Skip to main content

Designing Non-viral Targeted Integrating Vectors for Genome Engineering in Vertebrates

  • Chapter
  • First Online:
Site-directed insertion of transgenes

Part of the book series: Topics in Current Genetics ((TCG,volume 23))

  • 1653 Accesses

Abstract

Genome engineering for biomedicine and biotechnology requires the integration of transgenes at specific sites in safe genomic environments. These specific integrations are needed to avoid position effects, insertional mutagenesis and chromosome abnormalities. Several efforts during the last decade led to the development of nonviral approaches based on DNA-modifying enzymes by exploiting the cellular mechanisms of cut-and-paste transposition and homologous recombination (HR). These methods include the use of zinc finger nucleases, meganucleases, site-specific recombinases such as ΦC31 integrase, Cre and Flp recombinases and transposase-based systems to achieve the integration of foreign DNA at a desired genomic position. Moreover, many teams are now investigating strategies to alter the site-specificity of these enzymes and precisely target safe insertion sites.

This review attempts to provide a general overview on recent advances in designing nonviral site-directed integrating vectors, required for both gene therapy and animal transgenesis. We discuss the advantages of such engineered vectors, the strategies employed to improve their targeting efficiency and consider their limitations in terms of safety and activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DSB:

Double strand break

ZF:

Zinc finger

gDNA:

Genomic DNA

HR:

Homologous recombination

ITR:

Inverted terminal repeat

References

  • Allen BG, Weeks DL (2005) Transgenic Xenopus laevis embryos can be generated using phiC31 integrase. Nat Methods 2:975–979

    CAS  Google Scholar 

  • Aneja MK, Imker R, Rudolph C (2007) Phage phiC31 integrase-mediated genomic integration and long-term gene expression in the lung after nonviral gene delivery. J Gene Med 9:967–975

    CAS  Google Scholar 

  • Arnould S, Chames P, Perez C, Lacroix E, Duclert A, Epinat JC, Stricher F, Petit AS, Patin A, Guillier S, Rolland S, Prieto J, Blanco FJ, Bravo J, Montoya G, Serrano L, Duchateau P, Paques F (2006) Engineering of large numbers of highly specific homing endonucleases that induce recombination on novel DNA targets. J Mol Biol 355:443–458

    CAS  Google Scholar 

  • Arnould S, Perez C, Cabaniols JP, Smith J, Gouble A, Grizot S, Epinat JC, Duclert A, Duchateau P, Paques F (2007) Engineered I-CreI derivatives cleaving sequences from the human XPC gene can induce highly efficient gene correction in mammalian cells. J Mol Biol 371:49–65

    CAS  Google Scholar 

  • Arnould S, Delenda C, Grizot S, Desseaux C, Paques F, Silva GH, Smith J (2011) The I-CreI meganuclease and its engineered derivatives: applications from cell modification to gene therapy. Protein Eng Des Sel 24:27–31

    CAS  Google Scholar 

  • Aronovich EL, McIvor RS, Hackett PB (2011) The Sleeping Beauty transposon system: a non-viral vector for gene therapy. Hum Mol Genet 20:R14–R20

    CAS  Google Scholar 

  • Ashworth J, Havranek JJ, Duarte CM, Sussman D, Monnat RJ Jr, Stoddard BL, Baker D (2006) Computational redesign of endonuclease DNA binding and cleavage specificity. Nature 441:656–659

    CAS  Google Scholar 

  • Bertoni C, Jarrahian S, Wheeler TM, Li Y, Olivares EC, Calos MP, Rando TA (2006) Enhancement of plasmid-mediated gene therapy for muscular dystrophy by directed plasmid integration. Proc Natl Acad Sci USA 103:419–424

    CAS  Google Scholar 

  • Birling MC, Gofflot F, Warot X (2009) Site-specific recombinases for manipulation of the mouse genome. Methods Mol Biol 561:245–263

    CAS  Google Scholar 

  • Boch J (2011) TALEs of genome targeting. Nat Biotechnol 29:135–136

    CAS  Google Scholar 

  • Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512

    CAS  Google Scholar 

  • Bolusani S, Ma CH, Paek A, Konieczka JH, Jayaram M, Voziyanov Y (2006) Evolution of variants of yeast site-specific recombinase Flp that utilize native genomic sequences as recombination target sites. Nucleic Acids Res 34:5259–5269

    CAS  Google Scholar 

  • Bonas U, Stall R, Staskawic B (1989) Genetic and structural characterization of the avirulence gene avrBs3 from Xanthomonas campestris pv. vesicatoria. Mol Gen Genet 218:127–136

    CAS  Google Scholar 

  • Brown WR, Lee NC, Xu Z, Smith MC (2011) Serine recombinases as tools for genome engineering. Methods 53:372–379

    CAS  Google Scholar 

  • Buchholz F, Stewart AF (2001) Alteration of Cre recombinase site specificity by substrate-linked protein evolution. Nat Biotechnol 19:1047–1052

    CAS  Google Scholar 

  • Buchholz F, Angrand PO, Stewart AF (1998) Improved properties of FLP recombinase evolved by cycling mutagenesis. Nat Biotechnol 16:657–662

    CAS  Google Scholar 

  • Cabaniols JP, Ouvry C, Lamamy V, Fery I, Craplet ML, Moulharat N, Guenin SP, Bedut S, Nosjean O, Ferry G, Devavry S, Jacqmarcq C, Lebuhotel C, Mathis L, Delenda C, Boutin JA, Duchateau P, Coge F, Paques F (2010) Meganuclease-driven targeted integration in CHO-K1 cells for the fast generation of HTS-compatible cell-based assays. J Biomol Screen 15:956–967

    CAS  Google Scholar 

  • Calos MP (2006) The phiC31 integrase system for gene therapy. Curr Gene Ther 6:633–645

    CAS  Google Scholar 

  • Carninci P, Yasuda J, Hayashizaki Y (2008) Multifaceted mammalian transcriptome. Curr Opin Cell Biol 20:274–280

    CAS  Google Scholar 

  • Cary LC, Goebel M, Corsaro BG, Wang HG, Rosen E, Fraser MJ (1989) Transposon mutagenesis of baculoviruses: analysis of Trichoplusia ni transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses. Virology 172:156–169

    CAS  Google Scholar 

  • Casco-Robles MM, Yamada S, Miura T, Chiba C (2010) Simple and efficient transgenesis with I-SceI meganuclease in the newt, Cynops pyrrhogaster. Dev Dyn 239:3275–3284

    CAS  Google Scholar 

  • Chalberg TW, Genise HL, Vollrath D, Calos MP (2005) phiC31 integrase confers genomic integration and long-term transgene expression in rat retina. Invest Ophthalmol Vis Sci 46:2140–2146

    Google Scholar 

  • Chalberg TW, Portlock JL, Olivares EC, Thyagarajan B, Kirby PJ, Hillman RT, Hoelters J, Calos MP (2006) Integration specificity of phage phiC31 integrase in the human genome. J Mol Biol 357:28–48

    CAS  Google Scholar 

  • Chevalier BS, Kortemme T, Chadsey MS, Baker D, Monnat RJ, Stoddard BL (2002) Design, activity, and structure of a highly specific artificial endonuclease. Mol Cell 10:895–905

    CAS  Google Scholar 

  • Choulika A, Perrin A, Dujon B, Nicolas JF (1995) Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae. Mol Cell Biol 15:1968–1973

    CAS  Google Scholar 

  • Clark KJ, Carlson DF, Foster LK, Kong BW, Foster DN, Fahrenkrug SC (2007) Enzymatic engineering of the porcine genome with transposons and recombinases. BMC Biotechnol 7:42

    Google Scholar 

  • Cohen-Tannoudji M, Robine S, Choulika A, Pinto D, EL Marjou F, Babinet C, Louvard D, Jaisser F (1998) I-SceI-induced gene replacement at a natural locus in embryonic stem cells. Mol Cell Biol 18:1444–1448

    CAS  Google Scholar 

  • Ding S, Wu X, Li G, Han M, Zhuang Y, Xu T (2005) Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 122:473–483

    CAS  Google Scholar 

  • Dutheil N, Shi F, Dupressoir T, Linden RM (2000) Adeno-associated virus site-specifically integrates into a muscle-specific DNA region. Proc Natl Acad Sci USA 97:4862–4866

    CAS  Google Scholar 

  • Ehrhardt A, Engler JA, Xu H, Cherry AM, Kay MA (2006) Molecular analysis of chromosomal rearrangements in mammalian cells after phiC31-mediated integration. Hum Gene Ther 17:1077–1094

    CAS  Google Scholar 

  • ENCODE Project Consortium (2004) The ENCODE (ENCyclopedia Of DNA Elements) project. Science 306:636–640

    Google Scholar 

  • Epinat JC, Arnould S, Chames P, Rochaix P, Desfontaines D, Puzin C, Patin A, Zanghellini A, Paques F, Lacroix E (2003) A novel engineered meganuclease induces homologous recombination in yeast and mammalian cells. Nucleic Acids Res 31:2952–2962

    CAS  Google Scholar 

  • Feng YQ, Seibler J, Alami R, Eisen A, Westerman KA, Leboulch P, Fiering S, Bouhassira EE (1999) Site-specific chromosomal integration in mammalian cells: highly efficient CRE recombinase-mediated cassette exchange. J Mol Biol 292:779–785

    CAS  Google Scholar 

  • Feng X, Bednarz AL, Colloms SD (2010) Precise targeted integration by a chimaeric transposase zinc-finger fusion protein. Nucleic Acids Res 38:1204–1216

    CAS  Google Scholar 

  • Fu Q, Jia S, Sun Z, Tian F, Du J, Zhou Y, Wang Y, Wang X, Zhan L (2009) PhiC31 integrase and liver-specific regulatory elements confer high-level, long-term expression of firefly luciferase in mouse liver. Biotechnol Lett 31:1151–1157

    CAS  Google Scholar 

  • Gouble A, Smith J, Bruneau S, Perez C, Guyot V, Cabaniols JP, Leduc S, Fiette L, Ave P, Micheau B, Duchateau P, Paques F (2006) Efficient in toto targeted recombination in mouse liver by meganuclease-induced double-strand break. J Gene Med 8:616–622

    CAS  Google Scholar 

  • Grabher C, Wittbrodt J (2008) Recent advances in meganuclease-and transposon-mediated transgenesis of medaka and zebrafish. Methods Mol Biol 461:521–539

    CAS  Google Scholar 

  • Grishin A, Fonfara I, Alexeevski A, Spirin S, Zanegina O, Karyagina A, Alexeyevsky D, Wende W (2010) Identification of conserved features of LAGLIDADG homing endonucleases. J Bioinform Comput Biol 8:453–469

    CAS  Google Scholar 

  • Grizot S, Smith J, Daboussi F, Prieto J, Redondo P, Merino N, Villate M, Thomas S, Lemaire L, Montoya G, Blanco FJ, Paques F, Duchateau P (2009) Efficient targeting of a SCID gene by an engineered single-chain homing endonuclease. Nucleic Acids Res, 37:5405–5419

    Google Scholar 

  • Grizot S, Epinat JC, Thomas S, Duclert A, Rolland S, Paques F, Duchateau P (2010) Generation of redesigned homing endonucleases comprising DNA-binding domains derived from two different scaffolds. Nucleic Acids Res 38:2006–2018

    CAS  Google Scholar 

  • Grosse S, Huot N, Mahiet C, Arnould S, Barradeau S, Clerre DL, Chion-Sotinel I, Jacqmarcq C, Chapellier B, Ergani A, Desseaux C, Cedrone F, Conseiller E, Paques F, Labetoulle M, Smith J (2011) Meganuclease-mediated Inhibition of HSV1 Infection in Cultured Cells. Mol Ther 19:694–702

    CAS  Google Scholar 

  • Hacein-Bey-abina S, le Deist F, Carlier F, Bouneaud C, Hue C, de Villartay JP, Thrasher AJ, Wulffraat N, Sorensen R, Dupuis-Girod S, Fischer A, Davies EG, Kuis W, Leiva L, Cavazzana-Calvo M (2002) Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N Engl J Med 346:1185–1193

    CAS  Google Scholar 

  • Handel EM, Cathomen T (2011) Zinc-finger nuclease based genome surgery: it”s all about specificity. Curr Gene Ther 11:28–37

    Google Scholar 

  • Held PK, Olivares EC, Aguilar CP, Finegold M, Calos MP, Grompe M (2005) In vivo correction of murine hereditary tyrosinemia type I by phiC31 integrase-mediated gene delivery. Mol Ther 11:399–408

    CAS  Google Scholar 

  • Ito M, Yamanouchi K, Naito K, Calos MP, Tojo H (2011) Site-specific integration of transgene targeting an endogenous lox-like site in early mouse embryos. J Appl Genet 52:89–94

    CAS  Google Scholar 

  • Ivics Z, Izsvak Z (2010) The expanding universe of transposon technologies for gene and cell engineering. Mob DNA 1:25

    CAS  Google Scholar 

  • Ivics Z, Hackett PB, Plasterk RH, Izsvak Z (1997) Molecular reconstruction of sleeping beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell 91:501–510

    CAS  Google Scholar 

  • Ivics Z, Katzer A, Stuwe EE, Fiedler D, Knespel S, Izsvak Z (2007) Targeted sleeping beauty transposition in human cells. Mol Ther 15:1137–1144

    CAS  Google Scholar 

  • Ivics Z, Li MA, Mates L, Boeke JD, Nagy A, Bradley A, Izsvak Z (2009) Transposon-mediated genome manipulation in vertebrates. Nat Methods 6:415–422

    CAS  Google Scholar 

  • Jacobson JW, Medhora MM, Hartl DL (1986) Molecular structure of a somatically unstable transposable element in Drosophila. Proc Natl Acad Sci U S A 83:8684–8688

    CAS  Google Scholar 

  • Joshi R, Ho KK, Tenney K, Chen JH, Golden BL, Gimble FS (2011) Evolution of I-SceI homing endonucleases with increased DNA recognition site specificity. J Mol Biol 405:185–200

    CAS  Google Scholar 

  • Kaminski JM, Huber MR, Summers JB, Ward MB (2002) Design of a nonviral vector for site-selective, efficient integration into the human genome. FASEB J 16:1242–1247

    CAS  Google Scholar 

  • Kapitonov VV, Jurka J (2004) Harbinger transposons and an ancient HARBI1 gene derived from a transposase. DNA Cell Biol 23:311–324

    CAS  Google Scholar 

  • Kawakami K, Koga A, Hori H, Shima A (1998) Excision of the tol2 transposable element of the medaka fish, Oryzias latipes, in zebrafish, Danio rerio. Gene 225:17–22

    CAS  Google Scholar 

  • Kawakami K (2007) Tol2: a versatile gene transfer vector in vertebrates. Genome Biol 8(Suppl 1):S7

    Google Scholar 

  • Keravala A, Portlock JL, Nash JA, Vitrant DG, Robbins PD, Calos MP (2006) PhiC31 integrase mediates integration in cultured synovial cells and enhances gene expression in rabbit joints. J Gene Med 8:1008–1017

    CAS  Google Scholar 

  • Keravala A, Lee S, Thyagarajan B, Olivares EC, Gabrovsky VE, Woodard LE, Calos MP (2009) Mutational derivatives of PhiC31 integrase with increased efficiency and specificity. Mol Ther 17:112–120

    CAS  Google Scholar 

  • Koga A, Shimada A, Kuroki T, Hori H, Kusumi J, Kyono-Hamaguchi Y, Hamaguchi S (2007) The Tol1 transposable element of the medaka fish moves in human and mouse cells. J Hum Genet 52:628–635

    CAS  Google Scholar 

  • Koga A, Cheah FS, Hamaguchi S, Yeo GH, Chong SS (2008) Germline transgenesis of zebrafish using the medaka Tol1 transposon system. Dev Dyn 237:2466–2474

    CAS  Google Scholar 

  • Koga A, Shimada A, Kuroki T, Hori H, Kusumi J, Kyono-Hamaguchi Y, Hamaguchi S (2007) The Tol1 transposable element of the medaka fish moves in human and mouse cells. J Hum Genet 52:628–635

    CAS  Google Scholar 

  • Koga A, Cheah FS, Hamaguchi S, Yeo GH, Chong SS (2008) Germline transgenesis of zebrafish using the medaka Tol1 transposon system. Dev Dyn 237:2466–2474

    CAS  Google Scholar 

  • Kudriavtseva EA, Yun Yang L, Voeikova TA, Lomovskaia ND (1994) Use of a plasmid with integrative function of phage phiC31 for transfer of cloned genes into Streptomyces strains. Genetika 30:886–897

    CAS  Google Scholar 

  • Lauth M, Moerl K, Barski JJ, Meyer M (2000) Characterization of Cre-mediated cassette exchange after plasmid microinjection in fertilized mouse oocytes. Genesis 27:153–158

    CAS  Google Scholar 

  • Liesner R, Zhang W, Noske N, Ehrhardt A (2010) Critical amino acid residues within the phiC31 integrase DNA-binding domain affect recombination activities in mammalian cells. Hum Gene Ther 21:1104–1118

    CAS  Google Scholar 

  • Lim JK, Glass WG, McDermott DH, Murphy PM (2006) CCR5: no longer a ““good for nothing”“ gene–chemokine control of West Nile virus infection. Trends Immunol 27:308–312

    CAS  Google Scholar 

  • Lister JA (2010) Transgene excision in zebrafish using the phiC31 integrase. Genesis 48:137–143

    CAS  Google Scholar 

  • Liu X, Liu M, Xue Z, Pan Q, Wu L, Long Z, Xia K, Liang D, Xia J (2007) Non-viral ex vivo transduction of human hepatocyte cells to express factor VIII using a human ribosomal DNA-targeting vector. J Thromb Haemost 5:347–351

    CAS  Google Scholar 

  • Liu J, Skjorringe T, Gjetting T, Jensen TG (2009) PhiC31 integrase induces a DNA damage response and chromosomal rearrangements in human adult fibroblasts. BMC Biotechnol 9:31

    Google Scholar 

  • Ma QW, Sheng HQ, Yan JB, Cheng S, Huang Y, Chen-Tsai Y, Ren ZR, Huang SZ, Zeng YT (2006) Identification of pseudo attP sites for phage phiC31 integrase in bovine genome. Biochem Biophys Res Commun 345:984–988

    CAS  Google Scholar 

  • Maragathavally KJ, Kaminski JM, Coates CJ (2006) Chimeric Mos1 and piggyBac transposases result in site-directed integration. FASEB J 20:1880–1882

    CAS  Google Scholar 

  • Maucksch C, Aneja MK, Hennen E, Bohla A, Hoffmann F, Elfinger M, Rosenecker J, Rudolph C (2008) Cell type differences in activity of the Streptomyces bacteriophage phiC31 integrase. Nucleic Acids Res 36:5462–5471

    CAS  Google Scholar 

  • Meir YJ, Weirauch MT, Yang HS, Chung PC, Yu RK, Wu SC (2011) Genome-wide target profiling of piggyBac and Tol2 in HEK 293: pros and cons for gene discovery and gene therapy. BMC Biotechnol 11:28

    CAS  Google Scholar 

  • Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ, Dulay GP, Hua KL, Ankoudinova I, Cost GJ, Urnov FD, Zhang HS, Holmes MC, Zhang L, Gregory PD, Rebar EJ (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29:143–148

    CAS  Google Scholar 

  • Miskey C, Izsvak Z, Plasterk RH, Ivics Z (2003) The frog prince: a reconstructed transposon from Rana pipiens with high transpositional activity in vertebrate cells. Nucleic Acids Res 31:6873–6881

    CAS  Google Scholar 

  • Miskey C, Papp B, Mates L, Sinzelle L, Keller H, Izsvak Z, Ivics Z (2007) The ancient mariner sails again: transposition of the human Hsmar1 element by a reconstructed transposase and activities of the SETMAR protein on transposon ends. Mol Cell Biol 27:4589–4600

    CAS  Google Scholar 

  • Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326:1501

    CAS  Google Scholar 

  • Munoz IG, Prieto J, Subramanian S, Coloma J, Redondo P, Villate M, Merino N, Marenchino M, D’Abramo M, Gervasio FL, Grizot S, Daboussi F, Smith J, Chion-Sotinel I, Paques F, Duchateau P, Alibes A, Stricher F, Serrano L, Blanco FJ, Montoya G (2011) Molecular basis of engineered meganuclease targeting of the endogenous human RAG1 locus. Nucleic Acids Res 39:729–743

    CAS  Google Scholar 

  • Nishiumi F, Sone T, Kishine H, Thyagarajan B, Kogure T, Miyawaki A, Chesnut JD, Imamoto F (2009) Simultaneous single cell stable expression of 2–4 cDNAs in HeLaS3 using psiC31 integrase system. Cell Struct Funct 34:47–59

    CAS  Google Scholar 

  • Ogino H, McConnell WB, Grainger RM (2006) High-throughput transgenesis in Xenopus using I-SceI meganuclease. Nat Protoc 1:1703–1710

    CAS  Google Scholar 

  • Olivares EC, Hollis RP, Chalberg TW, Meuse L, Kay MA, Calos MP (2002) Site-specific genomic integration produces therapeutic Factor IX levels in mice. Nat Biotechnol 20:1124–1128

    CAS  Google Scholar 

  • Ortiz-Urda S, Thyagarajan B, Keene DR, Lin Q, Fang M, Calos MP, Khavari PA (2002) Stable nonviral genetic correction of inherited human skin disease. Nat Med 8:1166–1170

    CAS  Google Scholar 

  • Ortiz-Urda S, Thyagarajan B, Keene DR, Lin Q, Calos MP, Khavari PA (2003) PhiC31 integrase-mediated nonviral genetic correction of junctional epidermolysis bullosa. Hum Gene Ther 14:923–928

    CAS  Google Scholar 

  • Ou HL, Huang Y, Qu LJ, Xu M, Yan JB, Ren ZR, Huang SZ, Zeng YT (2009) A phiC31 integrase-mediated integration hotspot in favor of transgene expression exists in the bovine genome. FEBS J 276:155–163

    CAS  Google Scholar 

  • Ovcharenko I, Loots GG, Nobrega MA, Hardison RC, Miller W, Stubbs L (2005) Evolution and functional classification of vertebrate gene deserts. Genome Res 15:137–145

    CAS  Google Scholar 

  • Papapetrou EP, Lee G, Malani N, Setty M, Riviere I, Tirunagari LM, Kadota K, Roth SL, Giardina P, Viale A, Leslie C, Bushman FD, Studer L, Sadelain M (2011) Genomic safe harbors permit high beta-globin transgene expression in thalassemia induced pluripotent stem cells. Nat Biotechnol 29:73–78

    CAS  Google Scholar 

  • Pipiras E, Coquelle A, Bieth A, Debatisse M (1998) Interstitial deletions and intrachromosomal amplification initiated from a double-strand break targeted to a mammalian chromosome. EMBO J 17:325–333

    CAS  Google Scholar 

  • Plasterk RH, Izsvak Z, Ivics Z (1999) Resident aliens: the Tc1/mariner superfamily of transposable elements. Trends Genet 15:326–332

    CAS  Google Scholar 

  • Portlock JL, Keravala A, Bertoni C, Lee S, Rando TA, Calos MP (2006) Long-term increase in mVEGF164 in mouse hindlimb muscle mediated by phage phiC31 integrase after nonviral DNA delivery. Hum Gene Ther 17:871–876

    CAS  Google Scholar 

  • Puttini S, Ouvrard-Pascaud A, Palais G, Beggah AT, Gascard P, Cohen-Tannoudji M, Babinet C, Blot-Chabaud M, Jaisser F (2005) Development of a targeted transgenesis strategy in highly differentiated cells: a powerful tool for functional genomic analysis. J Biotechnol 116:145–151

    CAS  Google Scholar 

  • Quenneville SP, Chapdelaine P, Rousseau J, Tremblay JP (2007) Dystrophin expression in host muscle following transplantation of muscle precursor cells modified with the phiC31 integrase. Gene Ther 14:514–522

    CAS  Google Scholar 

  • Rankin SA, Hasebe T, Zorn AM, Buchholz DR (2009) Improved cre reporter transgenic Xenopus. Dev Dyn 238:2401–2408

    Google Scholar 

  • Raymond CS, Soriano P (2007) High-efficiency FLP and PhiC31 site-specific recombination in mammalian cells. PLoS One 2:e162

    Google Scholar 

  • Remy S, Tesson L, Menoret S, Usal C, Scharenberg AM, Anegon I (2010) Zinc-finger nucleases: a powerful tool for genetic engineering of animals. Transgenic Res 19:363–371

    CAS  Google Scholar 

  • Santoro SW, Schultz PG (2003) Directed evolution of the substrate specificities of a site-specific recombinase and an aminoacyl-tRNA synthetase using fluorescence-activated cell sorting (FACS). Methods Mol Biol 230:291–312

    CAS  Google Scholar 

  • Sarkar I, Hauber I, Hauber J, Buchholz F (2007) HIV-1 proviral DNA excision using an evolved recombinase. Science 316:1912–1915

    CAS  Google Scholar 

  • Sclimenti CR, Thyagarajan B, Calos MP (2001) Directed evolution of a recombinase for improved genomic integration at a native human sequence. Nucleic Acids Res 29:5044–5051

    CAS  Google Scholar 

  • Shultz JL, Voziyanova E, Konieczka JH, Voziyanov Y (2011) A genome-wide analysis of FRT-like sequences in the human genome. PLoS One 6:e18077

    CAS  Google Scholar 

  • Silva G, Poirot L, Galetto R, Smith J, Montoya G, Duchateau P, Paques F (2011) Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy. Curr Gene Ther 11:11–27

    CAS  Google Scholar 

  • Sinzelle L, Kapitonov VV, Grzela DP, Jursch T, Jurka J, Izsvak Z, Ivics Z (2008) Transposition of a reconstructed Harbinger element in human cells and functional homology with two transposon-derived cellular genes. Proc Natl Acad Sci USA 105:4715–4720

    CAS  Google Scholar 

  • Sobkow L, Epperlein HH, Herklotz S, Straube WL, Tanaka EM (2006) A germline GFP transgenic axolotl and its use to track cell fate: dual origin of the fin mesenchyme during development and the fate of blood cells during regeneration. Dev Biol 290:386–397

    CAS  Google Scholar 

  • Sorrell DA, Kolb AF (2005) Targeted modification of mammalian genomes. Biotechnol Adv 23:431–469

    CAS  Google Scholar 

  • Sorrell DA, Robinson CJ, Smith JA, Kolb AF (2010) Recombinase mediated cassette exchange into genomic targets using an adenovirus vector. Nucleic Acids Res 38:e123

    Google Scholar 

  • Stief A, Winter DM, Stratling WH, Sippel AE (1989) A nuclear DNA attachment element mediates elevated and position-independent gene activity. Nature 341:343–345

    CAS  Google Scholar 

  • Surendranath V, Chusainow J, Hauber J, Buchholz F, Habermann BH (2010) SeLOX–a locus of recombination site search tool for the detection and directed evolution of site-specific recombination systems. Nucleic Acids Res 38:W293–W298

    CAS  Google Scholar 

  • Tan W, Zhu K, Segal DJ, Barbas CF III, Chow SA (2004) Fusion proteins consisting of human immunodeficiency virus type 1 integrase and the designed polydactyl zinc finger protein E2C direct integration of viral DNA into specific sites. J Virol 78:1301–1313

    CAS  Google Scholar 

  • Thaci B, Ulasov IV, Wainwright DA, Lesniak MS (2011) The challenge for gene therapy: innate immune response to adenoviruses. Oncotarget 2:113–121

    Google Scholar 

  • Thyagarajan B, Guimaraes MJ, Groth AC, Calos MP (2000) Mammalian genomes contain active recombinase recognition sites. Gene 244:47–54

    CAS  Google Scholar 

  • Thyagarajan B, Olivares EC, Hollis RP, Ginsburg DS, Calos MP (2001) Site-specific genomic integration in mammalian cells mediated by phage phiC31 integrase. Mol Cell Biol 21:3926–3934

    CAS  Google Scholar 

  • Thyagarajan B, Liu Y, Shin S, Lakshmipathy U, Scheyhing K, Xue H, Ellerstrom C, Strehl R, Hyllner J, Rao MS, Chesnut JD (2008) Creation of engineered human embryonic stem cell lines using phiC31 integrase. Stem Cells 26:119–126

    CAS  Google Scholar 

  • Turan S, Galla M, Ernst E, Qiao J, Voelkel C, Schiedlmeier B, Zehe C, Bode J (2011) Recombinase-mediated cassette exchange (RMCE): traditional concepts and current challenges. J Mol Biol 407:193–221

    CAS  Google Scholar 

  • Voigt K, Izsvak Z, Ivics Z (2008) Targeted gene insertion for molecular medicine. J Mol Med (Berl) 86:1205–1219

    CAS  Google Scholar 

  • Wang N, Jiang CY, Jiang MX, Zhang CX, Cheng JA (2010) Using chimeric piggyBac transposase to achieve directed interplasmid transposition in silkworm Bombyx mori and fruit fly Drosophila cells. J Zhejiang Univ Sci B 11:728–734

    CAS  Google Scholar 

  • Watanabe S, Nakamura S, Sakurai T, Akasaka K, Sato M (2011) Improvement of a phiC31 integrase-based gene delivery system that confers high and continuous transgene expression. N Biotechnol 28:312–319

    CAS  Google Scholar 

  • Williams DA (2008) Sleeping beauty vector system moves toward human trials in the United States. Mol Ther 16:1515–1516

    CAS  Google Scholar 

  • Wilson MH, Kaminski JM, George AL Jr (2005) Functional zinc finger/sleeping beauty transposase chimeras exhibit attenuated overproduction inhibition. FEBS Lett 579:6205–6209

    CAS  Google Scholar 

  • Wirth D, Gama-Norton L, Riemer P, Sandhu U, Schucht R, Hauser H (2007) Road to precision: recombinase-based targeting technologies for genome engineering. Curr Opin Biotechnol 18:411–419

    CAS  Google Scholar 

  • Wong AC, Draper BW, van Eenennaam AL (2010) FLPe functions in zebrafish embryos. Transgenic Res 20:409–415

    Google Scholar 

  • Wu SC, Meir YJ, Coates CJ, Handler AM, Pelczar P, Moisyadi S, Kaminski JM (2006) piggyBac is a flexible and highly active transposon as compared to sleeping beauty, Tol2, and Mos1 in mammalian cells. Proc Natl Acad Sci USA 103:15008–15013

    CAS  Google Scholar 

  • Wu J, Kandavelou K, Chandrasegaran S (2007) Custom-designed zinc finger nucleases: what is next? Cell Mol Life Sci 64:2933–2944

    CAS  Google Scholar 

  • Yamaguchi S, Kazuki Y, Nakayama Y, Nanba E, Oshimura M, Ohbayashi T (2011) A method for producing transgenic cells using a multi-integrase system on a human artificial chromosome vector. PLoS One 6:e17267

    CAS  Google Scholar 

  • Yant SR, Huang Y, Akache B, Kay MA (2007) Site-directed transposon integration in human cells. Nucleic Acids Res 35:e50

    Google Scholar 

  • Yi Y, Noh MJ, Lee KH (2011) Current advances in retroviral gene therapy. Curr Gene Ther 11:218–228

    CAS  Google Scholar 

  • Yusa K, Zhou L, Li MA, Bradley A, Craig NL (2011) A hyperactive piggyBac transposase for mammalian applications. Proc Natl Acad Sci USA 108:1531–1536

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Pollet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sinzelle, L., Pollet, N. (2013). Designing Non-viral Targeted Integrating Vectors for Genome Engineering in Vertebrates. In: Renault, S., Duchateau, P. (eds) Site-directed insertion of transgenes. Topics in Current Genetics, vol 23. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4531-5_2

Download citation

Publish with us

Policies and ethics