller J, Langer R, Putnam D (2004a) Molecularly engineered poly(ortho ester) microspheres for enhanced delivery of DNA vaccines. Nat Mater 3:190–196

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Troilo P, Wang X, Griffiths TG, Pacchione SJ, Barnum AB, Harper LB, Pauley CJ, Niu Z, Denisova L, Follmer TT, Rizzuto G, Ciliberto G, Fattori E, Monica NL, Manam S, Ledwith BJ (2004b) Detection of integration of plasmid DNA into host genomic DNA following intramuscular injection and electroporation. Gene Ther 11:711–721

    Article  PubMed  CAS  Google Scholar 

  • Wen ZS, Xu YL, Zou XT, Xu ZR (2011) Chitosan nanoparticles act as an adjuvant to promote both Th1 and Th2 immune responses induced by ovalbumin in mice. Mar Drugs 9:1038–1055

    Article  PubMed  CAS  Google Scholar 

  • White KL, Rades T, Furneaux RH, Tyler PC, Hook S (2006a) Mannosylated liposomes as antigen delivery vehicles for targeting to dendritic cells. J Pharm Pharmacol 58:729–737

    Article  PubMed  CAS  Google Scholar 

  • White K, Rades T, Kearns P, Toth I, Hook S (2006b) Immunogenicity of liposomes containing lipid core peptides and adjuvant Quil a. Pharm Res 23:1473–1481

    Article  PubMed  CAS  Google Scholar 

  • Wichmann HE (2007) Diesel exhaust particles. Inhal Toxicol 19:241–244

    Article  PubMed  CAS  Google Scholar 

  • Wong K, Valdez PA, Tan C, Yeh S, Hongo JA, Ouyang W (2010) Phosphatidylserine receptor Tim-4 is essential for the maintenance of the homeostatic state of resident peritoneal macrophages. Proc Natl Acad Sci USA 107:8712–8717

    Article  PubMed  CAS  Google Scholar 

  • Xiang SD, Scalzo-Inguanti K, Minigo G, Park A, Hardy CL, Plebanski M (2008) Promising particle-based vaccines in cancer therapy. Expert Rev Vaccines 7:1103–1119

    Article  PubMed  Google Scholar 

  • Xiang SD, Selomulya C, Ho J, Apostolopoulos V, Plebanski M (2010) Delivery of DNA vaccines: an overview on the use of biodegradable polymeric and magnetic nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:205–218

    Article  PubMed  CAS  Google Scholar 

  • Yanagisawa R, Takano H, Inoue KI, Koike E, Sadakane K, Ichinose T (2010) Size effects of polystyrene nanoparticles on atopic dermatitis-like skin lesions in NC/NGA mice. Int J Immunopathol Pharmacol 23:131–141

    PubMed  CAS  Google Scholar 

  • Yang L, Carbone DP (2004) Tumor host immune interactions and dendritic cell dysfunction. Adv Cancer Res 92:13–27

    Article  PubMed  CAS  Google Scholar 

  • Yang P, Duan Y, Wang C, Xing L, Gao X, Tang C, Luo D, Zhao Z, Jia W, Peng D, Liu X, Wang X (2011) Immunogenicity and protective efficacy of a live attenuated vaccine against the 2009 pandemic A H1N1 in mice and ferrets. Vaccine 29:698–705

    Article  PubMed  CAS  Google Scholar 

  • You Z, Huang X, Hester J, Toh HC, Chen SY (2001) Targeting dendritic cells to enhance DNA vaccine potency. Cancer Res 61:3704–3711

    PubMed  CAS  Google Scholar 

  • Yukihiko A, Hiroyuki S, Seishi T (1995) Interferon-γ inductive effect of liposomes as an immunoadjuvant. Vaccine 13:1809–1814

    Article  Google Scholar 

  • Zaharoff DA, Rogers CJ, Hance KW, Schlom J, Greiner JW (2007) Chitosan solution enhances both humoral and cell-mediated immune responses to subcutaneous vaccination. Vaccine 25:2085–2094

    Article  PubMed  CAS  Google Scholar 

  • Zaharoff DA, Hoffman BS, Hooper HB, Benjamin CJ Jr, Khurana KK, Hance KW, Rogers CJ, Pinto PA, Schlom J, Greiner JW (2009) Intra vesical immunotherapy of superficial bladder cancer with chitosan/interleukin-12. Cancer Res 69:6192–6199

    Article  PubMed  CAS  Google Scholar 

  • Zaks K, Jordan M, Guth A, Sellins K, Kedl R, Izzo A, Bosio C, Dow S (2006) Efficient immunization and cross-priming by vaccine adjuvants containing TLR3 or TLR9 agonists complexed to cationic liposomes. J Immunol 176:7335–7345

    PubMed  CAS  Google Scholar 

  • Zelenay S, Elias F, Flo J (2003) Immunostimulatory effects of plasmid DNA and synthetic oligodeoxynucleotides. Eur J Immunol 33:1382–1392

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Boado RJ, Pardridge WM (2003) Marked enhancement in gene expression by targeting the human insulin receptor. J Gene Med 5:157–163

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Zhang H, Shi H, Yu X, Kong W, Li W (2008) Induction of immune response and anti-tumor activities in mice with DNA vaccine encoding human mucin 1 variable-number tandem repeats. Hum Immunol 69:250–258

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Tongchusak S, Mizukami Y, Kang YJ, Ioji T, Touma M, Reinhold B, Keskin DB, Reinherz EL, Sasada T (2011) Induction of anti-tumor cytotoxic T cell responses through PLGA-nanoparticle mediated antigen delivery. Biomaterials 32:3666–3678

    Article  PubMed  CAS  Google Scholar 

  • Zheng X, Vladau C, Zhang X, Suzuki M, Ichim TE, Zhang ZX, Li M, Carrier E, Garcia B, Jevnikar AM, Min WP (2009) A novel in vivo siRNA delivery system specifically targeting dendritic cells and silencing CD40 genes for immunomodulation. Blood 113:2646–2654

    Article  PubMed  CAS  Google Scholar 

  • Zhou H, Zhang D, Wang Y, Dai M, Zhang L, Liu W, Liu D, Tan H, Huang Z (2006) Induction of CML28-specific cytotoxic T cell responses using co-transfected dendritic cells with CML28 DNA vaccine and SOCS1 small interfering RNA expression vector. Biochem Biophys Res Commun 347:200–207

    Article  PubMed  CAS  Google Scholar 

  • Zou W (2006) Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 6:295–307

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Project Grants from the NHMRC of Australia (Number 316949) and from the ACT Cancer Society (App1028722). The author is grateful for the input of collaborators including Prof. Christopher R. Parish (JCSMR, ANU) and research students now Drs Thomas P. Herringson and Abdus Faham, for their contribution to the original research that led to the author’s work described in this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph G. Altin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Altin, J.G. (2012). Liposomes and Other Nanoparticles as Cancer Vaccines and Immunotherapeutics. In: Baschieri, S. (eds) Innovation in Vaccinology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4543-8_7

Download citation

Publish with us

Policies and ethics