Epigenetics in Parkinson’s and Alzheimer’s Diseases

  • Sueli Marques
  • Tiago Fleming OuteiroEmail author
Part of the Subcellular Biochemistry book series (SCBI, volume 61)


Neurodegenerative disorders, such as Parkinson’s and Alzheimer’s disease, are highly complex, due to their multifactorial origin, not only depending on genetic but also on environmental factors. Several genetic risk factors have already been associated with both the diseases, however, the precise way through which the environment contributes to neurodegeneration is still unclear.

Recently, epigenetic mechanisms, such as DNA methylation, chromatin remodeling or miRNAs, which may induce alterations in genes expression, have started to be implicated in both AD and PD. Epigenetic modulation is present since pre-natal stages and throughout lifetime, and depends on lifestyle conditions and environmental exposures, and consequently could represent the missing link between risk factors and the development of sporadic disorders. This chapter will discusses the role of epigenetics in AD and PD.


Amyloid Precursor Protein Sodium Butyrate Anacardic Acid Amyloid Precursor Protein Expression Dopaminergic Neuronal Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



TFO is supported by a Marie Curie International Reintegration Grant (Neurofold) and an EMBO Installation Grant. SM is supported by a fellowship from Fundação para Ciência e Tecnologia (SFRH/BD/33188/2007).


  1. Agirre X, Román-Gómez J, Vázquez I, Jiménez-Velasco A, Garate L, Montiel-Duarte C, Artieda P, Cordeu L, Lahortiga I, Calasanz MJ, Heiniger A, Torres A, Minna JD, Prósper F (2006) Abnormal methylation of the common PARK2 and PACRG promoter is associated with downregulation of gene expression in acute lymphoblastic leukemia and chronic myeloid leukemia. Int J Cancer 118(8):1945–1953PubMedCrossRefGoogle Scholar
  2. Association A (2009) Alzheimer’s disease facts and figures. Alzheimers Dement 5:234–270CrossRefGoogle Scholar
  3. Bak M, Silahtaroglu A, Møller M, Christensen M, Rath MF, Skryabin B, Tommerup N, Kauppinen S (2008) MicroRNA expression in the adult mouse central nervous system. RNA 14(3):432–444PubMedCrossRefGoogle Scholar
  4. Bettens K, Sleegers K, Broeckhoven CV (2010) Current status on Alzheimer disease molecular genetics: from past, to present, to future. Hum Mol Genet 19(1):R4–R11PubMedCrossRefGoogle Scholar
  5. Blandini F, Fancellu R, Martignoni E, Mangiagalli A, Pacchetti C, Samuele A, Nappi G (2001) Plasma homocysteine and l-dopa metabolism in patients with Parkinson disease. Clin Chem 47(6):1102–1104PubMedGoogle Scholar
  6. Boissonneault V, Plante I, Rivest S, Provost P (2009) MicroRNA-298 and microRNA-328 regulate expression of mouse beta-amyloid precursor protein-converting enzyme 1. J Biol Chem 284(4):1971–1981PubMedCrossRefGoogle Scholar
  7. Bönsch D, Lenz B, Kornhuber J, Bleich S (2005) DNA hypermethylation of the alpha synuclein promoter in patients with alcoholism. Neuroreport 16(2):167–170PubMedCrossRefGoogle Scholar
  8. Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurob Aging 24:197–211CrossRefGoogle Scholar
  9. Brami-Cherrier K, Valjent E, Hervé D, Darragh J, Corvol JC, Pages C, Arthur SJ, Girault JA, Caboche J (2005) Parsing molecular and behavioral effects of cocaine in mitogen- and stress-activated protein kinase-1-deficient mice. J Neurosci 25(49):11444–11454PubMedCrossRefGoogle Scholar
  10. Burke RE, Dauer, Vonsattel JPG (2008) A critical evaluation of the Braak staging scheme for Parkinson’s disease. Ann Neurol 64:485–491PubMedCrossRefGoogle Scholar
  11. Caccamo A, Maldonado MA, Bokov AF, Majumder S, Oddo S (2010) CBP gene transfer increases BDNF levels and ameliorates learning and memory deficits in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 107(52):22687–22692PubMedCrossRefGoogle Scholar
  12. Chen PS, Peng GS, Li G, Yang S, Wu X, Wang CC, Wilson B, Lu RB, Gean PW, Chuang DM, Hong JS (2006) Valproate protects dopaminergic neurons in midbrain neuron/glia cultures by stimulating the release of neurotrophic factors from astrocytes. Mol Psychiatry 11(12):1116–1125PubMedCrossRefGoogle Scholar
  13. Darmopil S, Martín AB, De Diego IR, Ares S, Moratalla R (2009) Genetic inactivation of dopamine D1 but not D2 receptors inhibits L-DOPA-induced dyskinesia and histone activation. Biol Psychiatry 66(6):603–613PubMedCrossRefGoogle Scholar
  14. Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909PubMedCrossRefGoogle Scholar
  15. de Mena L, Coto E, Cardo LF, Díaz M, Blázquez M, Ribacoba R, Salvador C, Pastor P, Samaranch L, Moris G, Menéndez M, Corao A, Alvarez V (2010) Analysis of the Micro-RNA-133 and PITX3 genes in Parkinson’s disease. Am J Med Genet B 153B(6):1234–1239Google Scholar
  16. Desplats P, Spencer B, Coffee E, Patel P, Michael S, Patrick C, Adame A, Rockenstein E, Masliah E (2011) Alpha-synuclein sequesters Dnmt1 from the nucleus: a novel mechanism for epigenetic alterations in Lewy body diseases. J Biol Chem 286(11):9031–9037PubMedCrossRefGoogle Scholar
  17. Dolinoy DC, Jirtle RL (2008) Environmental epigenomics in human health and disease. Environ Mol Mutagen 49:4–8PubMedCrossRefGoogle Scholar
  18. Duan W, Ladenheim B, Cutler RG, Kruman II, Cadet JL, Mattson MP (2002) Dietary folate deficiency and elevated homocysteine levels endanger dopaminergic neurons in models of Parkinson’s disease. J Neurochem 80(1):101–110PubMedCrossRefGoogle Scholar
  19. Ertekin-Taner N (2007) Genetics of Alzheimer’s disease: a centennial review. Neurol Clin 25:611–667PubMedCrossRefGoogle Scholar
  20. Fabbrini G, Brotchie JM, Grandas F, Nomoto M, Goetz CG (2007) Levodopa-induced dyskinesias. Mov Disord 22(10):1379–1389Google Scholar
  21. Farrer MJ (2006) Genetics of Parkinson disease: paradigm shifts and future prospects. Nat Rev Genet 7:306–318PubMedCrossRefGoogle Scholar
  22. Finkelstein JD (2000) Pathways and regulation of homocysteine metabolism in mammals. Semin Thromb Hemost 26(3):219–225PubMedCrossRefGoogle Scholar
  23. Francis YI, Fà M, Ashrafa H, Zhanga H, Staniszewskia A, Latchmanb DS, Arancioa O (2009) Dysregulation of histone acetylation in the APP/PS1 mouse model of Alzheimer’s disease. J Alzheimers Dis 18:131–139PubMedGoogle Scholar
  24. Frieling H, Gozner A, Römer KD, Lenz B, Bönsch D, Wilhelm J, Hillemacher T, de Zwaan M, Kornhuber J, Bleich S (2007) Global DNA hypomethylation and DNA hypermethylation of the alpha synuclein promoter in females with anorexia nervosa. Mol Psychiatry 12(3):229–230PubMedCrossRefGoogle Scholar
  25. Fuso A, Seminara L, Cavallaro RA, D’Anselmi F, Scarpa S (2005) S-adenosylmethionine/homocysteine cycle alterations modify DNA methylation status with consequent deregulation of PS1 and BACE and beta-amyloid production. Mol Cell Neurosci 28:195–204PubMedCrossRefGoogle Scholar
  26. Fuso A, Nicolia V, Cavallaro RA, Ricceri L, D’Anselmi F, Coluccia P, Calamandrei G, Scarpa S (2008) B-vitamin deprivation induces hyperhomocysteinemia and brain S-adenosylhomocysteine, depletes brain S-adenosylmethionine, and enhances PS1 and BACE expression and amyloid-beta deposition in mice. Mol Cell Neurosci 37(4):731–746PubMedCrossRefGoogle Scholar
  27. Fuso A, Nicolia V, Pasqualato A, Fiorenza MT, Cavallaro RA, Scarpa S (2011a) Changes in Presenilin 1 gene methylation pattern in diet-induced B vitamin deficiency. Neurobiol Aging 32(2):187–199PubMedCrossRefGoogle Scholar
  28. Fuso A, Nicolia V, Cavallaro RA, Scarpa S (2011b) DNA methylase and demethylase activities are modulated by one-carbon metabolism in Alzheimer’s disease models. J Nutr Biochem 22(3):242–251PubMedCrossRefGoogle Scholar
  29. Giles WH, Kittner SJ, Anda RF, Croft JB, Casper ML (1995) Serum folate and risk for ischemic stroke. First National Health and Nutrition Examination Survey epidemiologic follow-up study. Stroke 26(7):1166–1170PubMedCrossRefGoogle Scholar
  30. Gillardon F, Mack M, Rist W, Schnack C, Lenter M, Hildebrandt T, Hengerer B (2008) MicroRNA and proteome expression profiling in early-symptomatic α-synuclein(A30P)-transgenic mice. Proteomics Clin Appl 2(5):697–705PubMedCrossRefGoogle Scholar
  31. Hardy J, Lewis P, Revesz T, Lees A, Paisan-Ruiz C (2009) The genetics of Parkinson’s syndromes: a critical review. Curr Opin Genet Dev 19:254–265PubMedCrossRefGoogle Scholar
  32. Hébert SS, De Strooper B (2009) Alterations of the microRNA network cause neurodegenerative disease. Trends Neurosci 32(4):199–206PubMedCrossRefGoogle Scholar
  33. Jiang Q, Ren Y, Feng J (2008) Direct binding with histone deacetylase 6 mediates the reversible recruitment of parkin to the centrosome. J Neurosci 28(48):12993–13002PubMedCrossRefGoogle Scholar
  34. Jowaed A, Schmitt I, Kaut O, Wüllner U (2010) Methylation regulates alpha-synuclein expression and is decreased in Parkinson’s disease patients’ brains. J Neurosci 30(18):6355–6359PubMedCrossRefGoogle Scholar
  35. Junn E, Lee K-W, Jeong BS, Chan TW, J-Y IM, Mouradian MM (2009) Repression of α-synuclein expression and toxicity by microRNA-7. Proc Natl Acad Sci 106(31):13052–13057PubMedCrossRefGoogle Scholar
  36. Khandhar SM, Marks WJ (2007) Epidemiology of Parkinson’s disease. Dis Mon 53:200–205PubMedCrossRefGoogle Scholar
  37. Kilgore M, Miller CA, Fass DM, Hennig KM, Haggarty SJ, Sweatt JD, Rumbaugh G (2010) Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer’s disease. Neuropsychopharmacology 35(4):870–880PubMedCrossRefGoogle Scholar
  38. Klein C, Schlossmacher MG (2007) Parkinson disease, 10 years after its genetic revolution: multiple clues to a complex disorder. Neurology 69:2093–2104PubMedCrossRefGoogle Scholar
  39. Kontopoulos E, Parvin JD, Feany MB (2006) α-Synuclein acts in the nucleus to inhibit histone acetylation and promote neurotoxicity. Hum Mol Genet 15(20):3012–3023PubMedCrossRefGoogle Scholar
  40. Kovalchuk O (2008) Epigenetic research sheds new light on the nature of interactions between organisms and their environment. Environ Mol Mutagen 49:1–3PubMedCrossRefGoogle Scholar
  41. Lau LML, Breteler MB (2006) Epidemiology of Parkinson’s disease. Lancet Neurol 5:525–535PubMedCrossRefGoogle Scholar
  42. Lambert JC, Amouyel P (2007) Genetic heterogeneity of Alzheimer’s disease: complexity and advances. Psychoneuroendocrinology 32(1):S62–S70Google Scholar
  43. Lukiw WJ, Zhan Y, Guo Cui J (2008) An NF-κB-sensitive Micro RNA-146a-mediated inflammatory circuit in Alzheimer disease and in stressed human brain cells. J Biol Chem 283:31315–31322PubMedCrossRefGoogle Scholar
  44. Maeda T, Guan JZ, Oyama J, Higuchi Y, Makino N (2009) Aging-associated alteration of subtelomeric methylation in Parkinson’s disease. J Gerontol A Biol Sci Med Sci 64(9):949–955PubMedCrossRefGoogle Scholar
  45. Marques SC, Oliveira CR, Outeiro TF, Pereira CM (2010) Alzheimer’s disease: the quest to understand complexity. J Alzheimers Dis 21(2):373–383PubMedGoogle Scholar
  46. Matsumoto L, Takuma H, Tamaoka A, Kurisaki H, Date H, Tsuji S, Iwata A (2010) CpG demethylation enhances alpha-synuclein expression and affects the pathogenesis of Parkinson’s disease. PLoS One 5(11):e15522PubMedCrossRefGoogle Scholar
  47. Minati L, Edginton T, Bruzzone MG, Giaccone G (2009) Current concepts in Alzheimer’s disease: a multidisciplinary review. Am J Alzheimers Dis Other Demen 24:95–121PubMedCrossRefGoogle Scholar
  48. Monti B, Gatta V, Piretti F, Raffaelli SS, Virgili M, Contestabile A (2010) Valproic acid is neuroprotective in the rotenone rat model of Parkinson’s disease: involvement of alpha-synuclein. Neurotox Res 17(2):130–141PubMedCrossRefGoogle Scholar
  49. Nicholas AP, Lubin FD, Hallett PJ, Vattem P, Ravenscroft P, Bezard E, Zhou S, Fox SH, Brotchie JM, Sweatt JD, Standaert DG (2008) Striatal histone modifications in models of levodopa-induced dyskinesia. J Neurochem 106(1):486–494PubMedCrossRefGoogle Scholar
  50. Obeid R, Schadt A, Dillmann U, Kostopoulos P, Fassbender K, Herrmann W (2009) Methylation status and neurodegenerative markers in Parkinson disease. Clin Chem 55(10):1852–1860PubMedCrossRefGoogle Scholar
  51. Outeiro TF, Kontopoulos E, Altmann SM, Kufareva I, Strathearn KE, Amore AM, Volk CB, Maxwell MM, Rochet JC, McLean PJ, Young AB, Abagyan R, Feany MB, Hyman BT, Kazantsev AG (2007) Sirtuin 2 inhibitors rescue alpha-synuclein-mediated toxicity in models of Parkinson’s disease. Science 317(5837):516–519PubMedCrossRefGoogle Scholar
  52. Pacheco-Quinto J, de Turco EBR, DeRosa S, Howard A, Cruz-Sanchez F, Sambamurti K, Refolo I, Petancesk S, Pappolla MA (2006) Hyperhomocysteinemic Alzheimer’s mouse model of amyloidosis shows increased brain amyloid B peptide levels. Neurobiol Dis 22:651–656PubMedCrossRefGoogle Scholar
  53. Ray WJ, Ashall F, Goate AM (1998) Molecular pathogenesis of sporadic and familial forms of Alzheimer’s disease. Mol Med Today 4:151–157PubMedCrossRefGoogle Scholar
  54. Ricobaraza A, Cuadrado-Tejedor M, Pérez-Mediavilla A, Frechilla D, Del Río J, García-Osta A (2009) Phenylbutyrate ameliorates cognitive deficit and reduces tau pathology in an Alzheimer’s disease mouse model. Neuropsychopharmacology 34(7):1721–1732PubMedCrossRefGoogle Scholar
  55. Ricobaraza A, Cuadrado-Tejedor M, Marco S, Pérez-Otaño I, García-Osta A (2010) Phenylbutyrate rescues dendritic spine loss associated with memory deficits in a mouse model of Alzheimer disease. Hippocampus 22(5):1040–1050Google Scholar
  56. Rocchi A, Pellegrini S, Siciliano G, Murri L (2003) Review: causative and susceptibility genes for Alzheimer’s disease: a review. Brain Res Bull 61:1–24PubMedCrossRefGoogle Scholar
  57. Rouaux C, Jokic N, Mbebi C, Boutillier S, Loeffler JP, Boutillier AL (2003) Critical loss of CBP/p300 histone acetylase activity by caspase-6 during neurodegeneration. EMBO J 22(24):6537–6549PubMedCrossRefGoogle Scholar
  58. Schipper HM, Maes OC, Chertkow HM, Wang E (2007) MicroRNA expression in Alzheimer blood mononuclear cells. Gene Regul Syst Biol 20(1):263–274Google Scholar
  59. Silva PNO, Gigek CO, Leal MF, Bertolucci PHF, de Labio RW, Payão SLM, Smith MAC (2008) Promoter methylation analysis of SIRT3, SMARCA5, HTERT and CDH1 genes in aging and Alzheimer’s disease. J Alzheimers Dis 13:173–176PubMedGoogle Scholar
  60. Song C, Kanthasamy A, Anantharam V, Sun F, Kanthasamy AG (2010) Environmental neurotoxic pesticide increases histone acetylation to promote apoptosis in dopaminergic neuronal cells: relevance to epigenetic mechanisms of neurodegeneration. Mol Pharmacol 77(4):621–632PubMedCrossRefGoogle Scholar
  61. Sontag E, Hladik C, Montgomery L, Luangpirom A, Mudrak I, Ogris E, White CL 3rd (2004) Downregulation of protein phosphatase 2A carboxyl methylation and methyltransferase may contribute to Alzheimer disease pathogenesis. J Neuropathol Exp Neurol 63(10):1080–1091PubMedGoogle Scholar
  62. Sontag E, Nunbhakdi-Craig V, Sontag JM, Diaz-Arrastia R, Ogris E, Dayal S, Lentz SR, Arning E, Bottiglieri T (2007) Protein phosphatase 2A methyltransferase links homocysteine metabolism with tau and amyloid precursor protein regulation. J Neurosci 27:2751–2759PubMedCrossRefGoogle Scholar
  63. St George-Hyslop PH, Petit A (2004) Molecular biology and genetics of Alzheimer’s disease. Comptes Rendus Biologies 328:119–130CrossRefGoogle Scholar
  64. Stozicka Z, Zilka N, Novak M (2007) Review: risk and protective factors for sporadic Alzheimer’s disease. Acta Virol 51:205–222PubMedGoogle Scholar
  65. Tanzi RE, Bertram L (2001) New frontiers in Alzheimer’s disease genetics. Neuron 32:181–184PubMedCrossRefGoogle Scholar
  66. Tohgi H, Utsugisawa K, Nagane Y, Yoshimura M, Genda Y, Ukitsu M (1999) Reduction with age in methylcytosine in the promoter region −224–101 of the amyloid precursor protein gene in autopsy human cortex. Mol Brain Res 70:288–292PubMedCrossRefGoogle Scholar
  67. Vo N, Klein ME, Varlamova O, Keller DM, Yamamoto T, Goodman RH, Impey S (2005) A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. Proc Natl Acad Sci 102(45):16426–16431PubMedCrossRefGoogle Scholar
  68. Voutsinas GE, Stavrou EF, Karousos G, Dasoula A, Papachatzopoulou A, Syrrou M, Verkerk AJ, van der Spek P, Patrinos GP, Stöger R, Athanassiadou A (2010) Allelic imbalance of expression and epigenetic regulation within the alpha-synuclein wild-type and p.Ala53Thr alleles in Parkinson disease. Hum Mutat 31(6):685–691PubMedCrossRefGoogle Scholar
  69. Wang G, van der Walt JM, Mayhew G, Li Y, Zuchner S, Scott WK, Martin ER, Vance JM (2008a) Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of a-synuclein. Am J Hum Genet 82:283–289PubMedCrossRefGoogle Scholar
  70. Wang S-C, Oelze B, Schumacher A (2008b) Age-specific epigenetic drift in late-onset Alzheimer’s disease. PLoS One 3:e2698PubMedCrossRefGoogle Scholar
  71. Wang WX, Rajeev BW, Stromberg AJ, Ren N, Tang G, Huang Q, Rigoutsos I, Nelson PT (2008c) The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J Neurosci 28(5):1213–1223PubMedCrossRefGoogle Scholar
  72. Wang X, Liu P, Zhu H, Xu Y, Ma C, Dai X, Huang L, Liu Y, Zhang L, Qin C (2009a) miR-34a, a microRNA up-regulated in a double transgenic mouse model of Alzheimer’s disease, inhibits bcl2 translation. Brain Res Bull 80(4–5):268–273PubMedCrossRefGoogle Scholar
  73. Wang Y, Wang X, Liu L, Wang X (2009b) HDAC inhibitor trichostatin A-inhibited survival of dopaminergic neuronal cells. Neurosci Lett 467(3):212–216PubMedCrossRefGoogle Scholar
  74. Weintraub D, Comella CL, Horn S (2008) Parkinson’s disease- part 1: pathophysiology, symptoms, burden, diagnosis, and assessment. Am J Manag Care 14:S40–S48PubMedGoogle Scholar
  75. Wood-Kaczmar A, Gandhi S, Wood NW (2006) Understanding the molecular causes of Parkinson’s disease. Trends Mol Med 12:521–528PubMedCrossRefGoogle Scholar
  76. World Health Organization (2002) Active ageing, a policy framework. Second United Nations World assembly on Aging, Madrid, Spain.
  77. Wu J, Basha MR, Brock B, Cox DP, Cardozo-Pelaez F, McPherson CA, Harry J, Rice DC, Maloney B, Chen D, Lahiri DK, Zawia NH (2008a) Alzheimer’s disease (AD)-like pathology in aged monkeys after infantile exposure to environmental metal lead (Pb): evidence for a developmental origin and environmental link for AD. J Neurosci 28:3–9PubMedCrossRefGoogle Scholar
  78. Wu X, Chen PS, Dallas S, Wilson B, Block ML, Wang CC, Kinyamu H, Lu N, Gao X, Leng Y, Chuang DM, Zhang W, Lu RB, Hong JS (2008b) Histone deacetylase inhibitors up-regulate astrocyte GDNF and BDNF gene transcription and protect dopaminergic neurons. Int J Neuropsychopharmacol 11(8):1123–1134PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Cell and Molecular Neuroscience UnitInstituto de Medicina MolecularLisboaPortugal
  2. 2.Instituto de FisiologiaFaculdade de Medicina de LisboaLisboaPortugal
  3. 3.Department of Neurodegeneration and Restorative ResearchUniversity Medizin GöttingenGöttingenGermany

Personalised recommendations