Skip to main content

Megabase Replication Domains Along the Human Genome: Relation to Chromatin Structure and Genome Organisation

  • Chapter
  • First Online:
Epigenetics: Development and Disease

Abstract

In higher eukaryotes, the absence of specific sequence motifs, marking the origins of replication has been a serious hindrance to the understanding of (i) the mechanisms that regulate the spatio-temporal replication program, and (ii) the links between origins activation, chromatin structure and transcription. In this chapter, we review the partitioning of the human genome into megabased-size replication domains delineated as N-shaped motifs in the strand compositional asymmetry profiles. They collectively span 28.3% of the genome and are bordered by more than 1,000 putative replication origins. We recapitulate the comparison of this partition of the human genome with high-resolution experimental data that confirms that replication domain borders are likely to be preferential replication initiation zones in the germline. In addition, we highlight the specific distribution of experimental and numerical chromatin marks along replication domains. Domain borders correspond to particular open chromatin regions, possibly encoded in the DNA sequence, and around which replication and transcription are highly coordinated. These regions also present a high evolutionary breakpoint density, suggesting that susceptibility to breakage might be linked to local open chromatin fiber state. Altogether, this chapter presents a compartmentalization of the human genome into replication domains that are landmarks of the human genome organization and are likely to play a key role in genome dynamics during evolution and in pathological situations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antequera F, Bird A (1999) CpG islands as genomic footprints of promoters that are associated with replication origins. Curr Biol 9:R661–R667

    Article  PubMed  CAS  Google Scholar 

  • Arneodo A, Audit B, Decoster N, Muzy JF, Vaillant C (2002) Wavelet based multifractal formalism: application to DNA sequences, satellite images of the cloud structure and stock market data. In: Bunde A, Kropp J, Schellnhuber HJ (eds) The science of disasters: climate disruptions, heart attacks, and market crashes. Springer, Berlin, pp 26–102

    Google Scholar 

  • Arneodo A, Bacry E, Muzy JF (1995) The thermodynamics of fractals revisited with wavelets. Physica A 213:232–275

    Article  CAS  Google Scholar 

  • Arneodo A, d’Aubenton-Carafa Y, Audit B, Brodie of Brodie EB, Nicolay S, St-Jean P, Thermes C, Touchon M, Vaillant C (2007) DNA in chromatin: from genome-wide sequence analysis to the modeling of replication in mammals. Adv Chem Phys 135:203–252

    Google Scholar 

  • Arneodo A, Vaillant C, Audit B, Argoul F, d’Aubenton Carafa Y, Thermes C (2011) Multi-scale coding of genomic information: from DNA sequence to genome structure and function. Phys Rep 498:45–188

    Google Scholar 

  • Audit B, Nicolay S, Huvet M, Touchon M, d’Aubenton-Carafa Y, Thermes C, Arneodo A (2007) DNA replication timing data corroborate in silico human replication origin predictions. Phys Rev Lett 99:248102

    Google Scholar 

  • Audit B, Zaghloul L, Vaillant C, Chevereau G, d’Aubenton-Carafa Y, Thermes C, Arneodo A (2009) Open chromatin encoded in DNA sequence is the signature of “master” replication origins in human cells. Nucleic Acids Res 37:6064–6075

    Google Scholar 

  • Baker A, Audit B, Chen CL, Moindrot B, Leleu A, Guilbaud G, Rappailles A, Vaillant C, Goldar A, Mongelard F et al (2012) Replication fork polarity gradients revealed by megabase-sized U-shape replication timing domains in human cell lines. PLOS Comput Biol 8:e1002443

    Google Scholar 

  • Baker A, Nicolay S, Zaghloul L, d’Aubenton-Carafa Y, Thermes C, Audit B, Arneodo A (2010) Wavelet-based method to disentangle transcription- and replication-associated strand asymmetries in mammalian genomes. Appl Comput Harmon Anal 28:150–170

    Google Scholar 

  • Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837

    Article  PubMed  CAS  Google Scholar 

  • Bell SP, Dutta A (2002) DNA replication in eukaryotic cells. Annu Rev Biochem 71:333–374

    Article  PubMed  CAS  Google Scholar 

  • Bernardi G (2001) Misunderstandings about isochores. Part 1. Gene 276:3–13

    Article  PubMed  CAS  Google Scholar 

  • Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21

    Article  PubMed  CAS  Google Scholar 

  • Bird AP, Wolffe AP (1999) Methylation-induced repression–belts, braces, and chromatin. Cell 99:451–454

    Article  PubMed  CAS  Google Scholar 

  • Bogan JA, Natale DA, Depamphilis ML (2000) Initiation of eukaryotic DNA replication: conservative or liberal? J Cell Physiol 184:139–150

    Article  PubMed  CAS  Google Scholar 

  • Boyle AP, Davis S, Shulha HP, Meltzer P, Margulies EH, Weng Z, Furey TS, Crawford GE (2008) High-resolution mapping and characterization of open chromatin across the genome. Cell 132:311–322

    Article  PubMed  CAS  Google Scholar 

  • Brodie of Brodie EB, Nicolay S, Touchon M, Audit B, d’Aubenton-Carafa Y, Thermes C, Arneodo A (2005) From DNA sequence analysis to modeling replication in the human genome. Phys Rev Lett 94:248103

    Google Scholar 

  • Bulmer M (1991) Strand symmetry of mutation rates in the beta-globin region. J Mol Evol 33:305–310

    Article  PubMed  CAS  Google Scholar 

  • Cadoret JC, Meisch F, Hassan-Zadeh V, Luyten I, Guillet C, Duret L, Quesneville H, Prioleau MN (2008) Genome-wide studies highlight indirect links between human replication origins and gene regulation. Proc Natl Acad Sci USA 105:15837–15842

    Article  PubMed  CAS  Google Scholar 

  • Chen CL, Duquenne L, Audit B, Guilbaud G, Rappailles A, Baker A, Huvet M, d’Aubenton Carafa Y, Hyrien O, Arneodo A et al (2011) Replication-associated mutational asymmetry in the human genome. Mol Biol Evol 28:2327–2337

    Google Scholar 

  • Chen CL, Rappailles A, Duquenne L, Huvet M, Guilbaud G, Farinelli L, Audit B, d’Aubenton Carafa Y, Arneodo A, Hyrien O et al (2010) Impact of replication timing on non-CpG and CpG substitution rates in mammalian genomes. Genome Res 4:447–457

    Google Scholar 

  • Chevereau G, Palmeira L, Thermes C, Arneodo A, Vaillant C (2009) Thermodynamics of intra-genic nucleosome ordering. Phys Rev Lett 103:188103

    Article  PubMed  CAS  Google Scholar 

  • Conti C, Sacca B, Herrick J, Lalou C, Pommier Y, Bensimon A (2007) Replication fork velocities at adjacent replication origins are coordinately modified during DNA replication in human cells. Mol Biol Cell 18:3059–3067

    Article  PubMed  CAS  Google Scholar 

  • Courbet S, Gay S, Arnoult N, Wronka G, Anglana M, Brison O, Debatisse M (2008) Replication fork movement sets chromatin loop size and origin choice in mammalian cells. Nature 455:557–560

    Article  PubMed  CAS  Google Scholar 

  • Coverley D, Laskey RA (1994) Regulation of eukaryotic DNA replication. Annu Rev Biochem 63:745–776

    Article  PubMed  CAS  Google Scholar 

  • Danis E, Brodolin K, Menut S, Maiorano D, Girard-Reydet C, Méchali M (2004) Specification of a DNA replication origin by a transcription complex. Nat Cell Biol 6:721–730

    Article  PubMed  CAS  Google Scholar 

  • Demeret C, Vassetzky Y, Méchali M (2001) Chromatin remodelling and DNA replication: from nucleosomes to loop domains. Oncogene 20:3086–3093

    Article  PubMed  CAS  Google Scholar 

  • Desprat R, Thierry-Mieg D, Lailler N, Lajugie J, Schildkraut C, Thierry-Mieg J, Bouhassira EE (2009) Predictable dynamic program of timing of DNA replication in human cells. Genome Res 19:2288–2299

    Article  PubMed  CAS  Google Scholar 

  • Eckhardt F, Lewin J, Cortese R, Rakyan VK, Attwood J, Burger M, Burton J, Cox TV, Davies R, Down TA, et al (2006) DNA methylation profiling of human chromosomes 6, 20 and 22. Nat Genet 38:1378–1385

    Article  PubMed  CAS  Google Scholar 

  • Farkash-Amar S, Lipson D, Polten A, Goren A, Helmstetter C, Yakhini Z, Simon I (2008) Global organization of replication time zones of the mouse genome. Genome Res 18:1562–1570

    Article  PubMed  CAS  Google Scholar 

  • Francino MP, Ochman H (2000) Strand symmetry around the beta-globin origin of replication in primates. Mol Biol Evol 17:416–422

    Article  PubMed  CAS  Google Scholar 

  • Frank AC, Lobry JR (1999) Asymmetric substitution patterns: a review of possible underlying mutational or selective mechanisms. Gene 238:65–77

    Article  PubMed  CAS  Google Scholar 

  • Gerbi SA, Bielinsky AK (1997) Replication initiation point mapping. Methods 13:271–280

    Article  PubMed  CAS  Google Scholar 

  • Gerbi SA, Bielinsky AK (2002) DNA replication and chromatin. Curr Opin Genet Dev 12:243–248

    Article  PubMed  CAS  Google Scholar 

  • Gierlik A, Kowalczuk M, Mackiewicz P, Dudek MR, Cebrat S (2000) Is there replication-associated mutational pressure in the Saccharomyces cerevisiae genome? J Theor Biol 202:305–314

    Article  PubMed  CAS  Google Scholar 

  • Gilbert DM (2001) Making sense of eukaryotic DNA replication origins. Science 294:96–100

    Article  PubMed  CAS  Google Scholar 

  • Gilbert DM (2004) In search of the holy replicator. Nat Rev Mol Cell Biol 5:848–855

    Article  PubMed  CAS  Google Scholar 

  • Goldman MA, Holmquist GP, Gray MC, Caston LA, Nag A (1984) Replication timing of genes and middle repetitive sequences. Science 224:686–692

    Article  PubMed  CAS  Google Scholar 

  • Hamlin JL, Mesner LD, Lar O, Torres R, Chodaparambil SV, Wang L (2008) A revisionist replicon model for higher eukaryotic genomes. J Cell Biochem 105:321–329

    Article  PubMed  CAS  Google Scholar 

  • Hansen RS, Thomas S, Sandstrom R, Canfield TK, Thurman RE, Weaver M, Dorschner MO, Gartler SM, Stamatoyannopoulos JA (2010) Sequencing newly replicated DNA reveals widespread plasticity in human replication timing. Proc Natl Acad Sci USA 107:139–144

    Article  PubMed  CAS  Google Scholar 

  • Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, Barrera LO, Calcar SV, Qu C, Ching KA et al (2007) Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 39:311–318

    Article  PubMed  CAS  Google Scholar 

  • Hiratani I, Ryba T, Itoh M, Rathjen J, Kulik M, Papp B, Fussner E, Bazett-Jones DP, Plath K, Dalton S et al (2010) Genome-wide dynamics of replication timing revealed by in vitro models of mouse embryogenesis. Genome Res 20:155–169

    Article  PubMed  CAS  Google Scholar 

  • Hiratani I, Ryba T, Itoh M, Yokochi T, Schwaiger M, Chang CW, Lyou Y, Townes TM, Schubeler D, Gilbert DM (2008) Global reorganization of replication domains during embryonic stem cell differentiation. PLoS Biol 6:e245

    Article  PubMed  Google Scholar 

  • Huvet M, Nicolay S, Touchon M, Audit B, d’Aubenton-Carafa Y, Arneodo A, Thermes C (2007) Human gene organization driven by the coordination of replication and transcription. Genome Res 17:1278–1285

    Google Scholar 

  • Hyrien O, Goldar A (2010) Mathematical modelling of eukaryotic DNA replication. Chromosome Res 18:147–161

    Article  PubMed  CAS  Google Scholar 

  • Hyrien O, Méchali M (1993) Chromosomal replication initiates and terminates at random sequences but at regular intervals in the ribosomal DNA of Xenopus early embryos. EMBO J 12:4511–4520

    PubMed  CAS  Google Scholar 

  • Jacob F, Brenner S, Cuzin F (1963) On the regulation of DNA replication in bacteria. Cold Spring Harb Symp Quant Biol 28:329–342

    Article  CAS  Google Scholar 

  • Karnani N, Taylor C, Malhotra A, Dutta A (2007) Pan-S replication patterns and chromosomal domains defined by genome-tiling arrays of ENCODE genomic areas. Genome Res 17:865–876

    Article  PubMed  CAS  Google Scholar 

  • Karolchik D, Baertsch R, Diekhans M, Furey TS, Hinrichs A, Lu YT, Roskin KM, Schwartz M, Sugnet CW, Thomas DJ et al (2003) The UCSC genome browser database. Nucleic Acids Res 31:51–54

    Article  PubMed  CAS  Google Scholar 

  • Lee W, Tillo D, Bray N, Morse RH, Davis RW, Hughes TR, Nislow C (2007) A high-resolution atlas of nucleosome occupancy in yeast. Nat Genet 39:1235–1244

    Article  PubMed  CAS  Google Scholar 

  • Lemaitre JM, Danis E, Pasero P, Vassetzky Y, Mechali M (2005) Mitotic remodeling of the replicon and chromosome structure. Cell 123:787–801

    Article  PubMed  CAS  Google Scholar 

  • Lemaitre C, Tannier E, Gautier C, Sagot MF (2008) Precise detection of rearrangement breakpoints in mammalian chromosomes. BMC Bioinformatics 9:286

    Article  PubMed  Google Scholar 

  • Lemaitre C, Zaghloul L, Sagot MF, Gautier C, Arneodo A, Tannier E, Audit B (2009) Analysis of fine-scale mammalian evolutionary breakpoints provides new insight into their relation to genome organisation. BMC Genomics 10:335

    Article  PubMed  Google Scholar 

  • Lobry JR (1995) Properties of a general model of DNA evolution under no-strand-bias conditions. J Mol Evol 40:326–330

    Article  PubMed  CAS  Google Scholar 

  • Lobry JR (1996) Aymmetric substitution patterns in the two DNA strands of bacteria. Mol Biol Evol 13:660–665

    Article  PubMed  CAS  Google Scholar 

  • MacAlpine DM, Rodriguez HK, Bell SP (2004) Coordination of replication and transcription along a Drosophila chromosome. Genes Dev 18:3094–3105

    Article  PubMed  CAS  Google Scholar 

  • Macleod D, Ali RR, Bird A (1998) An alternative promoter in the mouse major histocompatibility complex class II I-Abeta gene: implications for the origin of CpG islands. Mol Cell Biol 18:4433–4443

    PubMed  CAS  Google Scholar 

  • Mallat S (1998) A wavelet tour of signal processing. Academic, New York

    Google Scholar 

  • Mavrich TN, Ioshikhes IP, Venters BJ, Jiang C, Tomsho LP, Qi J, Schuster SC, Albert I, Pugh BF (2008) A barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast genome. Genome Res 18:1073–1083

    Article  PubMed  CAS  Google Scholar 

  • McNairn AJ, Gilbert DM (2003) Epigenomic replication: linking epigenetics to DNA replication. Bioessays 25:647–656

    Article  PubMed  CAS  Google Scholar 

  • Méchali M (2001) DNA replication origins: from sequence specificity to epigenetics. Nat Rev Genet 2:640–645

    Article  PubMed  Google Scholar 

  • Mesner LD, Crawford EL, Hamlin JL (2006) Isolating apparently pure libraries of replication origins from complex genomes. Mol Cell 21:719–726

    Article  PubMed  CAS  Google Scholar 

  • Miele V, Vaillant C, d’Aubenton-Carafa Y, Thermes C, Grange T (2008) DNA physical properties determine nucleosome occupancy from yeast to fly. Nucleic Acids Res 36:3746–3756

    Google Scholar 

  • Mrázek J, Karlin S (1998) Strand compositional asymmetry in bacterial and large viral genomes. Proc Natl Acad Sci USA 95:3720–3725

    Article  PubMed  Google Scholar 

  • Muzy JF, Bacry E, Arneodo A (1994) The multifractal formalism revisited with wavelets. Int J Bifurc Chaos 4:245–302

    Article  Google Scholar 

  • Nicolay S, Brodie of Brodie EB, Touchon M, Audit B, d’Aubenton-Carafa Y, Thermes C, Arneodo A (2007) Bifractality of human DNA strand-asymmetry profiles results from transcription. Phys Rev E 75:032902

    Google Scholar 

  • Ozsolak F, Song JS, Liu XS, Fisher DE (2007) High-throughput mapping of the chromatin structure of human promoters. Nat Biotechnol 25:244–248

    Article  PubMed  CAS  Google Scholar 

  • Ponger L, Duret L, Mouchiroud D (2001) Determinants of CpG islands: expression in early embryo and isochore structure. Genome Res 11:1854–1860

    PubMed  CAS  Google Scholar 

  • Remus D, Beall EL, Botchan MR (2004) DNA topology, not DNA sequence, is a critical determinant for Drosophila ORC-DNA binding. EMBO J 23:897–907

    Article  PubMed  CAS  Google Scholar 

  • Rocha EP, Danchin A, Viari A (1999) Universal replication biases in bacteria. Mol Microbiol 32:11–16

    Article  PubMed  CAS  Google Scholar 

  • Ryba T, Hiratani I, Lu J, Itoh M, Kulik M, Zhang J, Schulz TC, Robins AJ, Dalton S, Gilbert DM (2010) Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types. Genome Res 20:761–770

    Article  PubMed  CAS  Google Scholar 

  • Sabo PJ, Kuehn MS, Thurman R, Johnson BE, Johnson EM, Cao H, Yu M, Rosenzweig E, Goldy J, Haydock A et al (2006) Genome-scale mapping of DNase I sensitivity in vivo using tiling DNA microarrays. Nat Methods 3:511–518

    Article  PubMed  CAS  Google Scholar 

  • Sasaki T, Sawado T, Yamaguchi M, Shinomiya T (1999) Specification of regions of DNA replication initiation during embryogenesis in the 65-kilobase DNApolalpha-dE2F locus of Drosophila melanogaster. Mol Cell Biol 19:547–555

    PubMed  CAS  Google Scholar 

  • Saxonov S, Berg P, Brutlag DL (2006) A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci USA 103:1412–1417

    Article  PubMed  CAS  Google Scholar 

  • Schepers A, Ritzi M, Bousset K, Kremmer E, Yates JL, Harwood J, Diffley JF, Hammerschmidt W (2001) Human origin recognition complex binds to the region of the latent origin of DNA replication of epstein-barr virus. EMBO J 20:4588–4602

    Article  PubMed  CAS  Google Scholar 

  • Schones DE, Cui K, Cuddapah S, Roh TY, Barski A, Wang Z, Wei G, Zhao K (2008) Dynamic regulation of nucleosome positioning in the human genome. Cell 132:887–898

    Article  PubMed  CAS  Google Scholar 

  • Schübeler D, Scalzo D, Kooperberg C, van Steensel B, Delrow J, Groudine M (2002) Genome-wide DNA replication profile for Drosophila melanogaster: a link between transcription and replication timing. Nat Genet 32:438–442

    Article  PubMed  Google Scholar 

  • Schwaiger M, Schubeler D (2006) A question of timing: emerging links between transcription and replication. Curr Opin Genet Dev 16:177–183

    Article  PubMed  CAS  Google Scholar 

  • Sequeira-Mendes J, Diaz-Uriarte R, Apedaile A, Huntley D, Brockdorff N, Gomez M (2009) Transcription initiation activity sets replication origin efficiency in mammalian cells. PLoS Genet 5:e1000446

    Article  PubMed  Google Scholar 

  • St-Jean P, Vaillant C, Audit B, Arneodo A (2008) Spontaneous emergence of sequence-dependent rosettelike folding of chromatin fiber. Phys Rev E 77:061923

    Article  Google Scholar 

  • Suzuki MM, Bird A (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9:465–476

    Article  PubMed  CAS  Google Scholar 

  • The ENCODE Project Consortium (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447:799–816

    Article  Google Scholar 

  • Tillier ER, Collins RA 2000 The contributions of replication orientation, gene direction, and signal sequences to base-composition asymmetries in bacterial genomes. J Mol Evol 50:249–257

    PubMed  CAS  Google Scholar 

  • Touchon M, Arneodo A, d’Aubenton-Carafa Y, Thermes C (2004) Transcription-coupled and splicing-coupled strand asymmetries in eukaryotic genomes. Nucleic Acids Res 32:4969–4978

    Google Scholar 

  • Touchon M, Nicolay S, Arneodo A, d’Aubenton-Carafa Y, Thermes C (2003) Transcription-coupled TA and GC strand asymmetries in the human genome. FEBS Lett 555:579–582

    Google Scholar 

  • Touchon M, Nicolay S, Audit B, Brodie of Brodie EB, d’Aubenton-Carafa Y, Arneodo A, Thermes C (2005) Replication-associated strand asymmetries in mammalian genomes: toward detection of replication origins. Proc Natl Acad Sci USA 102:9836–9841

    Google Scholar 

  • Vaillant C, Audit B, Arneodo A (2007) Experiments confirm the influence of genome long-range correlations on nucleosome positioning. Phys Rev Lett 99:218103

    Article  PubMed  CAS  Google Scholar 

  • Vaillant C, Palmeira L, Chevereau G, Audit B, d’Aubenton-Carafa Y, Thermes C, Arneodo A (2010) A novel strategy of transcription regulation by intra-genic nucleosome ordering. Genome Res 20:59–67

    Google Scholar 

  • Vashee S, Cvetic C, Lu W, Simancek P, Kelly TJ, Walter JC (2003) Sequence-independent DNA binding and replication initiation by the human origin recognition complex. Genes Dev 17:1894–1908

    Article  PubMed  CAS  Google Scholar 

  • Woodfine K, Beare DM, Ichimura K, Debernardi S, Mungall AJ, Fiegler H, Collins VP, Carter NP, Dunham I (2005) Replication timing of human chromosome 6. Cell Cycle 4:172–176

    Article  PubMed  CAS  Google Scholar 

  • Yaffe E, Farkash-Amar S, Polten A, Yakhini Z, Tanay A, Simon I (2010) Comparative analysis of DNA replication timing reveals conserved large-scale chromosomal architecture. PLoS Genet 6:e1001011

    Article  PubMed  Google Scholar 

  • Yuan GC, Liu YJ, Dion MF, Slack MD, Wu LF, Altschuler SJ, Rando OJ (2005) Genome-scale identification of nucleosome positions in S. cerevisiae. Science 309:626–630

    Google Scholar 

Download references

Acknowledgements

We thank G. Chevereau, G. Guilbaud, O. Hyrien, H. Julienne, O. Rappailles and C. Vaillant for helpful discussions. This work was supported by ACI IMPBio2004, the PAI Tournesol and the Agence Nationale de la Recherche under project HUGOREP (ANR PCV 2005) and REFOPOL (ANR BLANC SVSE6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Audit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Audit, B. et al. (2013). Megabase Replication Domains Along the Human Genome: Relation to Chromatin Structure and Genome Organisation. In: Kundu, T. (eds) Epigenetics: Development and Disease. Subcellular Biochemistry, vol 61. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4525-4_3

Download citation

Publish with us

Policies and ethics