Skip to main content

Bio-applications Derived from Site-Directed Genome Modification Technologies

  • Chapter
  • First Online:
Site-directed insertion of transgenes

Part of the book series: Topics in Current Genetics ((TCG,volume 23))

Abstract

This review summarizes the overall downstream applications of currently available genome customization systems, based on cell-based assays (in cellulo) or animal models (in vivo). These include (i) functional genomics, (ii) drug discovery, (iii) bioproduction, (iv) cell transformation (i.e. immortalization, reprogrammation and differentiation), as well as (v) molecular biology and microbiology tools. The different enzymatic systems that exist to specifically modify (insertional or site-directed mutagenesis), modulate (knock-down) and disrupt (constitutive or conditional knock-out) cellular genes, or to integrate transgenic elements (knock-in) at specific chromosomal loci will be discussed herein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amaya E, Kroll K (2010) J Vis Exp. doi:10.3791/2010

  • Arii J, Hushur O, Kato K, Kawaguchi Y, Tohya Y, Akashi H (2006) Microbes Infect 8:1054–63

    CAS  Google Scholar 

  • Arnould S, Chames P, Perez C, Lacroix E, Duclert A, Epinat JC, Stricher F, Petit AS, Patin A, Guillier S, Rolland S, Prieto J, Blanco FJ, Bravo J, Montoya G, Serrano L, Duchateau P, Paques F (2006) J Mol Biol 355:443–58

    CAS  Google Scholar 

  • Arnould S, Perez C, Cabaniols JP, Smith J, Gouble A, Grizot S, Epinat JC, Duclert A, Duchateau P, Paques F (2007) J Mol Biol 371:49–65

    CAS  Google Scholar 

  • Azab W, Kato K, Arii J, Tsujimura K, Yamane D, Tohya Y, Matsumura T, Akashi H (2009) Arch Virol 154:833–42

    CAS  Google Scholar 

  • Babaryka A, Kuhn E, Koster RW (2009) J Fish Biol 74:452–7

    CAS  Google Scholar 

  • Belteki G, Gertsenstein M, Ow DW, Nagy A (2003) Nat Biotechnol 21:321–4

    CAS  Google Scholar 

  • Bennardo N, Stark JM (2010) PLoS Genet 6:e1001194

    Google Scholar 

  • Bernstein M, Lersch RA, Subrahmanyan L, Cline TW (1995) Genetics 139:631–48

    CAS  Google Scholar 

  • Bertoni C, Jarrahian S, Wheeler TM, Li Y, Olivares EC, Calos MP, Rando TA (2006) Proc Natl Acad Sci U S A 103:419–24

    CAS  Google Scholar 

  • Bigey P, Pratviel G, Meunier B (1995) Nucleic Acids Res 23:3894–900

    CAS  Google Scholar 

  • Birling MC, Gofflot F, Warot X (2009) Methods Mol Biol 561:245–63

    CAS  Google Scholar 

  • Bockamp E, Sprengel R, Eshkind L, Lehmann T, Braun JM, Emmrich F, Hengstler JG (2008) Regen Med 3:217–35

    CAS  Google Scholar 

  • Brambrink T, Foreman R, Welstead GG, Lengner CJ, Wernig M, Suh H, Jaenisch R (2008) Cell Stem Cell 2:151–9

    CAS  Google Scholar 

  • Buchholz F, Bishop M (2001) Biotechniques 31: 906–908, 910, 912, 914, 916, 918

    Google Scholar 

  • Cabaniols JP, Paques F (2008) Methods Mol Biol 435:31–45

    CAS  Google Scholar 

  • Cabaniols JP, Mathis L, Delenda C (2009) Curr Opin Pharmacol 9:657–63

    CAS  Google Scholar 

  • Cabaniols JP, Ouvry C, Lamamy V, Fery I, Craplet ML, Moulharat N, Guenin SP, Bedut S, Nosjean O, Ferry G, Devavry S, Jacqmarcq C, Lebuhotel C, Mathis L, Delenda C, Boutin JA, Duchateau P, Coge F, Paques F (2010) J Biomol Screen 15:956–67

    CAS  Google Scholar 

  • Capobianco ML, De Champdore M, Arcamone F, Garbesi A, Guianvarc’h D, Arimondo PB (2005) Bioorg Med Chem 13:3209–18

    CAS  Google Scholar 

  • Carson A, Wang Z, Xiao X, Khan SA (2005) Gene Ther 12:534–40

    CAS  Google Scholar 

  • Castaneda F, Kinne RK (2005) Mol Cell Biochem 280:91–8

    CAS  Google Scholar 

  • Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF (2011) Nucleic Acids Res 39:e82

    CAS  Google Scholar 

  • Chan YS, Naujoks DA, Huen DS, Russell S (2011) Genetics 188(1):33–44

    CAS  Google Scholar 

  • Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF (2010) Genetics 186:757–61

    CAS  Google Scholar 

  • Claeys Bouuaert C, Chalmers R (2010) Nucleic Acids Res 38:190–202

    CAS  Google Scholar 

  • Clark KJ, Carlson DF, Foster LK, Kong BW, Foster DN, Fahrenkrug SC (2007) BMC Biotechnol 7:42

    Google Scholar 

  • Colosimo A, Goncz KK, Novelli G, Dallapiccola B, Gruenert DC (2001) Mol Ther 3:178–85

    CAS  Google Scholar 

  • Cost GJ, Freyvert Y, Vafiadis A, Santiago Y, Miller JC, Rebar E, Collingwood TN, Snowden A, Gregory PD (2010) Biotechnol Bioeng 105:330–40

    CAS  Google Scholar 

  • Costes B, Fournier G, Michel B, Delforge C, Raj VS, Dewals B, Gillet L, Drion P, Body A, Schynts F, Lieffrig F, Vanderplasschen A (2008) J Virol 82:4955–64

    CAS  Google Scholar 

  • Cradick TJ, Keck K, Bradshaw S, Jamieson AC, McCaffrey AP (2010) Mol Ther 18:947–54

    CAS  Google Scholar 

  • Crenes G, Moundras C, Demattei MV, Bigot Y, Petit A, Renault S (2010) Genetica 138:509–17

    CAS  Google Scholar 

  • DeKelver RC, Choi VM, Moehle EA, Paschon DE, Hockemeyer D, Meijsing SH, Sancak Y, Cui X, Steine EJ, Miller JC, Tam P, Bartsevich VV, Meng X, Rupniewski I, Gopalan SM, Sun HC, Pitz KJ, Rock JM, Zhang L, Davis GD, Rebar EJ, Cheeseman IM, Yamamoto KR, Sabatini DM, Jaenisch R, Gregory PD, Urnov FD (2010) Genome Res 20:1133–42

    CAS  Google Scholar 

  • Dewals B, Boudry C, Gillet L, Markine-Goriaynoff N, de Leval L, Haig DM, Vanderplasschen A (2006) J Gen Virol 87:509–17

    CAS  Google Scholar 

  • Duca M, Guianvarc’h D, Oussedik K, Halby L, Garbesi A, Dauzonne D, Monneret C, Osheroff N, Giovannangeli C, Arimondo PB (2006) Nucleic Acids Res 34:1900–11

    CAS  Google Scholar 

  • Duca M, Vekhoff P, Oussedik K, Halby L, Arimondo PB (2008) Nucleic Acids Res 36:5123–38

    CAS  Google Scholar 

  • Durai S, Mani M, Kandavelou K, Wu J, Porteus MH, Chandrasegaran S (2005) Nucleic Acids Res 33:5978–90

    CAS  Google Scholar 

  • Eisenberg E, Levanon EY (2003) Trends Genet 19:362–5

    CAS  Google Scholar 

  • Fajardo-Sanchez E, Stricher F, Paques F, Isalan M, Serrano L (2008) Nucleic Acids Res 36:2163–73

    CAS  Google Scholar 

  • Fischer SE, Wienholds E, Plasterk RH (2001) Proc Natl Acad Sci U S A 98:6759–64

    CAS  Google Scholar 

  • Fitzgerald DJ, Berger P, Schaffitzel C, Yamada K, Richmond TJ, Berger I (2006) Nat Methods 3:1021–32

    CAS  Google Scholar 

  • Forster A, Pannell R, Drynan L, Cano F, Chan N, Codrington R, Daser A, Lobato N, Metzler M, Nam CH, Rodriguez S, Tanaka T, Rabbitts T (2005) Cold Spring Harb Symp Quant Biol 70:275–82

    CAS  Google Scholar 

  • Francois JC, Saison-Behmoaras T, Barbier C, Chassignol M, Thuong NT, Helene C (1989) Proc Natl Acad Sci U S A 86:9702–6

    CAS  Google Scholar 

  • Gaddis SS, Wu Q, Thames HD, DiGiovanni J, Walborg EF, MacLeod MC, Vasquez KM (2006) Oligonucleotides 16:196–201

    CAS  Google Scholar 

  • Galvan DL, Nakazawa Y, Kaja A, Kettlun C, Cooper LJ, Rooney CM, Wilson MH (2009) J Immunother 32:837–44

    CAS  Google Scholar 

  • Gillet L, Daix V, Donofrio G, Wagner M, Koszinowski UH, China B, Ackermann M, Markine-Goriaynoff N, Vanderplasschen A (2005) J Gen Virol 86:907–17

    CAS  Google Scholar 

  • Glover L, Alsford S, Beattie C, Horn D (2007) Nucleic Acids Res 35:872–80

    CAS  Google Scholar 

  • Grabher C, Joly JS, Wittbrodt J (2004) Methods Cell Biol 77:381–401

    CAS  Google Scholar 

  • Grabundzija I, Izsvak Z, Ivics Z (2011) Methods Mol Biol 738:69–85

    CAS  Google Scholar 

  • Grosse S, Huot N, Mahiet C, Arnould S, Barradeau S, Clerre DL, Chion-Sotinel I, Jacqmarcq C, Chapellier B, Ergani A, Desseaux C, Cedrone F, Conseiller E, Paques F, Labetoulle M, Smith J (2011) Mol Ther 19:694–702

    CAS  Google Scholar 

  • Guang L, Yuan F, Xi M, Zhao C, Liu L, Wen E, Ai Y (2003) Chin Med J (Engl) 116:1248–52

    CAS  Google Scholar 

  • Hamer L, DeZwaan TM, Montenegro-Chamorro MV, Frank SA, Hamer JE (2001) Curr Opin Chem Biol 5:67–73

    CAS  Google Scholar 

  • Hansen GM, Markesich DC, Burnett MB, Zhu Q, Dionne KM, Richter LJ, Finnell RH, Sands AT, Zambrowicz BP, Abuin A (2008) Genome Res 18:1670–9

    CAS  Google Scholar 

  • Hillgenberg M, Hofmann C, Stadler H, Loser P (2006) J Virol 80:5435–50

    CAS  Google Scholar 

  • Hockemeyer D, Soldner F, Beard C, Gao Q, Mitalipova M, DeKelver RC, Katibah GE, Amora R, Boydston EA, Zeitler B, Meng X, Miller JC, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Jaenisch R (2009) Nat Biotechnol 27:851–7

    CAS  Google Scholar 

  • Huth M, Schlake T, Boehm T (1997) Immunogenetics 45:282–3

    CAS  Google Scholar 

  • Ishibashi S, Kroll KL, Amaya E (2007) CSH Protoc: pdb.prot4838. doi:10.1101/pdb.prot4840

    Google Scholar 

  • Ivics Z, Li MA, Mates L, Boeke JD, Nagy A, Bradley A, Izsvak Z (2009) Nat Methods 6:415–22

    CAS  Google Scholar 

  • Kandavelou K, Ramalingam S, London V, Mani M, Wu J, Alexeev V, Civin CI, Chandrasegaran S (2009) Biochem Biophys Res Commun 388:56–61

    CAS  Google Scholar 

  • Kapitskaya M, Cunningham ME, Lacson R, Kornienko O, Bednar B, Petrukhin K (2006) Assay Drug Dev Technol 4:253–62

    CAS  Google Scholar 

  • Kashiwagi K, Kashiwagi A, Kurabayashi A, Hanada H, Nakajima K, Okada M, Takase M, Yaoita Y (2010) Exp Anim 59:395–405

    CAS  Google Scholar 

  • Kean JM, Miller PS (1993) Bioconjug Chem 4:184–7

    CAS  Google Scholar 

  • Kim AI, Ghosh P, Aaron MA, Bibb LA, Jain S, Hatfull GF (2003) Mol Microbiol 50:463–73

    CAS  Google Scholar 

  • Kito M, Itami S, Fukano Y, Yamana K, Shibui T (2002) Appl Microbiol Biotechnol 60:442–8

    CAS  Google Scholar 

  • Kowolik CM, Liang S, Yu Y, Yee JK (2004) Oncogene 23:5950–7

    CAS  Google Scholar 

  • Kuhlman TE, Cox EC (2010) Bioeng Bugs 1:296–299

    Google Scholar 

  • Levy A, Schwartz S, Ast G (2010) Nucleic Acids Res 38:1515–30

    CAS  Google Scholar 

  • Li T, Huang S, Zhao X, Wright DA, Carpenter S, Spalding MH, Weeks DP, Yang B (2011) Nucleic Acids Res 39(14):6315–25

    CAS  Google Scholar 

  • Lieu PT, Machleidt T, Thyagarajan B, Fontes A, Frey E, Fuerstenau-Sharp M, Thompson DV, Swamilingiah GM, Derebail SS, Piper D, Chesnut JD (2009) J Biomol Screen 14:1207–15

    CAS  Google Scholar 

  • Liu G, Geurts AM, Yae K, Srinivasan AR, Fahrenkrug SC, Largaespada DA, Takeda J, Horie K, Olson WK, Hackett PB (2005) J Mol Biol 346:161–73

    CAS  Google Scholar 

  • Liu K, Hipkens S, Yang T, Abraham R, Zhang W, Chopra N, Knollmann B, Magnuson MA, Roden DM (2006a) Genesis 44:556–64

    CAS  Google Scholar 

  • Liu W, Xiong Y, Gossen M (2006b) J Mol Med 84:57–64

    CAS  Google Scholar 

  • Liu J, Skjorringe T, Gjetting T, Jensen TG (2009) BMC Biotechnol 9:31

    Google Scholar 

  • Logvinoff C, Epstein AL (2001) Hum Gene Ther 12:161–7

    CAS  Google Scholar 

  • Lombardo A, Genovese P, Beausejour CM, Colleoni S, Lee YL, Kim KA, Ando D, Urnov FD, Galli C, Gregory PD, Holmes MC, Naldini L (2007) Nat Biotechnol 25:1298–306

    CAS  Google Scholar 

  • Luo G, Ivics Z, Izsvak Z, Bradley A (1998) Proc Natl Acad Sci U S A 95:10769–73

    CAS  Google Scholar 

  • Mates L, Izsvak Z, Ivics Z (2007) Genome Biol 8(Suppl 1):S1

    Google Scholar 

  • Miller RL (2011) Am J Physiol Renal Physiol 300:F291–300

    CAS  Google Scholar 

  • Miller DG, Petek LM, Russell DW (2003) Mol Cell Biol 23:3550–7

    CAS  Google Scholar 

  • Mizukami H, Okada T, Ogasawara Y, Matsushita T, Urabe M, Kume A, Ozawa K (2004) Mol Biotechnol 27:7–14

    CAS  Google Scholar 

  • Munoz-Lopez M, Siddique A, Bischerour J, Lorite P, Chalmers R, Palomeque T (2008) J Mol Biol 382:567–72

    CAS  Google Scholar 

  • Nagatsugi F, Suenaga Y, Sasaki S (2003) Nucleic Acids Res Suppl 3:155–6

    CAS  Google Scholar 

  • Nair RR, Avila H, Ma X, Wang Z, Lennartz M, Darnay BG, Boyd DD, Yan C (2008) Mol Pharmacol 73:919–29

    CAS  Google Scholar 

  • Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, Okita K, Mochiduki Y, Takizawa N, Yamanaka S (2008) Nat Biotechnol 26:101–6

    CAS  Google Scholar 

  • Nakano M, Odaka K, Takahashi Y, Ishimura M, Saito I, Kanegae Y (2005) Nucleic Acids Res 33:e76

    Google Scholar 

  • Ng P, Beauchamp C, Evelegh C, Parks R, Graham FL (2001) Mol Ther 3:809–15

    CAS  Google Scholar 

  • Noguchi H, Kobayashi N, Westerman KA, Sakaguchi M, Okitsu T, Totsugawa T, Watanabe T, Matsumura T, Fujiwara T, Ueda T, Miyazaki M, Tanaka N, Leboulch P (2002) Hum Gene Ther 13:321–34

    CAS  Google Scholar 

  • Ochiai H, Sakamoto N, Suzuki K, Akasaka K, Yamamoto T (2008) Dev Dyn 237:2475–82

    CAS  Google Scholar 

  • Olivares EC, Hollis RP, Calos MP (2001) Gene 278:167–76

    CAS  Google Scholar 

  • Olson LE, Tien J, South S, Reeves RH (2005) Transgenic Res 14:325–32

    CAS  Google Scholar 

  • Oumard A, Qiao J, Jostock T, Li J, Bode J (2006) Cytotechnology 50:93–108

    CAS  Google Scholar 

  • Pan FC, Chen Y, Loeber J, Henningfeld K, Pieler T (2006) Dev Dyn 235:247–52

    Google Scholar 

  • Perrouault L, Asseline U, Rivalle C, Thuong NT, Bisagni E, Giovannangeli C, Le Doan T, Helene C (1990) Nature 344:358–60

    CAS  Google Scholar 

  • Postel EH, Flint SJ, Kessler DJ, Hogan ME (1991) Proc Natl Acad Sci U S A 88:8227–31

    CAS  Google Scholar 

  • Puri N, Majumdar A, Cuenoud B, Natt F, Martin P, Boyd A, Miller PS, Seidman MM (2001) J Biol Chem 276:28991–8

    CAS  Google Scholar 

  • Quenneville SP, Chapdelaine P, Rousseau J, Beaulieu J, Caron NJ, Skuk D, Mills P, Olivares EC, Calos MP, Tremblay JP (2004) Mol Ther 10:679–87

    CAS  Google Scholar 

  • Rembold M, Lahiri K, Foulkes NS, Wittbrodt J (2006) Nat Protoc 1:1133–9

    CAS  Google Scholar 

  • Roberts RJ, Vincze T, Posfai J, Macelis D (2007) Nucleic Acids Res 35:D269–70

    CAS  Google Scholar 

  • Roebroek AJ, Gordts PL, Reekmans S (2011) Methods Mol Biol 693:277–81

    CAS  Google Scholar 

  • Russell JP, Chang DW, Tretiakova A, Padidam M (2006) Biotechniques 40: 460, 462, 464

    Google Scholar 

  • Sandhu U, Cebula M, Behme S, Riemer P, Wodarczyk C, Metzger D, Reimann J, Schirmbeck R, Hauser H, Wirth D (2011) Nucleic Acids Res 39:e1

    CAS  Google Scholar 

  • Sauer B, Henderson N (1989) Nucleic Acids Res 17:147–61

    CAS  Google Scholar 

  • Sauka-Spengler T, Barembaum M (2008) Methods Cell Biol 87:237–56

    CAS  Google Scholar 

  • Seidman MM, Puri N, Majumdar A, Cuenoud B, Miller PS, Alam R (2005) Ann N Y Acad Sci 1058:119–27

    CAS  Google Scholar 

  • Shinkawa T, Nakamura K, Yamane N, Shoji-Hosaka E, Kanda Y, Sakurada M, Uchida K, Anazawa H, Satoh M, Yamasaki M, Hanai N, Shitara K (2003) J Biol Chem 278:3466–73

    CAS  Google Scholar 

  • Sinzelle L, Kapitonov VV, Grzela DP, Jursch T, Jurka J, Izsvak Z, Ivics Z (2008) Proc Natl Acad Sci U S A 105:4715–20

    CAS  Google Scholar 

  • Smith J, Grizot S, Arnould S, Duclert A, Epinat JC, Chames P, Prieto J, Redondo P, Blanco FJ, Bravo J, Montoya G, Paques F, Duchateau P (2006) Nucleic Acids Res 34:e149

    Google Scholar 

  • Sollu C, Pars K, Cornu TI, Thibodeau-Beganny S, Maeder ML, Joung JK, Heilbronn R, Cathomen T (2010) Nucleic Acids Res 38:8269–76

    Google Scholar 

  • Sommer CA, Stadtfeld M, Murphy GJ, Hochedlinger K, Kotton DN, Mostoslavsky G (2009) Stem Cells 27:543–9

    CAS  Google Scholar 

  • Staunstrup NH, Sharma N, Bak RO, Svensson L, Petersen TK, Aarenstrup L, Kristiansen K, Bolund L, Mikkelsen JG (2011) BMC Biotechnol 11:33

    CAS  Google Scholar 

  • Stoll SM, Ginsburg DS, Calos MP (2002) J Bacteriol 184:3657–63

    CAS  Google Scholar 

  • Strobel SA, Doucette-Stamm LA, Riba L, Housman DE, Dervan PB (1991) Science 254:1639–42

    CAS  Google Scholar 

  • Tanaka M, Kagawa H, Yamanashi Y, Sata T, Kawaguchi Y (2003) J Virol 77:1382–91

    CAS  Google Scholar 

  • Teulade-Fichou MP, Perrin D, Boutorine A, Polverari D, Vigneron JP, Lehn JM, Sun JS, Garestier T, Helene C (2001) J Am Chem Soc 123:9283–92

    CAS  Google Scholar 

  • Thermes V, Grabher C, Ristoratore F, Bourrat F, Choulika A, Wittbrodt J, Joly JS (2002) Mech Dev 118:91–8

    CAS  Google Scholar 

  • Tovkach A, Zeevi V, Tzfira T (2011) J Biotechnol 151:1–8

    CAS  Google Scholar 

  • Traver BE, Anderson MA, Adelman ZN (2009) Insect Mol Biol 18:623–33

    CAS  Google Scholar 

  • Turan S, Kuehle J, Schambach A, Baum C, Bode J (2010) J Mol Biol 402:52–69

    CAS  Google Scholar 

  • Turan S, Galla M, Ernst E, Qiao J, Voelkel C, Schiedlmeier B, Zehe C, Bode J (2011) J Mol Biol 407:193–221

    CAS  Google Scholar 

  • Umlauf SW, Cox MM (1988) EMBO J 7:1845–52

    CAS  Google Scholar 

  • Vasileva A, Jessberger R (2005) Nat Rev Microbiol 3:837–47

    CAS  Google Scholar 

  • Wang X (2009) Methods Mol Biol 561:265–73

    CAS  Google Scholar 

  • Windbichler N, Menichelli M, Papathanos PA, Thyme SB, Li H, Ulge UY, Hovde BT, Baker D, Monnat RJ Jr, Burt A, Crisanti A (2011) Nature 473:212–5

    CAS  Google Scholar 

  • Winkler T, Cantilena A, Metais JY, Xu X, Nguyen AD, Borate B, Antosiewicz-Bourget JE, Wolfsberg TG, Thomson JA, Dunbar CE (2010) Stem Cells 28:687–94

    CAS  Google Scholar 

  • Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovsky M, Hamalainen R, Cowling R, Wang W, Liu P, Gertsenstein M, Kaji K, Sung HK, Nagy A (2009) Nature 458:766–70

    CAS  Google Scholar 

  • Wong AW, Baginski TK, Reilly DE (2010) Biotechnol Bioeng 106:751–63

    CAS  Google Scholar 

  • Wu SC, Maragathavally KJ, Coates CJ, Kaminski JM (2008) Methods Mol Biol 435:139–51

    CAS  Google Scholar 

  • Yan Z, Lei-Butters D, Engelhardt JF, Leno GH (2009) BMC Biol 7:8

    Google Scholar 

  • Ye L, Chang JC, Lin C, Qi Z, Yu J, Kan YW (2010) Proc Natl Acad Sci U S A 107:19467–72

    CAS  Google Scholar 

  • Yusa K, Rad R, Takeda J, Bradley A (2009) Nat Methods 6:363–9

    CAS  Google Scholar 

  • Zaupa C, Revol-Guyot V, Epstein AL (2003) Hum Gene Ther 14:1049–63

    CAS  Google Scholar 

  • Zeevi V, Tovkach A, Tzfira T (2008) Proc Natl Acad Sci U S A 105:12785–90

    CAS  Google Scholar 

  • Zeng X, Rao MS (2008) Curr Opin Mol Ther 10:207–13

    CAS  Google Scholar 

  • Zheng B, Mills AA, Bradley A (2001) Methods 24:81–94

    CAS  Google Scholar 

  • Zhou HS, Zhao T, Rao XM, Beaudet AL (2002) J Gene Med 4:498–509

    CAS  Google Scholar 

  • Ziemba A, Derosier LC, Methvin R, Song CY, Clary E, Kahn W, Milesi D, Gorn V, Reed M, Ebbinghaus S (2001) Nucleic Acids Res 29:4257–63

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Delenda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Delenda, C., Paris, S., Arnould, S., Balbirnie, E., Cabaniols, JP. (2013). Bio-applications Derived from Site-Directed Genome Modification Technologies. In: Renault, S., Duchateau, P. (eds) Site-directed insertion of transgenes. Topics in Current Genetics, vol 23. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4531-5_14

Download citation

Publish with us

Policies and ethics