Skip to main content

Intracranial Pediatric Ependymoma: Role of Cytogenetic Markers Using Comparative Genomic Hybridization and Fluorescent In Situ Hybridization

  • Chapter
  • First Online:
Pediatric Cancer, Volume 3

Part of the book series: Pediatric Cancer ((PECA,volume 3))

  • 1081 Accesses

Abstract

Pediatric ependymoma are enigmatic tumors that continue to present a clinical management challenge despite advances in neurosurgery, neuroimaging techniques, and radiation therapy. Difficulty in predicting tumor behavior from clinical and histological factors has shifted the focus to the molecular biology of ependymoma in order to identify new correlates of disease outcome and novel therapeutic targets. The biologic behavior of intracranial ependymoma is unpredictable on the basis of current staging approaches. Patient age at diagnosis and tumor location has also been suggested as prognostic factors. Children below 3 years of age and infratentorial ependymoma have been associated with a poor outcome. Poor outcome and the unpredictable behavior of this tumor in children have turned attention to improving the knowledge of ependymoma biology. Nevertheless, an enhanced understanding of the biology of ependymoma remains crucial if we are to identify additional prognostic markers, discover molecular targets for novel or existing therapeutic agents in the clinic and allow adjuvant therapy to be tailored according to tumor-specific molecular characteristics. Progress in these areas could minimize the long term adverse effects of therapy and improve patient survival. Before the advent of detailed genomic analysis, karyotypic studies had found that pediatric ependymoma showed a spectrum of complexity ranging from single rearrangements to structural and numerical aberrations. The most frequently used technique for high resolution genomic analysis of ependymoma to date has been comparative genomic hybridization (CGH) and fluorescent in situ hybridization (FISH). Recently, the advent of array-CGH has enabled the identification of genomic imbalances at a higher resolution than conventional metaphase CGH. Ependymoma with few and often partial chromosomal imbalances may confer a worse prognosis and are more likely to occur in younger children. At present, the explanations for this remain unclear. Genomic aberrations in ependymoma are powerful independent markers of disease progression and survival. By adding genetic markers to established clinical and histopathologic variables, outcome prediction can potentially be improved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albertson DG, Pinkel D (2003) Genomic microarrays in human genetic disease and cancer. Hum Mol Genet 12:145–152

    Article  Google Scholar 

  • Arnoldus EPJ, Wolters LBT, Voormolen JHC, van Duinen SG, Raap AK, van der Ploeg M, Peters ACB (1992) Interphase cytogenetics: a new tool for the study of genetic changes in brain tumors. J Neurosurg 76:997–1003

    Article  CAS  PubMed  Google Scholar 

  • Ballif BC, Rorem EA, Sundin K, Lincicum M, Gaskin S, Coppinger J, Kashork CD, Shaffer LG, Bejjani BA (2006) Detection of low-level mosaicism by array CGH in routine diagnostic specimens. Am J Med Genet 140:2757–2767

    Article  PubMed  Google Scholar 

  • Carter M, Nicholson J, Ross F, Crolla J, Allibone R, Balaji V, Perry R, Walker D, Gilbertson R, Ellison DW (2002) Genetic abnormalities detected in ependymomas by comparative genomic hybridization. Br J Cancer 86:929–939

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • de Vries BB, Pfundt R, Leisink M, Koolen DA, Vissers LE, Janssen IM, Reijmersdal S, Nillesen WM, Huys EH, Leeuw N, Smeets D, Sistermans EA, Feuth T, van Ravenswaaij-Arts CM, van Kessel AG, Schoenmakers EF, Brunner HG, Veltman JA (2005) Diagnostic genome profiling in mental retardation. Am J Hum Genet 77:606–616

    Article  PubMed Central  PubMed  Google Scholar 

  • Dyer S, Prebble E, Davison V, Davies P, Ramani P, Ellison D, Grundy R (2002) Genomic imbalances in pediatric intracranial ependymomas define clinically relevant groups. Am J Pathol 161:2133–2141

    Article  CAS  PubMed  Google Scholar 

  • Friedman JM, Baross A, Delaney AD, Ally A, Arbour L, Armstrong L, Asano J, Bailey DK, Barber S, Birch P, Brown-John M, Cao M, Chan S, Charest DL, Farnoud N, Fernandes N, Flibotte S, Go A, Gibson WT, Holt RA, Jones SJ, Kennedy GC, Krzywinski M, Langlois S, Li HI, McGillivray BC, Nayar T, Pugh TJ, Rajcan-Separovic E, Schein JE, Schnerch A, Siddiqui A, Van Allen MI, Wilson G, Yong SL, Zahir F, Eydoux P, Marra MA (2006) Oligonucleotide microarray analysis of genomic imbalance in children with mental retardation. Am J Hum Genet 79:500–513

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gray JW, Pinkel D (1992) Molecular cytogenetics in human cancer diagnosis. Cancer 69:1536–1542

    Article  CAS  PubMed  Google Scholar 

  • Grill J, Avet-Loiseau H, Lellouch-Tubiana A, Sévenet N, Terrier-Lacombe MJ, Vénuat AM, Doz F, Sainte-Rose C, Kalifa C, Vassal G (2002) Comparative genomic hybridization detects specific cytogenetic abnormalities in pediatric ependymomas and choroid plexus papillomas. Cancer Genet Cytogenet 136:121–125

    Article  CAS  PubMed  Google Scholar 

  • Hayat MA (ed) (2004–2005) Immunohistochemistry and in situ hybridization of human carcinomas, vol 1–4. Elsevier/Academic, San Diego/London

    Google Scholar 

  • Henke RP, Ayhan N (1994) Enhancement of hybridization efficiency in interphase cytogenetics on paraffin embedded tissue sections by microwave treatment. Anal Cell Pathol 6:319–325

    CAS  PubMed  Google Scholar 

  • Hirose Y, Aldape KD, Bollen A, James CD, Brat D, Lamborn KR, Berger MS, Feuerstein BG (2001) Chromosomal abnormalities subdivide ependymal tumors into clinically relevant groups. Am J Pathol 158:1137–1143

    Article  CAS  PubMed  Google Scholar 

  • Huang B, Starostik P, Schraut H, Krauss J, Sorensen N, Roggendorf W (2003) Human ependymomas reveal frequent deletions on chromosomes 6 and 9. Acta Neuropathol 106:357–362

    Article  CAS  PubMed  Google Scholar 

  • Jeuken JW, Sprenger SH, Gilhuis J, Teepen HL, Grotenhuis AJ, Wesseling P (2002) Correlation between localization, age, and chromosomal imbalances in ependymal tumours as detected by CGH. J Pathol 197:238–244

    Article  PubMed  Google Scholar 

  • Kallionemi A, Kallionemi OP, Sudar D, Rutovitz D, Gray JW, Waldman F, Pinkel D (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258:818–821

    Article  Google Scholar 

  • Kleihues P, Cavenee WK (2000) WHO classification of tumors of the nervous system. IARC, Lyon, pp 6–82

    Google Scholar 

  • Kramer DL, Parmiter AH, Rorke LB, Sutton LN, Biegel JA (1998) Molecular cytogenetic studies of pediatric ependymomas. J Neurooncol 37:25–33

    Article  CAS  PubMed  Google Scholar 

  • Lamszus K, Lachenmayer L, Heinemann U, Kluwe L, Finckh U, Hoppner W, Stavrou D, Fillbrandt R, Westphal M (2001) Molecular genetic alterations on chromosomes 11 and 22 in ependymomas. Int J Cancer 91:803–808

    Article  CAS  PubMed  Google Scholar 

  • Le Caignec C, Spits C, Sermon K, De Rycke M, Thienpont B, Debrock S, Staessen C, Moreau Y, Fryns JP, Van Steirteghem A, Liebaers I, Vermeesch JR (2006) Single-cell chromosomal imbalances detection by array CGH. Nucleic Acids Res 34:E68

    Article  PubMed Central  PubMed  Google Scholar 

  • Massimino M, Gandola L, Giangaspero F, Sandri A, Valagussa P, Perilongo G, Garrè ML, Ricardi U, Forni M, Genitori L, Scarzello G, Spreafico F, Barra S, Mascarin M, Pollo B, Gardiman M, Cama A, Navarria P, Brisigotti M, Collini P, Balter R, Fidani P, Stefanelli M, Burnelli R, Potepan P, Podda M, Sotti G, Madon E, AIEOP Pediatric Neuro-Oncology Group (2004) Hyperfractionated radiotherapy and chemotherapy for childhood ependymoma: final results of the first prospective AIEOP (Associazione Italiana di Ematologia-Oncologia Pediatrica) study. Int J Radiat Oncol Biol Phys 58:1336–1345

    Article  PubMed  Google Scholar 

  • Mendrzyk F, Korshunov A, Benner A, Toedt G, Pfister S, Radlwimmer B, Lichter P (2006) Identification of gains on 1q and epidermal growth factor receptor ­over-expression as independent prognostic markers in intracranial ependymoma. Clin Cancer Res 12:2070–2079

    Article  CAS  PubMed  Google Scholar 

  • Merchant TE (2002) Current management of childhood ependymoma. Oncology (Huntingt) 16:629–644

    Google Scholar 

  • Milano G, Spano JP, Leyland-Jones B (2008) EGFR-targeting drugs in combination with cytotoxic agents: from bench to bedside, a contrasted reality. Br J Cancer 99:1–5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mitelman F (1994) Catalog of chromosome aberrations in cancer, 5th edn. Wiley-Liss, New York

    Google Scholar 

  • Mitelman F, Johansson B, Mandahl N, Mertens F (1997) Clinical significance of cytogenetic findings in solid tumors. Cancer Genet Cytogenet 95:1–8

    Article  CAS  PubMed  Google Scholar 

  • Modena P, Lualdi E, Facchinetti F, Veltman J, Reid JF, Minardi S, Janssen I, Giangaspero F, Forni M, Finocchiaro G, Genitori L, Giordano F, Riccardi R, Schoenmakers EF, Massimino M, Sozzi G (2006) Identification of tumor-specific molecular signatures in intracranial ependymoma and association with clinical characteristics. J Clin Oncol 24:5223–5233

    Article  CAS  PubMed  Google Scholar 

  • Monoranu CM, Huang B, Zangen LI, Rutkowski S, Vince GH, Gerber NU, Puppe B, Roggendorf W (2008) Correlation between 6q25.3 deletion status and survival in pediatric intracranial ependymomas. Cancer Genet Cytogenet 182:18–26

    Article  CAS  PubMed  Google Scholar 

  • Newman WG, Hamilton S, Ayres J, Sanghera N, Smith A, Gaunt L, Davies LM, Clayton-Smith J (2007) Array comparative genomic hybridization for diagnosis of developmental delay-an exploratory cost-consequences analysis. Clin Genet 71:254–271

    Article  CAS  PubMed  Google Scholar 

  • Nolte M, Werner M, Vonwasielewski R, Nietgen G, Wilkens L, Georgii A (1996) Detection of numerical karyotype changes in the giant cells of Hodgkins lymphomas by a combination of FISH and immunohistochemistry applied to paraffin sections. Histochem Cell Biol 105:401–404

    Article  CAS  PubMed  Google Scholar 

  • Pezzolo A, Parodi F, Corrias MV, Cinti R, Gambini C, Pistoia V (2007) Tumor origin of endothelial cells in human neuroblastoma. J Clin Oncol 25:376–383

    Article  CAS  PubMed  Google Scholar 

  • Pezzolo A, Capra V, Raso A, Moranti F, Parodi F, Gambini C, Nozza P, Giangaspero F, Cama A, Pistoia V, Garré ML (2008) Identification of novel chromosomal abnormalities and prognostic cytogenetics markers in intracranial pediatric ependymoma. Cancer Lett 261:235–243

    Article  CAS  PubMed  Google Scholar 

  • Pollack IF, Gerszten PC, Martinez AJ, Lo KH, Shultz B, Albright AL, Janosky J, Deutsch M (1995) Intracranial ependymomas of childhood: long-term outcome and prognostic factors. Neurosurgery 37:655–667

    Article  CAS  PubMed  Google Scholar 

  • Reardon DA, Entrekin RE, Sublett J, Ragsdale S, Li H, Boyett J, Kepner JL, Look AT (1999) Chromosome arm 6q loss is the most common recurrent autosomal alteration detected in primary pediatric ependymoma. Genes Chromosomes Cancer 24:230–237

    Article  CAS  PubMed  Google Scholar 

  • Robertson PL, Zeltzer PM, Boyett JM, Rorke LB, Allen JC, Geyer JR, Stanley P, Li H, Albright AL, McGuire-Cullen P, Finlay JL, Stevens KR Jr, Milstein JM, Packer RJ, Wisoff J (1998) Survival and prognostic factors following radiation therapy and chemotherapy for ependymomas in children: a report of the Children’s Cancer Group. J Neurosurg 88:695–703

    Article  CAS  PubMed  Google Scholar 

  • Sainati L, Montali A, Putti MC, Giangaspero F, Rigobello L, Stella M, Zanesco L, Basso G (1992) Cytogenetic t(11;17)(q13;q21) in a pediatric ependymoma. is 11q13a recurring breakpoint in ependymoma? Cancer Genet Cytogenet 59:213–216

    Article  CAS  PubMed  Google Scholar 

  • Seimiya H, Muramatsu Y, Ohishi T, Tsuruo T (2005) Tankyrase 1 as a target for telomere-directed molecular cancer therapeutics. Cancer Cell 7:25–37

    Article  CAS  PubMed  Google Scholar 

  • Shaw-Smith C, Redon R, Rickman L, Rio M, Willatt L, Fiegler H, Firth H, Sanlaville D, Winter R, Colleaux L, Bobrow M, Carter NP (2004) Microarray based comparative genomic hybridization (array-CGH) detects submicroscopic chromosomal deletions and duplications in patients with learning disability/mental retardation and dysmorphic features. J Med Genet 41:241–248

    Article  CAS  PubMed  Google Scholar 

  • Shay JW, Wright WE (2005) Mechanism-based combination telomerase inhibition therapy. Cancer Cell 7:1–2

    Article  CAS  PubMed  Google Scholar 

  • Sowar K, Straessle J, Donson AM, Handler M, Foreman NK (2006) Predicting which children are at risk for ependymoma relapse. J Neurooncol 78:41–46

    Article  PubMed  Google Scholar 

  • Suarez-Merino B, Hubank M, Revesz T, Harkness W, Hayward R, Thompson D, Darling JL, Thomas DG, Warr TJ (2005) Microarray analysis of pediatric ependymoma identifies a cluster of 112 candidate genes including four transcripts at 22q12.1-q13.3. Neuro Oncol 7:20–31

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tabori U, Ma J, Carter M, Zielenska M, Rutka J, Bouffet E, Bartels U, Malkin D, Hawkins C (2006) Human telomere reverse transcriptase expression predicts progression and in pediatric intracranial ependymoma. J Clin Oncol 24:1522–1528

    Article  CAS  PubMed  Google Scholar 

  • Taylor MD, Poppleton H, Fuller C, Su X, Liu Y, Jensen P, Magdaleno S, Dalton J, Calabrese C, Board J, Macdonald T, Rutka J, Guha A, Gajjar A, Curran T, Gilbertson RJ (2005) Radial glia cells are candidate stem cells of ependymoma. Cancer Cell 8:323–335

    Article  CAS  PubMed  Google Scholar 

  • von Haken MS, White EC, Daneshvar-Shyesther L, Sih S, Choi E, Kalra R, Cogen PH (1996) Molecular genetic analysis of chromosome arm 17p and chromosome arm 22q DNA sequences in sporadic pediatric ependymomas. Genes Chromosomes Cancer 17:37–44

    Article  Google Scholar 

  • Ward S, Harding B, Wilkins P, Harkness W, Hayward R, Darling JL, Thomas DG, Warr T (2001) Gain of 1q and loss of 22 are the most common changes detected by comparative genomic hybridization in pediatric ependymoma. Genes Chromosomes Cancer 32:59–66

    Article  CAS  PubMed  Google Scholar 

  • Wiestler OD, Schiffer D, Coons SW (2000) Ependymal tumors. In: Kleihues P, Cavence WK (eds) World Health Organization (WHO) classification of tumors: pathology and genetics of tumors of the nervous system. IARC, Lyon, pp 71–82

    Google Scholar 

  • Zacharoulis S, Levy A, Chi SN, Gardner S, Rosenblum M, Miller DC, Dunkel I, Diez B, Sposto R, Ji L, Asgharzadeh S, Hukin J, Belasco J, Dubowy R, Kellie S, Termuhlen A, Finlay J (2007) Outcome for young children newly diagnosed with ependymoma, treated with intensive induction chemotherapy followed by myeloablative chemotherapy and autologous stem cell rescue. Pediatr Blood Cancer 49:34–40

    Article  PubMed  Google Scholar 

  • Zheng PP, Pang JC, Hui AB, Ng HK (2000) Comparative genomic hybridization detects losses of chromosomes 22 and 16 as the most common recurrent genetic alterations in primary ependymomas. Cancer Genet Cytogenet 122:18–25

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annalisa Pezzolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pezzolo, A. (2012). Intracranial Pediatric Ependymoma: Role of Cytogenetic Markers Using Comparative Genomic Hybridization and Fluorescent In Situ Hybridization. In: Hayat, M. (eds) Pediatric Cancer, Volume 3. Pediatric Cancer, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4528-5_27

Download citation

Publish with us

Policies and ethics