Skip to main content

Histone Acetylation as a Therapeutic Target

  • Chapter
  • First Online:
Epigenetics: Development and Disease

Part of the book series: Subcellular Biochemistry ((SCBI,volume 61))

Abstract

The recent developments in the field of epigenetics have changed the way the covalent modifications were perceived from mere chemical tags to important biological recruiting platforms as well as decisive factors in the process of transcriptional regulation and gene expression. Over the years, the parallel investigations in the area of epigenetics and disease have also shown the significance of the epigenetic modifications as important regulatory nodes that exhibit dysfunction in disease states. In the present scenario where epigenetic therapy is also being considered at par with the conventional therapeutic strategies, this article reviews the role of histone acetylation as an epigenetic mark involved in different biological processes associated with normal as well as abnormal gene expression states, modulation of this acetylation by small molecules and warrants the possibility of acetylation as a therapeutic target.

Equal Contribution

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • An W, Kim J, Roeder RG (2004) Ordered cooperative functions of PRMT1, p300 and CARM1 in transcriptional activation by p53. Cell 117:735–748

    CAS  PubMed  Google Scholar 

  • Arif M, Pradhan SK, Thanuja GR, Vedamurthy BM, Agrawal S, Dasgupta D, Kundu TK (2009) Mechanism of p300 specific histone acetyltransferase inhibition by small molecules. J Med Chem 52:267–277

    CAS  PubMed  Google Scholar 

  • Arif M, Vedamurthy BM, Choudhari R, Ostwal YB, Mantelingu K, Kodaganur GS, Kundu TK (2010) Nitric oxide-mediated histone hyperacetylation in oral cancer: target for a water-soluble HAT inhibitor, CTK7A. Chem Biol 17:903–913

    CAS  PubMed  Google Scholar 

  • Balasubramanyam K, Swaminathan V, Ranganathan A, Kundu TK (2003) Small molecule modulators of histone acetyltransferase p300. J Biol Chem 278:19134–19140

    CAS  PubMed  Google Scholar 

  • Balasubramanyam K, Altaf M, Varier RA, Swaminathan V, Ravindran A, Sadhale PP, Kundu TK (2004) Polyisoprenylated benzophenone, garcinol, a natural histone acetyltransferase inhibitor, represses chromatin transcription and alters global gene expression. J Biol Chem 279:33716–33726

    CAS  PubMed  Google Scholar 

  • Bandyopadhyay D, Okan NA, Bales E, Nascimento L, Cole PA, Medrano EE (2002) Down-regulation of p300/CBP histone acetyltransferase activates a senescence checkpoint in human melanocytes. Cancer Res 62:6231–6239

    CAS  PubMed  Google Scholar 

  • Barman HK, Takami Y, Ono T, Nishijima H, Sanematsu F, Shibahara K, Nakayama T (2006) Histone acetyltransferase 1 is dispensable for replication-coupled chromatin assembly but contributes to recover DNA damages created following replication blockage in vertebrate cells. Biochem Biophys Res Commun 345:1547–1557

    CAS  PubMed  Google Scholar 

  • Barman HK, Takami Y, Nishijima H, Shibahara K, Sanematsu F, Nakayama T (2008) Histone acetyltransferase-1 regulates integrity of cytosolic histone H3-H4 containing complex. Biochem Biophys Res Commun 373:624–630

    CAS  PubMed  Google Scholar 

  • Barrett RM, Malvaez M, Kramar E, Matheos DP, Arrizon A, Cabrera SM, Lynch G, Greene RW, Wood MA (2011) Hippocampal focal knockout of CBP affects specific histone modifications, long-term potentiation, and long-term memory. Neuropsychopharmacology 36:1545–1556

    CAS  PubMed  Google Scholar 

  • Bártová E, Galiová G, Krejcí J, Harnicarová A, Strasák L, Kozubek S (2008) Epigenome and chromatin structure in human embryonic stem cells undergoing differentiation. Dev Dyn 237:3690–3702

    PubMed  Google Scholar 

  • Battu A, Ray A, Wani AA (2011) ASF1A and ATM regulate H3K56-mediated cell-cycle checkpoint recovery in response to UV irradiation. Nucleic Acids Res 39:7931–7945

    CAS  PubMed  Google Scholar 

  • Biel M, Kretsovali A, Karatzali E, Papamatheakis J, Giannis A (2004) Design, synthesis, and biological evaluation of a small-molecule inhibitor of the histone acetyltransferase Gcn5. Angew Chem Int Ed Engl 43:3974–3976

    CAS  PubMed  Google Scholar 

  • Bird A (2007) Perceptions of epigenetics. Nature 447:396–398

    CAS  PubMed  Google Scholar 

  • Blackwell JSJ, Wilkinson ST, Mosammaparast N, Pemberton LF (2007) Mutational analysis of H3 and H4 N termini reveals distinct roles in nuclear import. J Biol Chem 282:20142–20150

    CAS  PubMed  Google Scholar 

  • Borrow J, Stanton VP, Andresen JM, Becher R, Behm FG, Chaganti RS, Civin CI, Disteche C, Dubé I, Frischauf AM, Horsman D, Mitelman F, Volinia S, Watmore AE, Housman DE (1996) The translocation t(8;16)(p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein. Nat Genet 14:33–41

    CAS  PubMed  Google Scholar 

  • Bowers EM, Yan G, Mukherjee C, Orry A, Wang L, Holbert MA, Crump NT, Hazzalin CA, Liszczak G, Yuan H, Larocca C, Saldanha SA, Abagyan R, Sun Y, Meyers DJ, Marmorstein R, Mahadevan LC, Alani RM, Cole PA (2010) Virtual ligand screening of the p300/CBP histone acetyltransferase: identification of a selective small molecule inhibitor. Chem Biol 17:471–482

    CAS  PubMed  Google Scholar 

  • Brady ME, Ozanne DM, Gaughan L, Waite I, Cook S, Neal DE, Robson CN (1999) Tip60 is a nuclear hormone receptor coactivator. J Biol Chem 274:17599–17604

    CAS  PubMed  Google Scholar 

  • Brasnjevic I, Steinbusch HW, Schmitz C, Martinez-Martinez P, Initiative ENR (2009) Delivery of peptide and protein drugs over the blood-brain barrier. Prog Neurobiol 87:212–251

    CAS  PubMed  Google Scholar 

  • Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820

    CAS  PubMed  Google Scholar 

  • Carapeti M, Aguiar RC, Goldman JM, Cross NC (1998) A novel fusion between MOZ and the nuclear receptor coactivator TIF2 in acute myeloid leukemia. Blood 91:3127–3133

    CAS  PubMed  Google Scholar 

  • Caton PW, Nayuni NK, Kieswich J, Khan NQ, Yaqoob MM, Corder R (2010) Metformin suppresses hepatic gluconeogenesis through induction of SIRT1 and GCN5. J Endocrinol 205:97–106

    CAS  PubMed  Google Scholar 

  • Cereseto A, Manganaro L, Gutierrez MI, Terreni M, Fittipaldi A, Lusic M, Marcello A, Giacca M (2005) Acetylation of HIV-1 integrase by p300 regulates viral integration. EMBO J 24:3070–3081

    CAS  PubMed  Google Scholar 

  • Chang L, Loranger SS, Mizzen C, Ernst SG, Allis CD, Annunziato AT (1997) Histones in transit: cytosolic histone complexes and diacetylation of H4 during nucleosome assembly in human cells. Biochemistry 36:469–480

    CAS  PubMed  Google Scholar 

  • Chang J, Jallouli Y, Barras A, Dupont N, Betbeder D (2009) Chapter 1 – Drug delivery to the brain using colloidal carriers. Prog Brain Res 180:2–17

    PubMed  Google Scholar 

  • Charvet C, Wissler M, Brauns-Schubert P, Wang SJ, Tang Y, Sigloch FC, Mellert H, Brandenburg M, Lindner SE, Breit B, Green DR, McMahon SB, Borner C, Gu W, Maurer U (2011) Phosphorylation of Tip60 by GSK-3 determines the induction of PUMA and apoptosis by p53. Mol Cell 42:584–596

    CAS  PubMed  Google Scholar 

  • Chatterjee S, Gadad SS, Kundu TK (2010) Atomic force microscopy: a tool to unveil the mystery of biological systems. Resonance 15:622–642

    CAS  Google Scholar 

  • Chen S, Feng B, George B, Chakrabarti R, Chen M, Chakrabarti S (2010) Transcriptional coactivator p300 regulates glucose-induced gene expression in endothelial cells. Am J Physiol Endocrinol Metab 298:E127–E137

    CAS  PubMed  Google Scholar 

  • Chiani F, Di Felice F, Camilloni G (2006) SIR2 modifies histone H4-K16 acetylation and affects superhelicity in the ARS region of plasmid chromatin in Saccharomyces cerevisiae. Nucleic Acids Res 34:5426–5437

    CAS  PubMed  Google Scholar 

  • Choi KC, Jung MG, Lee YH, Yoon JC, Kwon SH, Kang HB, Kim MJ, Cha JH, Kim YJ, Jun WJ, Lee JM, Yoon HG (2009) Epigallocatechin-3-gallate, a histone acetyltransferase inhibitor, inhibits EBV-induced B lymphocyte transformation via suppression of RelA acetylation. Cancer Res 69:583–592

    CAS  PubMed  Google Scholar 

  • Chupreta S, Holmstrom S, Subramanian L, Iniguez-Lluhi JA (2005) A small conserved surface in SUMO is the critical structural determinant of its transcriptional inhibitory properties. Mol Cell Biol 25:4272–4282

    CAS  PubMed  Google Scholar 

  • Col E, Caron C, Chable-Bessia C, Legube G, Gazzeri S, Komatsu Y, Yoshida M, Benkirane M, Trouche D, Khochbin S (2005) HIV-1 Tat targets Tip60 to impair the apoptotic cell response to genotoxic stresses. EMBO J 24:2634–2645

    CAS  PubMed  Google Scholar 

  • Cole PA (2008) Chemical probes for histone-modifying enzymes. Nat Chem Biol 4:590–597

    Google Scholar 

  • Costantino L, Gandolfi F, Tosi G, Rivasi F, Vandelli MA, Forni F (2005) Peptide-derivatized biodegradable nanoparticles able to cross the blood-brain barrier. J Control Release 108:84–96

    CAS  PubMed  Google Scholar 

  • Creaven M, Hans F, Mutskov V, Col E, Caron C, Dimitrov S, Khochbin S (1999) Control of the histone-acetyltransferase activity of Tip60 by the HIV-1 transactivator protein, Tat. Biochemistry 38:8826–8830

    CAS  PubMed  Google Scholar 

  • Cui L, Miao J (2010) Chromatin-mediated epigenetic regulation in the malaria parasite Plasmodium falciparum. Eukaryot Cell 9:1138–1149

    CAS  PubMed  Google Scholar 

  • Cui L, Miao J, Furuya T, Li X, Su XZ (2007) PfGCN5-mediated histone H3 acetylation plays a key role in gene expression in Plasmodium falciparum. Eukaryot Cell 6:1219–1227

    CAS  PubMed  Google Scholar 

  • Cui L, Miao J, Furuya T, Fan Q, Li X, Rathod PK, Su XZ (2008) Histone acetyltransferase inhibitor anacardic acid causes changes in global gene expression during in vitro Plasmodium falciparum development. Eukaryot Cell 7:1200–1210

    CAS  PubMed  Google Scholar 

  • Dai YS, Markham BE (2001) p300 functions as a coactivator of transcription factor GATA-4. J Biol Chem 276:37178–37185

    CAS  PubMed  Google Scholar 

  • Dal Piaz F, Tosco A, Eletto D, Piccinelli AL, Moltedo O, Franceschelli S, Sbardella G, Remondelli P, Ratrelli L, Vesci L, Pisano C, De Tommasi N (2010) The identification of a novel natural activator of p300 histone acetyltransferase provides new insights into the modulation mechanism of this enzyme. Chembiochem 11:818–827

    CAS  PubMed  Google Scholar 

  • Das C, Lucia MS, Hansen KC, Tyler JK (2009) CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature 459:113–117

    CAS  PubMed  Google Scholar 

  • Deng L, de la Fuente C, Fu P, Wang L, Donnelly R, Wade JD, Lambert P, Li H, Lee CG, Kashanchi F (2000) Acetylation of HIV-1 Tat by CBP/P300 increases transcription of integrated HIV-1 genome and enhances binding to core histones. Virology 277:278–295

    CAS  PubMed  Google Scholar 

  • Dentin R, Liu Y, Koo SH, Hedrick S, Vargas T, Heredia J, Yates J, Montminy M (2007) Insulin modulates gluconeogenesis by inhibition of the coactivator TORC2. Nature 449:366–369

    CAS  PubMed  Google Scholar 

  • Doyon Y, Cayrou C, Ullah M, Landry AJ, Côté V, Selleck W, Lane WS, Tan S, Yang XJ, Côté J (2006) ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation. Mol Cell 21:51–64

    CAS  PubMed  Google Scholar 

  • Driscoll R, Hudson A, Jackson SP (2007) Yeast Rtt109 promotes genome stability by acetylating histone H3 on lysine 56. Science 315:649–652

    CAS  PubMed  Google Scholar 

  • Duffy KR, Pardridge WM (1987) Blood-brain barrier transcytosis of insulin in developing rabbits. Brain Res 420:32–38

    CAS  PubMed  Google Scholar 

  • Emerich DF, Thanos CG (2006) The pinpoint promise of nanoparticle-based drug delivery and molecular diagnosis. Biomol Eng 23:171–184

    CAS  PubMed  Google Scholar 

  • English CM, Adkins MW, Carson JJ, Churchill ME, Tyler JK (2006) Structural basis for the histone chaperone activity of Asf1. Cell 127:495–508

    CAS  PubMed  Google Scholar 

  • Eymin B, Claverie P, Salon C, Leduc C, Col E, Brambilla E, Khochbin S, Gazzeri S (2006) p14ARF activates a Tip60-dependent and p53-independent ATM/ATR/CHK pathway in response to genotoxic stress. Mol Cell Biol 26:4339–4350

    CAS  PubMed  Google Scholar 

  • Falbo KB, Shen X (2006) Chromatin remodeling in DNA replication. J Cell Biochem 97:684–689

    CAS  PubMed  Google Scholar 

  • Fan Q, An L, Cui L (2004) Plasmodium falciparum histone acetyltransferase, a yeast GCN5 homologue involved in chromatin remodeling. Eukaryot Cell 3:264–276

    CAS  PubMed  Google Scholar 

  • Fischle W, Tseng BS, Dormann HL, Ueberheide BM, Garcia BA, Shabanowitz J, Hunt DF, Funabiki H, Allis CD (2005) Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 438:1116–1122

    CAS  PubMed  Google Scholar 

  • Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G, Bonaldi T, Haydon C, Ropero S, Petrie K, Iyer NG, Pérez-Rosado A, Calvo E, Lopez JA, Cano A, Calasanz MJ, Colomer D, Piris MA, Ahn N, Imhof A, Caldas C, Jenuwein T, Esteller M (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37:391–400

    CAS  PubMed  Google Scholar 

  • Francis YI, Fà M, Ashraf H, Zhang H, Staniszewski A, Latchman DS, Arancio O (2009) Dysregulation of histone acetylation in the APP/PS1 mouse model of Alzheimer’s disease. J Alzheimers Dis 18:131–139

    CAS  PubMed  Google Scholar 

  • Fukuda H, Sano N, Muto S, Horikoshi M (2006) Simple histone acetylation plays a complex role in the regulation of gene expression. Biref Funct Genomic Proteomic 5:190–208

    CAS  Google Scholar 

  • Fussner E, Ahmed K, Dehghani H, Strauss M, Bazett-Jones DP (2010) Changes in chromatin fiber density as a marker for pluripotency. Cold Spring Harb Symp Quant Biol 75:245–249

    CAS  PubMed  Google Scholar 

  • Gadad SS, Rajan RE, Senapati P, Chatterjee S, Shandilya J, Dash PK, Ranga U, Kundu TK (2011) HIV-1 infection induces acetylation of NPM1 that facilitates Tat localization and enhances viral transactivation. J Mol Biol 410:997–1007

    CAS  PubMed  Google Scholar 

  • Gaughan L, Brady ME, Cook S, Neal DE, Robson CN (2001) Tip60 is a co-activator specific for class I nuclear hormone receptors. J Biol Chem 276:46841–46848

    CAS  PubMed  Google Scholar 

  • Gaughan L, Logan IR, Cook S, Neal DE, Robson CN (2002) Tip60 and histone deacetylase 1 regulate androgen receptor activity through changes to the acetylation status of the receptor. J Biol Chem 277:25904–25913

    CAS  PubMed  Google Scholar 

  • Gayther SA, Batley SJ, Linger L, Bannister A, Thorpe K, Chin SF, Daigo Y, Russell P, Wilson A, Sowter HM, Delhanty JD, Ponder BA, Kouzarides T, Caldas C (2000) Mutations truncating the EP300 acetylase in human cancers. Nat Genet 24:300–303

    CAS  PubMed  Google Scholar 

  • Ge Z, Wang H, Parthun MR (2011) Nuclear Hat1p complex (NuB4) components participate in DNA repair-linked chromatin reassembly. J Biol Chem 286:16790–16799

    CAS  PubMed  Google Scholar 

  • Gelperina S, Maksimenko O, Khalansky A, Vanchugova L, Shipulo E, Abbasova K, Berdiev R, Wohlfart S, Chepurnova N, Kreuter J (2010) Drug delivery to the brain using surfactant-coated poly(lactide-co-glycolide) nanoparticles: influence of the formulation parameters. Eur J Pharm Biopharm 74:157–163

    CAS  PubMed  Google Scholar 

  • Ghizzoni M, Boltjes A, Graaf C, Haisma HJ, Dekker FJ (2010) Improved inhibition of the histone acetyltransferase PCAF by an anacardic acid derivative. Bioorg Med Chem 18:5826–5834

    CAS  PubMed  Google Scholar 

  • Goodarzi AA, Kurka T, Jeggo PA (2011) KAP-1 phosphorylation regulates CHD3 nucleosome remodeling during the DNA double-strand break response. Nat Struct Mol Biol 18:831–839

    CAS  PubMed  Google Scholar 

  • Goodman RH, Smolik S (2000) CBP/p300 in cell growth, transformation, and development. Genes Dev 14:1553–1577

    CAS  PubMed  Google Scholar 

  • Gorrini C, Squatrito M, Luise C, Syed N, Perna D, Wark L, Martinato F, Sardella D, Verrecchia A, Bennett S, Confalonieri S, Cesaroni M, Marchesi F, Gasco M, Scanziani E, Capra M, Mai S, Nuciforo P, Crook T, Lough J, Amati B (2007) Tip60 is a haplo-insufficient tumour suppressor required for an oncogene-induced DNA damage response. Nature 448:1063–1067

    CAS  PubMed  Google Scholar 

  • Groth A, Corpet A, Cook AJ, Roche D, Bartek J, Lukas J, Almouzni G (2007a) Regulation of replication fork progression through histone supply and demand. Science 318:1928–1931

    CAS  PubMed  Google Scholar 

  • Groth A, Rocha W, Verreault A, Almouzni G (2007b) Chromatin challenges during DNA replication and repair. Cell 128:721–733

    CAS  PubMed  Google Scholar 

  • Guo B, Panagiotaki N, Warwood S, Sharrocks AD (2011) Dynamic modification of the ETS transcription factor PEA3 by sumoylation and p300-mediated acetylation. Nucleic Acids Res 39:6403–6413

    CAS  PubMed  Google Scholar 

  • Gupta A, Sharma GG, Young CS, Agarwal M, Smith ER, Paull TT, Lucchesi JC, Khanna KK, Ludwig T, Pandita TK (2005) Involvement of human MOF in ATM function. Mol Cell Biol 25:5292–5305

    CAS  PubMed  Google Scholar 

  • Gusterson R, Brar B, Faulkes D, Giordano A, Chrivia J, Latchman D (2002) The transcriptional co-activators CBP and p300 are activated via phenylephrine through the p42/p44 MAPK cascade. J Biol Chem 277:2517–2524

    CAS  PubMed  Google Scholar 

  • Han J, Zhou H, Horazdovsky B, Zhang K, Xu RM, Zhang Z (2007) Rtt109 acetylates histone H3 lysine 56 and functions in DNA replication. Science 315:653–655

    CAS  PubMed  Google Scholar 

  • Hildmann C, Riester D, Schwienhorst A (2007) Histone deacetylases–an important class of cellular regulators with a variety of functions. Appl Microbiol Biotechnol 75:487–497

    CAS  PubMed  Google Scholar 

  • Hobbs CA, Wei G, DeFeo K, Paul B, Hayes CS, Gilmour SK (2006) Tip60 protein isoforms and altered function in skin and tumors that overexpress ornithine decarboxylase. Cancer Res 66:8116–8122

    CAS  PubMed  Google Scholar 

  • Ikura T, Ogryzko VV, Grigoriev M, Groisman R, Wang J, Horikoshi M, Scully R, Qin J, Nakatani Y (2000) Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell 102:463–473

    CAS  PubMed  Google Scholar 

  • Jain KK (2011) Nanobiotechnology and personalized medicine. Prog Mol Biol Transl Sci 104:325–354

    CAS  PubMed  Google Scholar 

  • Kalkhoven E (2004) CBP and p300: HATs for different occasions. Biochem Pharmacol 68:1145–1155

    CAS  PubMed  Google Scholar 

  • Katsumoto T, Aikawa Y, Iwama A, Ueda S, Ichikawa H, Ochiya T, Kitabayashi I (2006) MOZ is essential for maintenance of hematopoietic stem cells. Genes Dev 20:1321–1330

    CAS  PubMed  Google Scholar 

  • Kaur H, Chen S, Xin X, Chiu J, Khan ZA, Chakrabarti S (2006) Diabetes-induced extracellular matrix protein expression is mediated by transcription coactivator p300. Diabetes 55:3104–3111

    CAS  PubMed  Google Scholar 

  • Kaur A, Jain S, Tiwary AK (2008) Mannan-coated gelatin nanoparticles for sustained and targeted delivery of didanosine: in vitro and in vivo evaluation. Acta Pharm 58:61–74

    CAS  PubMed  Google Scholar 

  • Kiernan RE, Vanhulle C, Schiltz L, Adam E, Xiao H, Maudoux F, Calomme C, Burny A, Nakatani Y, Jeang KT, Benkirane M, Van Lint C (1999) HIV-1 tat transcriptional activity is regulated by acetylation. EMBO J 18:6106–6118

    CAS  PubMed  Google Scholar 

  • Kindle KB, Troke PJ, Collins HM, Matsuda S, Bossi D, Bellodi C, Kalkhoven E, Salomoni P, Pelicci PG, Minucci S, Heery DM (2005) MOZ-TIF2 inhibits transcription by nuclear receptors and p53 by impairment of CBP function. Mol Cell Biol 25:988–1002

    CAS  PubMed  Google Scholar 

  • Kitabayashi I, Aikawa Y, Yokoyama A, Hosoda F, Nagai M, Kakazu N, Abe T, Ohki M (2001) Fusion of MOZ and p300 histone acetyltransferases in acute monocytic leukemia with a t(8;22)(p11;q13) chromosome translocation. Leukemia 15:89–94

    CAS  PubMed  Google Scholar 

  • Kreuter J, Alyautdin RN, Kharkevich DA, Ivanov AA (1995) Passage of peptides through the blood-brain barrier with colloidal polymer particles (nanoparticles). Brain Res 674:171–174

    CAS  PubMed  Google Scholar 

  • Krishnan V, Chow MZ, Wang Z, Zhang L, Liu B, Liu X, Zhou Z (2011) Histone H4 lysine 16 hypoacetylation is associated with defective DNA repair and premature senescence in Zmpste24-deficient mice. Proc Natl Acad Sci USA 108:12325–12330

    CAS  PubMed  Google Scholar 

  • Lake AN, Bedford MT (2007) Protein methylation and DNA repair. Mutat Res 618:91–101

    CAS  PubMed  Google Scholar 

  • Lau OD, Kundu TK, Soccio RE, Ait-Si-Ali S, Khalil EM, Vassilev A, Wolffe AP, Nakatani Y, Roeder RG, Cole PA (2000) HATs off: selective synthetic inhibitors of the histone acetyltransferases p300 and PCAF. Mol Cell 5:589–595

    CAS  PubMed  Google Scholar 

  • Lee JS, Smith E, Shilatifard A (2010) The language of histone crosstalk. Cell 142:682–685

    CAS  PubMed  Google Scholar 

  • Lerin C, Rodgers JT, Kalume DE, Kim SH, Pandey A, Puigserver P (2006) GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1alpha. Cell Metab 3:429–438

    CAS  PubMed  Google Scholar 

  • Li M, Luo RZ, Chen JW, Cao Y, Lu JB, He JH, Wu QL, Cai MY (2011a) High expression of transcriptional coactivator p300 correlates with aggressive features and poor prognosis of hepatocellular carcinoma. J Transl Med 9:5

    PubMed  Google Scholar 

  • Li Y, Yang HX, Luo RZ, Zhang Y, Li M, Wang X, Jia WH (2011b) High expression of p300 has an unfavorable impact on survival in resectable esophageal squamous cell carcinoma. Ann Thorac Surg 91:1531–1538

    PubMed  Google Scholar 

  • LLeonart ME, Vidal F, Gallardo D, Diaz-Fuertes M, Rojo F, Cuatrecasas M, López-Vicente L, Kondoh H, Blanco C, Carnero A, Ramón y Cajal S (2006) New p53 related genes in human tumors: significant downregulation in colon and lung carcinomas. Oncol Rep 16:603–608

    CAS  PubMed  Google Scholar 

  • Lo WS, Trievel RC, Rojas JR, Duggan L, Hsu JY, Allis CD, Marmorstein R, Berger SL (2000) Phosphorylation of serine 10 in histone H3 is functionally linked in vitro and in vivo to Gcn5-mediated acetylation at lysine 14. Mol Cell 5:917–926

    CAS  PubMed  Google Scholar 

  • Lund AH, Turner G, Trubetskoy A, Verhoeven E, Wientjens E, Hulsman D, Russell R, DePinho RA, Lenz J, van Lohuizen M (2002) Genome-wide retroviral insertional tagging of genes involved in cancer in Cdkn2a-deficient mice. Nat Genet 32:160–165

    CAS  PubMed  Google Scholar 

  • Malam Y, Lim EJ, Seifalian AM (2011) Current trends in the application of nanoparticles in drug delivery. Curr Med Chem 18:1067–1078

    CAS  PubMed  Google Scholar 

  • Mann BS, Johnson JR, Cohen MH, Justice R, Pazdur R (2007) FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist 12:1247–1252

    CAS  PubMed  Google Scholar 

  • Mantelingu K, Kishore AH, Balasubramanyam K, Kumar GV, Altaf M, Swamy SN, Selvi R, Das C, Narayana C, Rangappa KS, Kundu TK (2007a) Activation of p300 histone acetyltransferase by small molecules altering enzyme structure probed by surface enhanced Raman spectroscopy. J Phys Chem B 111:4527–4534

    CAS  PubMed  Google Scholar 

  • Mantelingu K, Reddy BA, Swaminathan V, Kishore AH, Siddappa NB, Kumar GV, Nagashankar G, Natesh N, Roy S, Sadhale PP, Ranga U, Narayana C, Kundu TK (2007b) Specific inhibition of p300-HAT alters global gene expression and represses HIV replication. Chem Biol 14:645–657

    CAS  PubMed  Google Scholar 

  • Martin DG, Grimes DE, Baetz K, Howe L (2006) Methylation of histone H3 mediates the association of the NuA3 histone acetyltransferase with chromatin. Mol Cell Biol 26:3018–3028

    CAS  PubMed  Google Scholar 

  • Marzio G, Tyagi M, Gutierrez MI, Giacca M (1998) HIV-1 tat transactivator recruits p300 and CREB-binding protein histone acetyltransferases to the viral promoter. Proc Natl Acad Sci USA 95:13519–13524

    CAS  PubMed  Google Scholar 

  • Messner S, Hottiger MO (2011) Histone ADP-ribosylation in DNA repair, replication and transcription. Trends Cell Biol 21:534–542

    CAS  PubMed  Google Scholar 

  • Miao J, Fan Q, Cui L, Li J (2006) The malaria parasite Plasmodium falciparum histones: organization, expression, and acetylation. Gene 369:53–65

    CAS  PubMed  Google Scholar 

  • Miao J, Fan Q, Cui L, Li X, Wang H, Ning G, Reese JC (2010) The MYST family histone acetyltransferase regulates gene expression and cell cycle in malaria parasite Plasmodium falciparum. Mol Microbiol 78:883–902

    CAS  PubMed  Google Scholar 

  • Mitrakou A, Mokan M, Bolli G, Veneman T, Jenssen T, Cryer P, Gerich J (1992) Evidence against the hypothesis that hyperinsulinemia increases sympathetic nervous system activity in man. Metabolism 41:198–200

    CAS  PubMed  Google Scholar 

  • Moore SD, Herrick SR, Ince TA, Kleinman MS, Dal Cin P, Morton CC, Quade BJ (2004) Uterine leiomyomata with t(10;17) disrupt the histone acetyltransferase MORF. Cancer Res 64:5570–5577

    CAS  PubMed  Google Scholar 

  • Muraoka M, Konishi M, Kikuchi-Yanoshita R, Tanaka K, Shitara N, Chong JM, Iwama T, Miyaki M (1996) p300 gene alterations in colorectal and gastric carcinomas. Oncogene 12:1565–1569

    CAS  PubMed  Google Scholar 

  • Nagy Z, Tora L (2007) Distinct GCN5/PCAF-containing complexes function as co-activators and are involved in transcription factor and global histone acetylation. Oncogene 26:5341–5357

    CAS  PubMed  Google Scholar 

  • Ott DE, Chertova EN, Busch LK, Coren LV, Gagliardi TD, Johnson DG (1999) Mutational analysis of the hydrophobic tail of the human immunodeficiency virus type 1 p6(Gag) protein produces a mutant that fails to package its envelope protein. J Virol 73:19–28

    CAS  PubMed  Google Scholar 

  • Panagopoulos I, Fioretos T, Isaksson M, Mitelman F, Johansson B, Theorin N, Juliusson G (2002) RT-PCR analysis of acute myeloid leukemia with t(8;16)(p11;p13): identification of a novel MOZ/CBP transcript and absence of CBP/MOZ expression. Genes Chromosomes Cancer 35:372–374

    CAS  PubMed  Google Scholar 

  • Panicker SP, Raychaudhuri B, Sharma P, Tipps R, Mazumdar T, Mal AK, Palomo JM, Vogelbaum MA, Haque SJ (2010) p300- and Myc-mediated regulation of glioblastoma multiforme cell differentiation. Oncotarget 1:289–303

    PubMed  Google Scholar 

  • Parthun MR, Widom J, Gottschling DE (1996) The major cytoplasmic histone acetyltransferase in yeast: links to chromatin replication and histone metabolism. Cell 87:85–94

    CAS  PubMed  Google Scholar 

  • Perriello G, Pampanelli S, Del Sindaco P, Lalli C, Ciofetta M, Volpi E, Santeusanio F, Brunetti P, Bolli GB (1997) Evidence of increased systemic glucose production and gluconeogenesis in an early stage of NIDDM. Diabetes 46:1010–1016

    CAS  PubMed  Google Scholar 

  • Petter M, Lee CC, Byrne TJ, Boysen KE, Volz J, Ralph SA, Cowman AF, Brown GV, Duffy MF (2011) Expression of P. falciparum var genes involves exchange of the histone variant H2A.Z at the promoter. PLoS Pathog 7:e1001292

    CAS  PubMed  Google Scholar 

  • Phan HM, Xu AW, Coco C, Srajer G, Wyszomierski S, Evrard YA, Eckner R, Dent SY (2005) GCN5 and p300 share essential functions during early embryogenesis. Dev Dyn 233:1337–1347

    CAS  PubMed  Google Scholar 

  • Puigserver P, Rhee J, Donovan J, Walkey CJ, Yoon JC, Oriente F, Kitamura Y, Altomonte J, Dong H, Accili D, Spiegelman BM (2003) Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature 423:550–555

    CAS  PubMed  Google Scholar 

  • Qin S, Parthun MR (2002) Histone H3 and the histone acetyltransferase Hat1p contribute to DNA double-strand break repair. Mol Cell Biol 22:8353–8365

    CAS  PubMed  Google Scholar 

  • Ravindra KC, Selvi BR, Arif M, Reddy BA, Thanuja GR, Agrawal S, Pradhan SK, Nagashayana N, Dasgupta D, Kundu TK (2009) Inhibition of lysine acetyltransferase KAT3B/p300 activity by a naturally occurring hydroxynaphthoquinone, plumbagin. J Biol Chem 284:24453–24464

    CAS  PubMed  Google Scholar 

  • Rhee J, Inoue Y, Yoon JC, Puigserver P, Fan M, Gonzalez FJ, Spiegelman BM (2003) Regulation of hepatic fasting response by PPARgamma coactivator-1alpha (PGC-1): requirement for hepatocyte nuclear factor 4alpha in gluconeogenesis. Proc Natl Acad Sci USA 100:4012–4017

    CAS  PubMed  Google Scholar 

  • Richon VM, Emiliani S, Verdin E, Webb Y, Breslow R, Rifkind RA, Marks PA (1998) A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proc Natl Acad Sci USA 95:3003–3007

    CAS  PubMed  Google Scholar 

  • Rouaux C, Jokic N, Mbebi C, Boutillier S, Loeffler JP, Boutillier AL (2003) Critical loss of CBP/p300 histone acetylase activity by caspase-6 during neurodegeneration. EMBO J 22:6537–6549

    CAS  PubMed  Google Scholar 

  • Rozman M, Camós M, Colomer D, Villamor N, Esteve J, Costa D, Carrió A, Aymerich M, Aguilar JL, Domingo A, Solé F, Gomis F, Florensa L, Montserrat E, Campo E (2004) Type I MOZ/CBP (MYST3/CREBBP) is the most common chimeric transcript in acute myeloid leukemia with t(8;16)(p11;p13) translocation. Genes Chromosomes Cancer 40:140–145

    CAS  PubMed  Google Scholar 

  • Santer FR, Höschele PP, Oh SJ, Erb HH, Bouchal J, Cavarretta IT, Parson W, Meyers DJ, Cole PA, Culig Z (2011) Inhibition of the acetyltransferases p300 and CBP reveals a targetable function for p300 in the survival and invasion pathways of prostate cancer cell lines. Mol Cancer Ther 10:1644–1655

    CAS  PubMed  Google Scholar 

  • Sapountzi V, Côté J (2011) MYST-family histone acetyltransferases: beyond chromatin. Cell Mol Life Sci 68:1147–1156

    CAS  PubMed  Google Scholar 

  • Segré CV, Chiocca S (2011) Regulating the regulators: the post-translational code of class I HDAC1 and HDAC2. J Biomed Biotechnol 2011:690848

    PubMed  Google Scholar 

  • Selvi BR, Jagadeesan D, Suma BS, Nagashankar G, Arif M, Balasubramanyam K, Eswaramoorthy M, Kundu TK (2008) Intrinsically fluorescent carbon nanospheres as a nuclear targeting vector: delivery of membrane-impermeable molecule to modulate gene expression in vivo. Nano Lett 8:3182–3188

    CAS  PubMed  Google Scholar 

  • Shandilya J, Swaminathan V, Gadad SS, Choudhari R, Kodaganur GS, Kundu TK (2009) Acetylated NPM1 localizes in the nucleoplasm and regulates transcriptional activation of genes implicated in oral cancer manifestation. Mol Cell Biol 29:5115–5127

    CAS  PubMed  Google Scholar 

  • Shi X, Hong T, Walter KL, Ewalt M, Michishita E, Hung T, Carney D, Pena P, Lan F, Kaadige MR, Lacoste N, Cayrou C, Davrazou F, Saha A, Cairns BR, Ayer DE, Kutateladze TG, Shi Y, Cote J, Chua KF, Gozani O (2006) ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature 442:96–99

    CAS  PubMed  Google Scholar 

  • Shia WJ, Pattenden SG, Workman JL (2006) Histone H4 lysine 16 acetylation breaks the genome’s silence. Genome Biol 7:217

    PubMed  Google Scholar 

  • Shiota M, Izumi H, Onitsuka T, Miyamoto N, Kashiwagi E, Kidani A, Yokomizo A, Naito S, Kohno K (2008) Twist promotes tumor cell growth through YB-1 expression. Cancer Res 68:98–105

    CAS  PubMed  Google Scholar 

  • Shiota M, Yokomizo A, Tada Y, Uchiumi T, Inokuchi J, Tatsugami K, Kuroiwa K, Yamamoto K, Seki N, Naito S (2010) P300/CBP-associated factor regulates Y-box binding protein-1 expression and promotes cancer cell growth, cancer invasion and drug resistance. Cancer Sci 101:1797–1806

    CAS  PubMed  Google Scholar 

  • Shiseki M, Nagashima M, Pedeux RM, Kitahama-Shiseki M, Miura K, Okamura S, Onogi H, Higashimoto Y, Appella E, Yokota J, Harris CC (2003) p29ING4 and p28ING5 bind to p53 and p300, and enhance p53 activity. Cancer Res 63:2373–2378

    CAS  PubMed  Google Scholar 

  • Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, Peterson CL (2006) Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311:844–847

    CAS  PubMed  Google Scholar 

  • Smith E, Shilatifard A (2010) The chromatin signaling pathway: diverse mechanisms of recruitment of histone-modifying enzymes and varied biological outcomes. Mol Cell 40:689–701

    CAS  PubMed  Google Scholar 

  • Smith ER, Cayrou C, Huang R, Lane WS, Côté J, Lucchesi JC (2005) A human protein complex homologous to the Drosophila MSL complex is responsible for the majority of histone H4 acetylation at lysine 16. Mol Cell Biol 25:9175–9188

    CAS  PubMed  Google Scholar 

  • Stimson L, Rowlands MG, Newbatt YM, Smith NF, Raynaud FI, Rogers P, Bavetsias V, Gorsuch S, Jarman M, Bannister A, Kouzarides T, McDonald E, Workman P, Aherne GW (2005) Isothiazolones as inhibitors of PCAF and p300 histone acetyltransferase activity. Mol Cancer Ther 4:1521–1532

    CAS  PubMed  Google Scholar 

  • Suter B, Pogoutse O, Guo X, Krogan N, Lewis P, Greenblatt JF, Rine J, Emili A (2007) Association with the origin recognition complex suggests a novel role for histone acetyltransferase Hat1p/Hat2p. BMC Biol 5:38

    PubMed  Google Scholar 

  • Taddei A, Roche D, Sibarita JB, Turner BM, Almouzni G (1999) Duplication and maintenance of heterochromatin domains. J Cell Biol 147:1153–1166

    CAS  PubMed  Google Scholar 

  • Takahashi H, McCaffery JM, Irizarry RA, Boeke JD (2006) Nucleocytosolic acetyl-coenzyme a synthetase is required for histone acetylation and global transcription. Mol Cell 23:207–217

    CAS  PubMed  Google Scholar 

  • Tang Y, Luo J, Zhang W, Gu W (2006) Tip60-dependent acetylation of p53 modulates the decision between cell-cycle arrest and apoptosis. Mol Cell 24:827–839

    CAS  PubMed  Google Scholar 

  • Terreni M, Valentini P, Liverani V, Gutierrez MI, Di Primio C, Di Fenza A, Tozzini V, Allouch A, Albanese A, Giacca M, Cereseto A (2010) GCN5-dependent acetylation of HIV-1 integrase enhances viral integration. Retrovirology 7:18

    PubMed  Google Scholar 

  • Tjeertes JV, Miller KM, Jackson SP (2009) Screen for DNA-damage-responsive histone modifications identifies H3K9Ac and H3K56Ac in human cells. EMBO J 28:1878–1889

    CAS  PubMed  Google Scholar 

  • Tonkin CJ, Carret CK, Duraisingh MT, Voss TS, Ralph SA, Hommel M, Duffy MF, Silva LM, Scherf A, Ivens A, Speed TP, Beeson JG, Cowman AF (2009) Sir2 paralogues cooperate to regulate virulence genes and antigenic variation in Plasmodium falciparum. PLoS Biol 7:e84

    PubMed  Google Scholar 

  • Troke PJ, Kindle KB, Collins HM, Heery DM (2006) MOZ fusion proteins in acute myeloid leukaemia. Biochem Soc Symp 73:23–39

    CAS  PubMed  Google Scholar 

  • Urvalek AM, Lu H, Wang X, Li T, Yu L, Zhu J, Lin Q, Zhao J (2011) Regulation of the oncoprotein KLF8 by a switch between acetylation and sumoylation. Am J Transl Res 3:121–132

    CAS  PubMed  Google Scholar 

  • van Attikum H, Gasser SM (2009) Crosstalk between histone modifications during the DNA damage response. Trends Cell Biol 19:207–217

    PubMed  Google Scholar 

  • Vempati RK (2012) DNA damage in the presence of chemical genotoxic agents induce acetylation of H3K56 and H4K16 but not H3K9 in mammalian cells. Mol Biol Rep 39(1):303–308

    CAS  PubMed  Google Scholar 

  • Vempati RK, Jayani RS, Notani D, Sengupta A, Galande S, Haldar D (2010) p300-mediated acetylation of histone H3 lysine 56 functions in DNA damage response in mammals. J Biol Chem 285:28553–28564

    CAS  PubMed  Google Scholar 

  • Voss AK, Thomas T (2009) MYST family histone acetyltransferases take center stage in stem cells and development. Bioessays 31:1050–1061

    CAS  PubMed  Google Scholar 

  • Wang C, Fu M, Angeletti RH, Siconolfi-Baez L, Reutens AT, Albanese C, Lisanti MP, Katzenellenbogen BS, Kato S, Hopp T, Fuqua SA, Lopez GN, Kushner PJ, Pestell RG (2001) Direct acetylation of the estrogen receptor alpha hinge region by p300 regulates transactivation and hormone sensitivity. J Biol Chem 276:18375–18383

    CAS  PubMed  Google Scholar 

  • Wei JQ, Shehadeh LA, Mitrani JM, Pessanha M, Slepak TI, Webster KA, Bishopric NH (2008) Quantitative control of adaptive cardiac hypertrophy by acetyltransferase p300. Circulation 118:934–946

    CAS  PubMed  Google Scholar 

  • Westendorp MO, Shatrov VA, Schulze-Osthoff K, Frank R, Kraft M, Los M, Krammer PH, Dröge W, Lehmann V (1995) HIV-1 Tat potentiates TNF-induced NF-kappa B activation and cytotoxicity by altering the cellular redox state. EMBO J 14:546–554

    CAS  PubMed  Google Scholar 

  • Wilson CB, Merkenschlager M (2006) Chromatin structure and gene regulation in T cell development and function. Curr Opin Immunol 18:143–151

    CAS  PubMed  Google Scholar 

  • Wu J, Xie N, Wu Z, Zhang Y, Zheng YG (2009) Bisubstrate inhibitors of the MYST HATs Esa1 and Tip60. Bioorg Med Chem 17:1381–1386

    CAS  PubMed  Google Scholar 

  • Wu J, Chen Y, Lu LY, Wu Y, Paulsen MT, Ljungman M, Ferguson DO, Yu X (2011) Chfr and RNF8 synergistically regulate ATM activation. Nat Struct Mol Biol 18:761–768

    CAS  PubMed  Google Scholar 

  • Xu B, Chiu J, Feng B, Chen S, Chakrabarti S (2008) PARP activation and the alteration of vasoactive factors and extracellular matrix protein in retina and kidney in diabetes. Diabetes Metab Res Rev 24:404–412

    CAS  PubMed  Google Scholar 

  • Yamauchi T, Yamauchi J, Kuwata T, Tamura T, Yamashita T, Bae N, Westphal H, Ozato K, Nakatani Y (2000) Distinct but overlapping roles of histone acetylase PCAF and of the closely related PCAF-B/GCN5 in mouse embryogenesis. Proc Natl Acad Sci USA 97:11303–11306

    CAS  PubMed  Google Scholar 

  • Yanazume T, Morimoto T, Wada H, Kawamura T, Hasegawa K (2003) Biological role of p300 in cardiac myocytes. Mol Cell Biochem 248:115–119

    CAS  PubMed  Google Scholar 

  • Yang X, Yu W, Shi L, Sun L, Liang J, Yi X, Li Q, Zhang Y, Yang F, Han X, Zhang D, Yang J, Yao Z, Shang Y (2011) HAT4, a golgi apparatus-anchored B-type histone acetyltransferase, acetylates free histone H4 and facilitates chromatin assembly. Mol Cell 44:39–50

    CAS  PubMed  Google Scholar 

  • Ying MZ, Wang JJ, Li DW, Yu GZ, Wang X, Pan J, Chen Y, He MX (2010) The p300/CBP associated factor: is frequently downregulated in intestinal-type gastric carcinoma and constitutes a biomarker for clinical outcome. Cancer Biol Ther 9:312–320

    CAS  Google Scholar 

  • Yoon JC, Puigserver P, Chen G, Donovan J, Wu Z, Rhee J, Adelmant G, Stafford J, Kahn CR, Granner DK, Newgard CB, Spiegelman BM (2001) Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413:131–138

    CAS  PubMed  Google Scholar 

  • Zhou H, Beevers CS, Huang S (2011) The targets of curcumin. Curr Drug Targets 12:332–347

    CAS  PubMed  Google Scholar 

  • Zhu Q, Wani AA (2010) Histone modifications: crucial elements for damage response and chromatin restoration. J Cell Physiol 223:283–288

    CAS  PubMed  Google Scholar 

  • Zippo A, Serafini R, Rocchigiani M, Pennacchini S, Krepelova A, Oliviero S (2009) Histone crosstalk between H3S10ph and H4K16ac generates a histone code that mediates transcription elongation. Cell 138:1122–1136

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work in our laboratory is supported by Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Department of Biotechnology, Government of India (Grant Nos. Grant/DBT/CSH/GIA/1752/2011-2012 and Chromatin and Disease: Programme Support Grant No. Grant/DBT/CSH/GIA/1957/2011-2012), Department of Science and Technology (DST) Government of India, Dabur Research Foundation and National Agricultural Innovative Project (NAIP), Indian Council of Agricultural Research, Govt. of India under component 4: Basic and Strategic Research (Grant No. NAIP/Comp-4/C-30017/2008-09). TKK is a recipient of Sir JC Bose national fellowship (DST, Government of India).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapas K. Kundu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Selvi, B.R., Chatterjee, S., Modak, R., Eswaramoorthy, M., Kundu, T.K. (2013). Histone Acetylation as a Therapeutic Target. In: Kundu, T. (eds) Epigenetics: Development and Disease. Subcellular Biochemistry, vol 61. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4525-4_25

Download citation

Publish with us

Policies and ethics