Megabase Replication Domains Along the Human Genome: Relation to Chromatin Structure and Genome Organisation

  • Benjamin AuditEmail author
  • Lamia Zaghloul
  • Antoine Baker
  • Alain Arneodo
  • Chun-Long Chen
  • Yves d’Aubenton-Carafa
  • Claude Thermes
Part of the Subcellular Biochemistry book series (SCBI, volume 61)


In higher eukaryotes, the absence of specific sequence motifs, marking the origins of replication has been a serious hindrance to the understanding of (i) the mechanisms that regulate the spatio-temporal replication program, and (ii) the links between origins activation, chromatin structure and transcription. In this chapter, we review the partitioning of the human genome into megabased-size replication domains delineated as N-shaped motifs in the strand compositional asymmetry profiles. They collectively span 28.3% of the genome and are bordered by more than 1,000 putative replication origins. We recapitulate the comparison of this partition of the human genome with high-resolution experimental data that confirms that replication domain borders are likely to be preferential replication initiation zones in the germline. In addition, we highlight the specific distribution of experimental and numerical chromatin marks along replication domains. Domain borders correspond to particular open chromatin regions, possibly encoded in the DNA sequence, and around which replication and transcription are highly coordinated. These regions also present a high evolutionary breakpoint density, suggesting that susceptibility to breakage might be linked to local open chromatin fiber state. Altogether, this chapter presents a compartmentalization of the human genome into replication domains that are landmarks of the human genome organization and are likely to play a key role in genome dynamics during evolution and in pathological situations.


Wavelet Transform Replication Origin Nucleosome Position Open Chromatin Nucleosome Occupancy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank G. Chevereau, G. Guilbaud, O. Hyrien, H. Julienne, O. Rappailles and C. Vaillant for helpful discussions. This work was supported by ACI IMPBio2004, the PAI Tournesol and the Agence Nationale de la Recherche under project HUGOREP (ANR PCV 2005) and REFOPOL (ANR BLANC SVSE6).


  1. Antequera F, Bird A (1999) CpG islands as genomic footprints of promoters that are associated with replication origins. Curr Biol 9:R661–R667PubMedCrossRefGoogle Scholar
  2. Arneodo A, Audit B, Decoster N, Muzy JF, Vaillant C (2002) Wavelet based multifractal formalism: application to DNA sequences, satellite images of the cloud structure and stock market data. In: Bunde A, Kropp J, Schellnhuber HJ (eds) The science of disasters: climate disruptions, heart attacks, and market crashes. Springer, Berlin, pp 26–102Google Scholar
  3. Arneodo A, Bacry E, Muzy JF (1995) The thermodynamics of fractals revisited with wavelets. Physica A 213:232–275CrossRefGoogle Scholar
  4. Arneodo A, d’Aubenton-Carafa Y, Audit B, Brodie of Brodie EB, Nicolay S, St-Jean P, Thermes C, Touchon M, Vaillant C (2007) DNA in chromatin: from genome-wide sequence analysis to the modeling of replication in mammals. Adv Chem Phys 135:203–252Google Scholar
  5. Arneodo A, Vaillant C, Audit B, Argoul F, d’Aubenton Carafa Y, Thermes C (2011) Multi-scale coding of genomic information: from DNA sequence to genome structure and function. Phys Rep 498:45–188Google Scholar
  6. Audit B, Nicolay S, Huvet M, Touchon M, d’Aubenton-Carafa Y, Thermes C, Arneodo A (2007) DNA replication timing data corroborate in silico human replication origin predictions. Phys Rev Lett 99:248102Google Scholar
  7. Audit B, Zaghloul L, Vaillant C, Chevereau G, d’Aubenton-Carafa Y, Thermes C, Arneodo A (2009) Open chromatin encoded in DNA sequence is the signature of “master” replication origins in human cells. Nucleic Acids Res 37:6064–6075Google Scholar
  8. Baker A, Audit B, Chen CL, Moindrot B, Leleu A, Guilbaud G, Rappailles A, Vaillant C, Goldar A, Mongelard F et al (2012) Replication fork polarity gradients revealed by megabase-sized U-shape replication timing domains in human cell lines. PLOS Comput Biol 8:e1002443Google Scholar
  9. Baker A, Nicolay S, Zaghloul L, d’Aubenton-Carafa Y, Thermes C, Audit B, Arneodo A (2010) Wavelet-based method to disentangle transcription- and replication-associated strand asymmetries in mammalian genomes. Appl Comput Harmon Anal 28:150–170Google Scholar
  10. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837PubMedCrossRefGoogle Scholar
  11. Bell SP, Dutta A (2002) DNA replication in eukaryotic cells. Annu Rev Biochem 71:333–374PubMedCrossRefGoogle Scholar
  12. Bernardi G (2001) Misunderstandings about isochores. Part 1. Gene 276:3–13PubMedCrossRefGoogle Scholar
  13. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21PubMedCrossRefGoogle Scholar
  14. Bird AP, Wolffe AP (1999) Methylation-induced repression–belts, braces, and chromatin. Cell 99:451–454PubMedCrossRefGoogle Scholar
  15. Bogan JA, Natale DA, Depamphilis ML (2000) Initiation of eukaryotic DNA replication: conservative or liberal? J Cell Physiol 184:139–150PubMedCrossRefGoogle Scholar
  16. Boyle AP, Davis S, Shulha HP, Meltzer P, Margulies EH, Weng Z, Furey TS, Crawford GE (2008) High-resolution mapping and characterization of open chromatin across the genome. Cell 132:311–322PubMedCrossRefGoogle Scholar
  17. Brodie of Brodie EB, Nicolay S, Touchon M, Audit B, d’Aubenton-Carafa Y, Thermes C, Arneodo A (2005) From DNA sequence analysis to modeling replication in the human genome. Phys Rev Lett 94:248103Google Scholar
  18. Bulmer M (1991) Strand symmetry of mutation rates in the beta-globin region. J Mol Evol 33:305–310PubMedCrossRefGoogle Scholar
  19. Cadoret JC, Meisch F, Hassan-Zadeh V, Luyten I, Guillet C, Duret L, Quesneville H, Prioleau MN (2008) Genome-wide studies highlight indirect links between human replication origins and gene regulation. Proc Natl Acad Sci USA 105:15837–15842PubMedCrossRefGoogle Scholar
  20. Chen CL, Duquenne L, Audit B, Guilbaud G, Rappailles A, Baker A, Huvet M, d’Aubenton Carafa Y, Hyrien O, Arneodo A et al (2011) Replication-associated mutational asymmetry in the human genome. Mol Biol Evol 28:2327–2337Google Scholar
  21. Chen CL, Rappailles A, Duquenne L, Huvet M, Guilbaud G, Farinelli L, Audit B, d’Aubenton Carafa Y, Arneodo A, Hyrien O et al (2010) Impact of replication timing on non-CpG and CpG substitution rates in mammalian genomes. Genome Res 4:447–457Google Scholar
  22. Chevereau G, Palmeira L, Thermes C, Arneodo A, Vaillant C (2009) Thermodynamics of intra-genic nucleosome ordering. Phys Rev Lett 103:188103PubMedCrossRefGoogle Scholar
  23. Conti C, Sacca B, Herrick J, Lalou C, Pommier Y, Bensimon A (2007) Replication fork velocities at adjacent replication origins are coordinately modified during DNA replication in human cells. Mol Biol Cell 18:3059–3067PubMedCrossRefGoogle Scholar
  24. Courbet S, Gay S, Arnoult N, Wronka G, Anglana M, Brison O, Debatisse M (2008) Replication fork movement sets chromatin loop size and origin choice in mammalian cells. Nature 455:557–560PubMedCrossRefGoogle Scholar
  25. Coverley D, Laskey RA (1994) Regulation of eukaryotic DNA replication. Annu Rev Biochem 63:745–776PubMedCrossRefGoogle Scholar
  26. Danis E, Brodolin K, Menut S, Maiorano D, Girard-Reydet C, Méchali M (2004) Specification of a DNA replication origin by a transcription complex. Nat Cell Biol 6:721–730PubMedCrossRefGoogle Scholar
  27. Demeret C, Vassetzky Y, Méchali M (2001) Chromatin remodelling and DNA replication: from nucleosomes to loop domains. Oncogene 20:3086–3093PubMedCrossRefGoogle Scholar
  28. Desprat R, Thierry-Mieg D, Lailler N, Lajugie J, Schildkraut C, Thierry-Mieg J, Bouhassira EE (2009) Predictable dynamic program of timing of DNA replication in human cells. Genome Res 19:2288–2299PubMedCrossRefGoogle Scholar
  29. Eckhardt F, Lewin J, Cortese R, Rakyan VK, Attwood J, Burger M, Burton J, Cox TV, Davies R, Down TA, et al (2006) DNA methylation profiling of human chromosomes 6, 20 and 22. Nat Genet 38:1378–1385PubMedCrossRefGoogle Scholar
  30. Farkash-Amar S, Lipson D, Polten A, Goren A, Helmstetter C, Yakhini Z, Simon I (2008) Global organization of replication time zones of the mouse genome. Genome Res 18:1562–1570PubMedCrossRefGoogle Scholar
  31. Francino MP, Ochman H (2000) Strand symmetry around the beta-globin origin of replication in primates. Mol Biol Evol 17:416–422PubMedCrossRefGoogle Scholar
  32. Frank AC, Lobry JR (1999) Asymmetric substitution patterns: a review of possible underlying mutational or selective mechanisms. Gene 238:65–77PubMedCrossRefGoogle Scholar
  33. Gerbi SA, Bielinsky AK (1997) Replication initiation point mapping. Methods 13:271–280PubMedCrossRefGoogle Scholar
  34. Gerbi SA, Bielinsky AK (2002) DNA replication and chromatin. Curr Opin Genet Dev 12:243–248PubMedCrossRefGoogle Scholar
  35. Gierlik A, Kowalczuk M, Mackiewicz P, Dudek MR, Cebrat S (2000) Is there replication-associated mutational pressure in the Saccharomyces cerevisiae genome? J Theor Biol 202:305–314PubMedCrossRefGoogle Scholar
  36. Gilbert DM (2001) Making sense of eukaryotic DNA replication origins. Science 294:96–100PubMedCrossRefGoogle Scholar
  37. Gilbert DM (2004) In search of the holy replicator. Nat Rev Mol Cell Biol 5:848–855PubMedCrossRefGoogle Scholar
  38. Goldman MA, Holmquist GP, Gray MC, Caston LA, Nag A (1984) Replication timing of genes and middle repetitive sequences. Science 224:686–692PubMedCrossRefGoogle Scholar
  39. Hamlin JL, Mesner LD, Lar O, Torres R, Chodaparambil SV, Wang L (2008) A revisionist replicon model for higher eukaryotic genomes. J Cell Biochem 105:321–329PubMedCrossRefGoogle Scholar
  40. Hansen RS, Thomas S, Sandstrom R, Canfield TK, Thurman RE, Weaver M, Dorschner MO, Gartler SM, Stamatoyannopoulos JA (2010) Sequencing newly replicated DNA reveals widespread plasticity in human replication timing. Proc Natl Acad Sci USA 107:139–144PubMedCrossRefGoogle Scholar
  41. Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, Barrera LO, Calcar SV, Qu C, Ching KA et al (2007) Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 39:311–318PubMedCrossRefGoogle Scholar
  42. Hiratani I, Ryba T, Itoh M, Rathjen J, Kulik M, Papp B, Fussner E, Bazett-Jones DP, Plath K, Dalton S et al (2010) Genome-wide dynamics of replication timing revealed by in vitro models of mouse embryogenesis. Genome Res 20:155–169PubMedCrossRefGoogle Scholar
  43. Hiratani I, Ryba T, Itoh M, Yokochi T, Schwaiger M, Chang CW, Lyou Y, Townes TM, Schubeler D, Gilbert DM (2008) Global reorganization of replication domains during embryonic stem cell differentiation. PLoS Biol 6:e245PubMedCrossRefGoogle Scholar
  44. Huvet M, Nicolay S, Touchon M, Audit B, d’Aubenton-Carafa Y, Arneodo A, Thermes C (2007) Human gene organization driven by the coordination of replication and transcription. Genome Res 17:1278–1285Google Scholar
  45. Hyrien O, Goldar A (2010) Mathematical modelling of eukaryotic DNA replication. Chromosome Res 18:147–161PubMedCrossRefGoogle Scholar
  46. Hyrien O, Méchali M (1993) Chromosomal replication initiates and terminates at random sequences but at regular intervals in the ribosomal DNA of Xenopus early embryos. EMBO J 12:4511–4520PubMedGoogle Scholar
  47. Jacob F, Brenner S, Cuzin F (1963) On the regulation of DNA replication in bacteria. Cold Spring Harb Symp Quant Biol 28:329–342CrossRefGoogle Scholar
  48. Karnani N, Taylor C, Malhotra A, Dutta A (2007) Pan-S replication patterns and chromosomal domains defined by genome-tiling arrays of ENCODE genomic areas. Genome Res 17:865–876PubMedCrossRefGoogle Scholar
  49. Karolchik D, Baertsch R, Diekhans M, Furey TS, Hinrichs A, Lu YT, Roskin KM, Schwartz M, Sugnet CW, Thomas DJ et al (2003) The UCSC genome browser database. Nucleic Acids Res 31:51–54PubMedCrossRefGoogle Scholar
  50. Lee W, Tillo D, Bray N, Morse RH, Davis RW, Hughes TR, Nislow C (2007) A high-resolution atlas of nucleosome occupancy in yeast. Nat Genet 39:1235–1244PubMedCrossRefGoogle Scholar
  51. Lemaitre JM, Danis E, Pasero P, Vassetzky Y, Mechali M (2005) Mitotic remodeling of the replicon and chromosome structure. Cell 123:787–801PubMedCrossRefGoogle Scholar
  52. Lemaitre C, Tannier E, Gautier C, Sagot MF (2008) Precise detection of rearrangement breakpoints in mammalian chromosomes. BMC Bioinformatics 9:286PubMedCrossRefGoogle Scholar
  53. Lemaitre C, Zaghloul L, Sagot MF, Gautier C, Arneodo A, Tannier E, Audit B (2009) Analysis of fine-scale mammalian evolutionary breakpoints provides new insight into their relation to genome organisation. BMC Genomics 10:335PubMedCrossRefGoogle Scholar
  54. Lobry JR (1995) Properties of a general model of DNA evolution under no-strand-bias conditions. J Mol Evol 40:326–330PubMedCrossRefGoogle Scholar
  55. Lobry JR (1996) Aymmetric substitution patterns in the two DNA strands of bacteria. Mol Biol Evol 13:660–665PubMedCrossRefGoogle Scholar
  56. MacAlpine DM, Rodriguez HK, Bell SP (2004) Coordination of replication and transcription along a Drosophila chromosome. Genes Dev 18:3094–3105PubMedCrossRefGoogle Scholar
  57. Macleod D, Ali RR, Bird A (1998) An alternative promoter in the mouse major histocompatibility complex class II I-Abeta gene: implications for the origin of CpG islands. Mol Cell Biol 18:4433–4443PubMedGoogle Scholar
  58. Mallat S (1998) A wavelet tour of signal processing. Academic, New YorkGoogle Scholar
  59. Mavrich TN, Ioshikhes IP, Venters BJ, Jiang C, Tomsho LP, Qi J, Schuster SC, Albert I, Pugh BF (2008) A barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast genome. Genome Res 18:1073–1083PubMedCrossRefGoogle Scholar
  60. McNairn AJ, Gilbert DM (2003) Epigenomic replication: linking epigenetics to DNA replication. Bioessays 25:647–656PubMedCrossRefGoogle Scholar
  61. Méchali M (2001) DNA replication origins: from sequence specificity to epigenetics. Nat Rev Genet 2:640–645PubMedCrossRefGoogle Scholar
  62. Mesner LD, Crawford EL, Hamlin JL (2006) Isolating apparently pure libraries of replication origins from complex genomes. Mol Cell 21:719–726PubMedCrossRefGoogle Scholar
  63. Miele V, Vaillant C, d’Aubenton-Carafa Y, Thermes C, Grange T (2008) DNA physical properties determine nucleosome occupancy from yeast to fly. Nucleic Acids Res 36:3746–3756Google Scholar
  64. Mrázek J, Karlin S (1998) Strand compositional asymmetry in bacterial and large viral genomes. Proc Natl Acad Sci USA 95:3720–3725PubMedCrossRefGoogle Scholar
  65. Muzy JF, Bacry E, Arneodo A (1994) The multifractal formalism revisited with wavelets. Int J Bifurc Chaos 4:245–302CrossRefGoogle Scholar
  66. Nicolay S, Brodie of Brodie EB, Touchon M, Audit B, d’Aubenton-Carafa Y, Thermes C, Arneodo A (2007) Bifractality of human DNA strand-asymmetry profiles results from transcription. Phys Rev E 75:032902Google Scholar
  67. Ozsolak F, Song JS, Liu XS, Fisher DE (2007) High-throughput mapping of the chromatin structure of human promoters. Nat Biotechnol 25:244–248PubMedCrossRefGoogle Scholar
  68. Ponger L, Duret L, Mouchiroud D (2001) Determinants of CpG islands: expression in early embryo and isochore structure. Genome Res 11:1854–1860PubMedGoogle Scholar
  69. Remus D, Beall EL, Botchan MR (2004) DNA topology, not DNA sequence, is a critical determinant for Drosophila ORC-DNA binding. EMBO J 23:897–907PubMedCrossRefGoogle Scholar
  70. Rocha EP, Danchin A, Viari A (1999) Universal replication biases in bacteria. Mol Microbiol 32:11–16PubMedCrossRefGoogle Scholar
  71. Ryba T, Hiratani I, Lu J, Itoh M, Kulik M, Zhang J, Schulz TC, Robins AJ, Dalton S, Gilbert DM (2010) Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types. Genome Res 20:761–770PubMedCrossRefGoogle Scholar
  72. Sabo PJ, Kuehn MS, Thurman R, Johnson BE, Johnson EM, Cao H, Yu M, Rosenzweig E, Goldy J, Haydock A et al (2006) Genome-scale mapping of DNase I sensitivity in vivo using tiling DNA microarrays. Nat Methods 3:511–518PubMedCrossRefGoogle Scholar
  73. Sasaki T, Sawado T, Yamaguchi M, Shinomiya T (1999) Specification of regions of DNA replication initiation during embryogenesis in the 65-kilobase DNApolalpha-dE2F locus of Drosophila melanogaster. Mol Cell Biol 19:547–555PubMedGoogle Scholar
  74. Saxonov S, Berg P, Brutlag DL (2006) A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci USA 103:1412–1417PubMedCrossRefGoogle Scholar
  75. Schepers A, Ritzi M, Bousset K, Kremmer E, Yates JL, Harwood J, Diffley JF, Hammerschmidt W (2001) Human origin recognition complex binds to the region of the latent origin of DNA replication of epstein-barr virus. EMBO J 20:4588–4602PubMedCrossRefGoogle Scholar
  76. Schones DE, Cui K, Cuddapah S, Roh TY, Barski A, Wang Z, Wei G, Zhao K (2008) Dynamic regulation of nucleosome positioning in the human genome. Cell 132:887–898PubMedCrossRefGoogle Scholar
  77. Schübeler D, Scalzo D, Kooperberg C, van Steensel B, Delrow J, Groudine M (2002) Genome-wide DNA replication profile for Drosophila melanogaster: a link between transcription and replication timing. Nat Genet 32:438–442PubMedCrossRefGoogle Scholar
  78. Schwaiger M, Schubeler D (2006) A question of timing: emerging links between transcription and replication. Curr Opin Genet Dev 16:177–183PubMedCrossRefGoogle Scholar
  79. Sequeira-Mendes J, Diaz-Uriarte R, Apedaile A, Huntley D, Brockdorff N, Gomez M (2009) Transcription initiation activity sets replication origin efficiency in mammalian cells. PLoS Genet 5:e1000446PubMedCrossRefGoogle Scholar
  80. St-Jean P, Vaillant C, Audit B, Arneodo A (2008) Spontaneous emergence of sequence-dependent rosettelike folding of chromatin fiber. Phys Rev E 77:061923CrossRefGoogle Scholar
  81. Suzuki MM, Bird A (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9:465–476PubMedCrossRefGoogle Scholar
  82. The ENCODE Project Consortium (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447:799–816CrossRefGoogle Scholar
  83. Tillier ER, Collins RA 2000 The contributions of replication orientation, gene direction, and signal sequences to base-composition asymmetries in bacterial genomes. J Mol Evol 50:249–257PubMedGoogle Scholar
  84. Touchon M, Arneodo A, d’Aubenton-Carafa Y, Thermes C (2004) Transcription-coupled and splicing-coupled strand asymmetries in eukaryotic genomes. Nucleic Acids Res 32:4969–4978Google Scholar
  85. Touchon M, Nicolay S, Arneodo A, d’Aubenton-Carafa Y, Thermes C (2003) Transcription-coupled TA and GC strand asymmetries in the human genome. FEBS Lett 555:579–582Google Scholar
  86. Touchon M, Nicolay S, Audit B, Brodie of Brodie EB, d’Aubenton-Carafa Y, Arneodo A, Thermes C (2005) Replication-associated strand asymmetries in mammalian genomes: toward detection of replication origins. Proc Natl Acad Sci USA 102:9836–9841Google Scholar
  87. Vaillant C, Audit B, Arneodo A (2007) Experiments confirm the influence of genome long-range correlations on nucleosome positioning. Phys Rev Lett 99:218103PubMedCrossRefGoogle Scholar
  88. Vaillant C, Palmeira L, Chevereau G, Audit B, d’Aubenton-Carafa Y, Thermes C, Arneodo A (2010) A novel strategy of transcription regulation by intra-genic nucleosome ordering. Genome Res 20:59–67Google Scholar
  89. Vashee S, Cvetic C, Lu W, Simancek P, Kelly TJ, Walter JC (2003) Sequence-independent DNA binding and replication initiation by the human origin recognition complex. Genes Dev 17:1894–1908PubMedCrossRefGoogle Scholar
  90. Woodfine K, Beare DM, Ichimura K, Debernardi S, Mungall AJ, Fiegler H, Collins VP, Carter NP, Dunham I (2005) Replication timing of human chromosome 6. Cell Cycle 4:172–176PubMedCrossRefGoogle Scholar
  91. Yaffe E, Farkash-Amar S, Polten A, Yakhini Z, Tanay A, Simon I (2010) Comparative analysis of DNA replication timing reveals conserved large-scale chromosomal architecture. PLoS Genet 6:e1001011PubMedCrossRefGoogle Scholar
  92. Yuan GC, Liu YJ, Dion MF, Slack MD, Wu LF, Altschuler SJ, Rando OJ (2005) Genome-scale identification of nucleosome positions in S. cerevisiae. Science 309:626–630Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Benjamin Audit
    • 1
    • 2
    Email author
  • Lamia Zaghloul
    • 1
    • 2
  • Antoine Baker
    • 1
    • 2
  • Alain Arneodo
    • 1
    • 2
  • Chun-Long Chen
    • 3
  • Yves d’Aubenton-Carafa
    • 3
  • Claude Thermes
    • 3
  1. 1.Université de LyonLyonFrance
  2. 2.Laboratoire de Physique, CNRSEcole Normale Supérieure de LyonLyonFrance
  3. 3.Centre de Génétique Moléculaire, CNRSGif-sur-YvetteFrance

Personalised recommendations