Chromatin Structure and Organization: The Relation with Gene Expression During Development and Disease

  • Benoît Moindrot
  • Philippe Bouvet
  • Fabien MongelardEmail author
Part of the Subcellular Biochemistry book series (SCBI, volume 61)


The elementary level of chromatin fiber, namely the nucleofilament, is known to undergo a hierarchical compaction leading to local chromatin loops, then chromatin domains and ultimately chromosome territories. These successive folding levels rely on the formation of chromatin loops ranging from few kb to some Mb. In addition to a packaging and structural role, the high-order organization of genomes functionally impacts on gene expression program. This review summarises to which extent each level of chromatin compaction does affect gene regulation. In addition, we point out the structural and functional changes observed in diseases. Emphasis will be mainly placed on the large-scale organization of the chromatin.


Nuclear Matrix Histone Mark Chromatin Domain Chromosome Territory Endometrial Stromal Sarcoma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We apologize to those whose work could not be discussed here due to space limitations.

The author’s work is supported by grants from Agence Nationale de la Recherche (ANR-07-BLAN-0062-01), Région Rhône-Alpes MIRA 2007 and 2010, Association pour la Recherche sur le Cancer n° ECL2010R01122, CEFIPRA n° 3803-1, and CNRS.


  1. Adachi Y, Käs E, Laemmli UK (1989) Preferential, cooperative binding of DNA topoisomerase II to scaffold-associated regions. EMBO J 8(13):3997–4006PubMedGoogle Scholar
  2. Alami R, Greally JM, Tanimoto K, Hwang S, Feng YQ, Engel JD, Fiering S, Bouhassira EE (2000) Beta-globin YAC transgenes exhibit uniform expression levels but position effect variegation in mice. Hum Mol Genet 9(4):631–636PubMedCrossRefGoogle Scholar
  3. Allis CD, Jenuwein T, Reinberg D, Caparros ML (2007) Epigenetics. Harbor Laboratory Press, Cold SpringGoogle Scholar
  4. Audit B, Zaghloul L, Vaillant C, Chevereau G, d’Aubenton Carafa Y, Thermes C, Arneodo A (2009) Open chromatin encoded in DNA sequence is the signature of ‘master’ replication origins in human cells. Nucleic Acids Res 37(18):6064–6075PubMedCrossRefGoogle Scholar
  5. Augui S, Filion GJ, Huart S, Nora E, Guggiari M, Maresca M, Stewart AF, Heard E (2007) Sensing X chromosome pairs before X inactivation via a novel X-pairing region of the Xic. Science 318(5856):1632–1636PubMedCrossRefGoogle Scholar
  6. Bacher CP, Guggiari M, Brors B, Augui S, Clerc P, Avner P, Eils R, Heard E (2006) Transient colocalization of X-inactivation centres accompanies the initiation of X inactivation. Nat Cell Biol 8(3):293–299PubMedCrossRefGoogle Scholar
  7. Berdasco M, Esteller M (2010) Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev Cell 19(5):698–711PubMedCrossRefGoogle Scholar
  8. Berezney R (2002) Regulating the mammalian genome: the role of nuclear architecture. Adv Enzyme Regul 42:39–52PubMedCrossRefGoogle Scholar
  9. Berezney R, Dubey DD, Huberman JA (2000) Heterogeneity of eukaryotic replicons, replicon clusters, and replication foci. Chromosoma 108(8):471–484PubMedCrossRefGoogle Scholar
  10. Branco MR, Pombo A (2006) Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations. PLoS Biol 4(5):e138PubMedCrossRefGoogle Scholar
  11. Brodie Of Brodie EB, Nicolay S, Touchon M, Audit B, d’Aubenton Carafa Y, Thermes C, Arneodo A (2005) From DNA sequence analysis to modeling replication in the human genome. Phys Rev Lett 94(24):248103PubMedCrossRefGoogle Scholar
  12. Brown JM, Leach J, Reittie JE, Atzberger A, Lee-Prudhoe J, Wood WG, Higgs DR, Iborra FJ, Buckle VJ (2006) Coregulated human globin genes are frequently in spatial proximity when active. J Cell Biol 172(2):177–187PubMedCrossRefGoogle Scholar
  13. Brown JM, Green J, Das Neves RP, Wallace HAC, Smith AJH, Hughes J, Gray N, Taylor S, Wood WG, Higgs DR, Iborra FJ, Buckle VJ (2008) Association between active genes occurs at nuclear speckles and is modulated by chromatin environment. J Cell Biol 182(6):1083–1097PubMedCrossRefGoogle Scholar
  14. Cai S, Han HJ, Kohwi-Shigematsu T (2003) Tissue-specific nuclear architecture and gene expression regulated by SATB1. Nat Genet 34(1):42–51PubMedCrossRefGoogle Scholar
  15. Cai S, Lee CC, Kohwi-Shigematsu T (2006) SATB1 packages densely looped, transcriptionally active chromatin for coordinated expression of cytokine genes. Nat Genet 38(11):1278–1288PubMedCrossRefGoogle Scholar
  16. Caron H, van Schaik B, van der Mee M, Baas F, Riggins G, van Sluis P, Hermus MC, van Asperen R, Boon K, Voûte PA, Heisterkamp S, van Kampen A, Versteeg R (2001) The human transcriptome map: clustering of highly expressed genes in chromosomal domains. Science 291(5507):1289–1292PubMedCrossRefGoogle Scholar
  17. Carter D, Chakalova L, Osborne CS, feng Dai Y, Fraser P (2002) Long-range chromatin regulatory interactions in vivo. Nat Genet 32(4):623–626PubMedCrossRefGoogle Scholar
  18. Casillas MA, Lopatina N, Andrews LG, Tollefsbol TO (2003) Transcriptional control of the DNA methyltransferases is altered in aging and neoplastically-transformed human fibroblasts. Mol Cell Biochem 252(1–2):33–43PubMedCrossRefGoogle Scholar
  19. Chakalova L, Debrand E, Mitchell JA, Osborne CS, Fraser P (2005) Replication and transcription: shaping the landscape of the genome. Nat Rev Genet 6(9):669–677PubMedCrossRefGoogle Scholar
  20. Chambeyron S, Bickmore WA (2004) Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Genes Dev 18(10):1119–1130PubMedCrossRefGoogle Scholar
  21. Chambeyron S, Silva NRD, Lawson KA, Bickmore WA (2005) Nuclear re-organisation of the Hoxb complex during mouse embryonic development. Development 132(9):2215–2223PubMedCrossRefGoogle Scholar
  22. Chi P, Allis CD, Wang GG (2010) Covalent histone modifications–miswritten, misinterpreted and mis-erased in human cancers. Nat Rev Cancer 10(7):457–469PubMedCrossRefGoogle Scholar
  23. Cobb RM, Oestreich KJ, Osipovich OA, Oltz EM (2006) Accessibility control of V(D)J recombination. Adv Immunol 91:45–109PubMedCrossRefGoogle Scholar
  24. Cockerill PN, Garrard WT (1986) Chromosomal loop anchorage of the kappa immunoglobulin gene occurs next to the enhancer in a region containing topoisomerase II sites. Cell 44(2):273–282PubMedCrossRefGoogle Scholar
  25. Columbaro M, Capanni C, Mattioli E, Novelli G, Parnaik VK, Squarzoni S, Maraldi NM, Lattanzi G (2005) Rescue of heterochromatin organization in Hutchinson-Gilford progeria by drug treatment. Cell Mol Life Sci 62(22):2669–2678PubMedCrossRefGoogle Scholar
  26. Cook PR (1999) The organization of replication and transcription. Science 284(5421):1790–1795PubMedCrossRefGoogle Scholar
  27. Cook PR (2002) Predicting three-dimensional genome structure from transcriptional activity. Nat Genet 32(3):347–352PubMedCrossRefGoogle Scholar
  28. Cremer T, Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2(4):292–301PubMedCrossRefGoogle Scholar
  29. Cuddapah S, Jothi R, Schones DE, Roh TY, Cui K, Zhao K (2009) Global analysis of the insulator binding protein CTCF in chromatin barrier regions reveals demarcation of active and repressive domains. Genome Res 19(1):24–32PubMedCrossRefGoogle Scholar
  30. de Belle I, Cai S, Kohwi-Shigematsu T (1998) The genomic sequences bound to special AT-rich sequence-binding protein 1 (SATB1) in vivo in Jurkat T cells are tightly associated with the nuclear matrix at the bases of the chromatin loops. J Cell Biol 141(2):335–348PubMedCrossRefGoogle Scholar
  31. de Laat W, Grosveld F (2003) Spatial organization of gene expression: the active chromatin hub. Chromosome Res 11(5):447–459PubMedCrossRefGoogle Scholar
  32. De S, Babu MM (2010) Genomic neighbourhood and the regulation of gene expression. Curr Opin Cell Biol 22(3):326–333PubMedCrossRefGoogle Scholar
  33. Dechat T, Pfleghaar K, Sengupta K, Shimi T, Shumaker DK, Solimando L, Goldman RD (2008) Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev 22(7):832–853PubMedCrossRefGoogle Scholar
  34. Dechat T, Adam SA, Goldman RD (2009) Nuclear lamins and chromatin: when structure meets function. Adv Enzyme Regul 49(1):157–166PubMedCrossRefGoogle Scholar
  35. Dobie KW, Lee M, Fantes JA, Graham E, Clark AJ, Springbett A, Lathe R, McClenaghan M (1996) Variegated transgene expression in mouse mammary gland is determined by the transgene integration locus. Proc Natl Acad Sci U S A 93(13):6659–6664PubMedCrossRefGoogle Scholar
  36. Dorier J, Stasiak A (2010) The role of transcription factories-mediated interchromosomal contacts in the organization of nuclear architecture. Nucleic Acids Res 38(21):7410–7421PubMedCrossRefGoogle Scholar
  37. Dorner D, Gotzmann J, Foisner R (2007) Nucleoplasmic lamins and their interaction partners, LAP2alpha, Rb, and BAF, in transcriptional regulation. FEBS J 274(6):1362–1373PubMedCrossRefGoogle Scholar
  38. Drissen R, Palstra RJ, Gillemans N, Splinter E, Grosveld F, Philipsen S, de Laat W (2004) The active spatial organization of the beta-globin locus requires the transcription factor EKLF. Genes Dev 18(20):2485–2490PubMedCrossRefGoogle Scholar
  39. Ehrlich M (2005) DNA methylation and cancer-associated genetic instability. Adv Exp Med Biol 570:363–392PubMedCrossRefGoogle Scholar
  40. Eivazova ER, Gavrilov A, Pirozhkova I, Petrov A, Iarovaia OV, Razin SV, Lipinski M, Vassetzky YS (2009) Interaction in vivo between the two matrix attachment regions flanking a single chromatin loop. J Mol Biol 386(4):929–937PubMedCrossRefGoogle Scholar
  41. Ellis L, Atadja PW, Johnstone RW (2009) Epigenetics in cancer: targeting chromatin modifications. Mol Cancer Ther 8(6):1409–1420PubMedCrossRefGoogle Scholar
  42. Eriksson M, Brown WT, Gordon LB, Glynn MW, Singer J, Scott L, Erdos MR, Robbins CM, Moses TY, Berglund P, Dutra A, Pak E, Durkin S, Csoka AB, Boehnke M, Glover TW, Collins FS (2003) Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature 423(6937):293–298PubMedCrossRefGoogle Scholar
  43. Esteller M (2005) Aberrant DNA methylation as a cancer-inducing mechanism. Annu Rev Pharmacol Toxicol 45:629–656PubMedCrossRefGoogle Scholar
  44. Feinberg AP (2007) Phenotypic plasticity and the epigenetics of human disease. Nature 447(7143):433–440PubMedCrossRefGoogle Scholar
  45. Ferrai C, de Castro IJ, Lavitas L, Chotalia M, Pombo A (2010) Gene positioning. Cold Spring Harb Perspect Biol 2(6):a000588PubMedCrossRefGoogle Scholar
  46. Fiorini A, Gouveia F de S, Fernandez MA (2006) Scaffold/Matrix attachment regions and intrinsic DNA curvature. Biochemistry (Mosc) 71(5):481–488CrossRefGoogle Scholar
  47. Fraga MF, Esteller M (2007) Epigenetics and aging: the targets and the marks. Trends Genet 23(8):413–418PubMedCrossRefGoogle Scholar
  48. Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G, Bonaldi T, Haydon C, Ropero S, Petrie K, Iyer NG, Pérez-Rosado A, Calvo E, Lopez JA, Cano A, Calasanz MJ, Colomer D, Piris MA, Ahn N, Imhof A, Caldas C, Jenuwein T, Esteller M (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37(4):391–400PubMedCrossRefGoogle Scholar
  49. Fraser P (2006) Transcriptional control thrown for a loop. Curr Opin Genet Dev 16(5):490–495PubMedCrossRefGoogle Scholar
  50. Fraser P, Bickmore W (2007) Nuclear organization of the genome and the potential for gene regulation. Nature 447(7143):413–417PubMedCrossRefGoogle Scholar
  51. Frigola J, Song J, Stirzaker C, Hinshelwood RA, Peinado MA, Clark SJ (2006) Epigenetic remodeling in colorectal cancer results in coordinate gene suppression across an entire chromosome band. Nat Genet 38(5):540–549PubMedCrossRefGoogle Scholar
  52. Frouin I, Montecucco A, Spadari S, Maga G (2003) DNA replication: a complex matter. EMBO Rep 4(7):666–670PubMedCrossRefGoogle Scholar
  53. Gasser SM, Laemmli UK (1986) Cohabitation of scaffold binding regions with upstream/enhancer elements of three developmentally regulated genes of D. melanogaster. Cell 46(4):521–530PubMedCrossRefGoogle Scholar
  54. Gaudet F, Hodgson JG, Eden A, Jackson-Grusby L, Dausman J, Gray JW, Leonhardt H, Jaenisch R (2003) Induction of tumors in mice by genomic hypomethylation. Science 300(5618):489–492PubMedCrossRefGoogle Scholar
  55. Gieni RS, Hendzel MJ (2009) Actin dynamics and functions in the interphase nucleus: moving toward an understanding of nuclear polymeric actin. Biochem Cell Biol 87(1):283–306PubMedCrossRefGoogle Scholar
  56. Gierman HJ, Indemans MHG, Koster J, Goetze S, Seppen J, Geerts D, van Driel R, Versteeg R (2007) Domain-wide regulation of gene expression in the human genome. Genome Res 17(9):1286–1295PubMedCrossRefGoogle Scholar
  57. Goetze S, Mateos-Langerak J, Gierman HJ, de Leeuw W, Giromus O, Indemans MHG, Koster J, Ondrej V, Versteeg R, van Driel R (2007) The three-dimensional structure of human interphase chromosomes is related to the transcriptome map. Mol Cell Biol 27(12):4475–4487PubMedCrossRefGoogle Scholar
  58. Goldman RD, Shumaker DK, Erdos MR, Eriksson M, Goldman AE, Gordon LB, Gruenbaum Y, Khuon S, Mendez M, Varga R, Collins FS (2004) Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A 101(24):8963–8968PubMedCrossRefGoogle Scholar
  59. Gonzalo S (2010) Epigenetic alterations in aging. J Appl Physiol 109(2):586–597PubMedCrossRefGoogle Scholar
  60. Green P, Ewing B, Miller W, Thomas PJ, Program NISCCS, Green ED (2003) Transcription-associated mutational asymmetry in mammalian evolution. Nat Genet 33(4):514–517PubMedCrossRefGoogle Scholar
  61. Håkelien AM, Delbarre E, Gaustad KG, Buendia B, Collas P (2008) Expression of the myodystrophic R453W mutation of lamin A in C2C12 myoblasts causes promoter-specific and global epigenetic defects. Exp Cell Res 314(8):1869–1880PubMedCrossRefGoogle Scholar
  62. Heard E, Bickmore W (2007) The ins and outs of gene regulation and chromosome territory organisation. Curr Opin Cell Biol 19(3):311–316PubMedCrossRefGoogle Scholar
  63. Herbig U, Ferreira M, Condel L, Carey D, Sedivy JM (2006) Cellular senescence in aging primates. Science 311(5765):1257PubMedCrossRefGoogle Scholar
  64. Herman JG, Merlo A, Mao L, Lapidus RG, Issa JP, Davidson NE, Sidransky D, Baylin SB (1995) Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res 55(20):4525–4530PubMedGoogle Scholar
  65. Hiratani I, Ryba T, Itoh M, Yokochi T, Schwaiger M, Chang CW, Lyou Y, Townes TM, Schübeler D, Gilbert DM (2008) Global reorganization of replication domains during embryonic stem cell differentiation. PLoS Biol 6(10):e245PubMedCrossRefGoogle Scholar
  66. Hiratani I, Ryba T, Itoh M, Rathjen J, Kulik M, Papp B, Fussner E, Bazett-Jones DP, Plath K, Dalton S, Rathjen PD, Gilbert DM (2010) Genome-wide dynamics of replication timing revealed by in vitro models of mouse embryogenesis. Genome Res 20(2):155–169PubMedCrossRefGoogle Scholar
  67. Horike S, Cai S, Miyano M, Cheng JF, Kohwi-Shigematsu T (2005) Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nat Genet 37(1):31–40PubMedGoogle Scholar
  68. Huvet M, Nicolay S, Touchon M, Audit B, d’Aubenton Carafa Y, Arneodo A, Thermes C (2007) Human gene organization driven by the coordination of replication and transcription. Genome Res 17(9):1278–1285PubMedCrossRefGoogle Scholar
  69. Iarovaia OV, Bystritskiy A, Ravcheev D, Hancock R, Razin SV (2004a) Visualization of individual DNA loops and a map of loop domains in the human dystrophin gene. Nucleic Acids Res 32(7):2079–2086PubMedCrossRefGoogle Scholar
  70. Iarovaia OV, Shkumatov P, Razin SV (2004b) Breakpoint cluster regions of the AML-1 and ETO genes contain MAR elements and are preferentially associated with the nuclear matrix in proliferating HEL cells. J Cell Sci 117(Pt 19):4583–4590PubMedCrossRefGoogle Scholar
  71. Iborra FJ, Pombo A, Jackson DA, Cook PR (1996) Active RNA polymerases are localized within discrete transcription ‘factories’ in human nuclei. J Cell Sci 109(Pt 6):1427–1436PubMedGoogle Scholar
  72. Kadauke S, Blobel GA (2009) Chromatin loops in gene regulation. Biochim Biophys Acta 1789(1):17–25PubMedCrossRefGoogle Scholar
  73. Kanwal R, Gupta S (2010) Epigenetics and cancer. J Appl Physiol 109(2):598–605PubMedCrossRefGoogle Scholar
  74. Käs E, Chasin LA (1987) Anchorage of the Chinese hamster dihydrofolate reductase gene to the nuclear scaffold occurs in an intragenic region. J Mol Biol 198(4):677–692PubMedCrossRefGoogle Scholar
  75. Keaton MA, Taylor CM, Layer RM, Dutta A (2011) Nuclear scaffold attachment sites within ENCODE regions associate with actively transcribed genes. PLoS One 6(3):e17912PubMedCrossRefGoogle Scholar
  76. Keys JR, Tallack MR, Zhan Y, Papathanasiou P, Goodnow CC, Gaensler KM, Crossley M, Dekker J, Perkins AC (2008) A mechanism for Ikaros regulation of human globin gene switching. Br J Haematol 141(3):398–406PubMedGoogle Scholar
  77. Koehler D, Zakhartchenko V, Froenicke L, Stone G, Stanyon R, Wolf E, Cremer T, Brero A (2009) Changes of higher order chromatin arrangements during major genome activation in bovine preimplantation embryos. Exp Cell Res 315(12):2053–2063PubMedCrossRefGoogle Scholar
  78. Kohwi-Shigematsu T, Kohwi Y (1990) Torsional stress stabilizes extended base unpairing in suppressor sites flanking immunoglobulin heavy chain enhancer. Biochemistry 29(41):9551–9560PubMedCrossRefGoogle Scholar
  79. Kumar PP, Bischof O, Purbey PK, Notani D, Urlaub H, Dejean A, Galande S (2007) Functional interaction between PML and SATB1 regulates chromatin-loop architecture and transcription of the MHC class I locus. Nat Cell Biol 9(1):45–56PubMedCrossRefGoogle Scholar
  80. Kurukuti S, Tiwari VK, Tavoosidana G, Pugacheva E, Murrell A, Zhao Z, Lobanenkov V, Reik W, Ohlsson R (2006) CTCF binding at the H19 imprinting control region mediates maternally inherited higher-order chromatin conformation to restrict enhancer access to Igf2. Proc Natl Acad Sci U S A 103(28):10684–10689PubMedCrossRefGoogle Scholar
  81. Lande-Diner L, Zhang J, Cedar H (2009) Shifts in replication timing actively affect histone acetylation during nucleosome reassembly. Mol Cell 34(6):767–774PubMedCrossRefGoogle Scholar
  82. Li H, Ma X, Wang J, Koontz J, Nucci M, Sklar J (2007) Effects of rearrangement and allelic exclusion of JJAZ1/SUZ12 on cell proliferation and survival. Proc Natl Acad Sci U S A 104(50):20001–20006PubMedCrossRefGoogle Scholar
  83. Li H, Wang J, Mor G, Sklar J (2008) A neoplastic gene fusion mimics trans-splicing of RNAs in normal human cells. Science 321(5894):1357–1361PubMedCrossRefGoogle Scholar
  84. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326(5950):289–293PubMedCrossRefGoogle Scholar
  85. Liebich I, Bode J, Reuter I, Wingender E (2002) Evaluation of sequence motifs found in scaffold/matrix-attached regions (S/MARs). Nucleic Acids Res 30(15):3433–3442PubMedCrossRefGoogle Scholar
  86. Lin C, Yang L, Tanasa B, Hutt K, Ju BG, Ohgi K, Zhang J, Rose DW, Fu XD, Glass CK, Rosenfeld MG (2009) Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell 139(6):1069–1083PubMedCrossRefGoogle Scholar
  87. Ling JQ, Li T, Hu JF, Vu TH, Chen HL, Qiu XW, Cherry AM, Hoffman AR (2006) CTCF mediates interchromosomal colocalization between Igf2/H19 and Wsb1/Nf1. Science 312(5771):269–272PubMedCrossRefGoogle Scholar
  88. Lomvardas S, Barnea G, Pisapia DJ, Mendelsohn M, Kirkland J, Axel R (2006) Interchromosomal interactions and olfactory receptor choice. Cell 126(2):403–413PubMedCrossRefGoogle Scholar
  89. Lukásová E, Kozubek S, Kozubek M, Kjeronská J, Rýznar L, Horáková J, Krahulcová E, Horneck G (1997) Localisation and distance between ABL and BCR genes in interphase nuclei of bone marrow cells of control donors and patients with chronic myeloid leukaemia. Hum Genet 100(5–6):525–535PubMedGoogle Scholar
  90. MacAlpine DM, Rodríguez HK, Bell SP (2004) Coordination of replication and transcription along a Drosophila chromosome. Genes Dev 18(24):3094–3105PubMedCrossRefGoogle Scholar
  91. Mahy NL, Perry PE, Bickmore WA (2002) Gene density and transcription influence the localization of chromatin outside of chromosome territories detectable by FISH. J Cell Biol 159(5):753–763PubMedCrossRefGoogle Scholar
  92. Malhas A, Lee CF, Sanders R, Saunders NJ, Vaux DJ (2007) Defects in lamin B1 expression or processing affect interphase chromosome position and gene expression. J Cell Biol 176(5):593–603PubMedCrossRefGoogle Scholar
  93. Malyavantham KS, Bhattacharya S, Alonso WD, Acharya R, Berezney R (2008) Spatio-temporal dynamics of replication and transcription sites in the mammalian cell nucleus. Chromosoma 117(6):553–567PubMedCrossRefGoogle Scholar
  94. Martens JHA, Verlaan M, Kalkhoven E, Dorsman JC, Zantema A (2002) Scaffold/matrix attachment region elements interact with a p300-scaffold attachment factor A complex and are bound by acetylated nucleosomes. Mol Cell Biol 22(8):2598–2606PubMedCrossRefGoogle Scholar
  95. McNairn AJ, Gilbert DM (2003) Epigenomic replication: linking epigenetics to DNA replication. Bioessays 25(7):647–656PubMedCrossRefGoogle Scholar
  96. Meaburn KJ, Cabuy E, Bonne G, Levy N, Morris GE, Novelli G, Kill IR, Bridger JM (2007) Primary laminopathy fibroblasts display altered genome organization and apoptosis. Aging Cell 6(2):139–153PubMedCrossRefGoogle Scholar
  97. Mehta IS, Amira M, Harvey AJ, Bridger JM (2010) Rapid chromosome territory relocation by nuclear motor activity in response to serum removal in primary human fibroblasts. Genome Biol 11(1):R5PubMedCrossRefGoogle Scholar
  98. Meister P, Towbin BD, Pike BL, Ponti A, Gasser SM (2010) The spatial dynamics of tissue-specific promoters during C. elegans development. Genes Dev 24(8):766–782PubMedCrossRefGoogle Scholar
  99. Mewborn SK, Puckelwartz MJ, Abuisneineh F, Fahrenbach JP, Zhang Y, MacLeod H, Dellefave L, Pytel P, Selig S, Labno CM, Reddy K, Singh H, McNally E (2010) Altered chromosomal positioning, compaction, and gene expression with a lamin A/C gene mutation. PLoS One 5(12):e14342PubMedCrossRefGoogle Scholar
  100. Mijalski T, Harder A, Halder T, Kersten M, Horsch M, Strom TM, Liebscher HV, Lottspeich F, de Angelis MH, Beckers J (2005) Identification of coexpressed gene clusters in a comparative analysis of transcriptome and proteome in mouse tissues. Proc Natl Acad Sci U S A 102(24):8621–8626PubMedCrossRefGoogle Scholar
  101. Mlynarova L, Loonen A, Heldens J, Jansen RC, Keizer P, Stiekema WJ, Nap JP (1994) Reduced position effect in mature transgenic plants conferred by the chicken lysozyme matrix-associated region. Plant Cell 6(3):417–426PubMedGoogle Scholar
  102. Morey C, Silva NRD, Perry P, Bickmore WA (2007) Nuclear reorganisation and chromatin decondensation are conserved, but distinct, mechanisms linked to Hox gene activation. Development 134(5):909–919PubMedCrossRefGoogle Scholar
  103. Morey C, Silva NRD, Kmita M, Duboule D, Bickmore WA (2008) Ectopic nuclear reorganisation driven by a Hoxb1 transgene transposed into Hoxd. J Cell Sci 121(Pt 5):571–577PubMedCrossRefGoogle Scholar
  104. Murrell A, Heeson S, Reik W (2004) Interaction between differentially methylated regions partitions the imprinted genes Igf2 and H19 into parent-specific chromatin loops. Nat Genet 36(8):889–893PubMedCrossRefGoogle Scholar
  105. Nakagomi K, Kohwi Y, Dickinson LA, Kohwi-Shigematsu T (1994) A novel DNA-binding motif in the nuclear matrix attachment DNA-binding protein SATB1. Mol Cell Biol 14(3):1852–1860PubMedGoogle Scholar
  106. Narita M (2007) Cellular senescence and chromatin organisation. Br J Cancer 96(5):686–691PubMedCrossRefGoogle Scholar
  107. Narita M, Nunez S, Heard E, Narita M, Lin AW, Hearn SA, Spector DL, Hannon GJ, Lowe SW (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113(6):703–716PubMedCrossRefGoogle Scholar
  108. Nativio R, Wendt KS, Ito Y, Huddleston JE, Uribe-Lewis S, Woodfine K, Krueger C, Reik W, Peters JM, Murrell A (2009) Cohesin is required for higher-order chromatin conformation at the imprinted IGF2-H19 locus. PLoS Genet 5(11):e1000739PubMedCrossRefGoogle Scholar
  109. Nowell PC (2007) Discovery of the Philadelphia chromosome: a personal perspective. J Clin Invest 117(8):2033–2035PubMedCrossRefGoogle Scholar
  110. Oestreich KJ, Cobb RM, Pierce S, Chen J, Ferrier P, Oltz EM (2006) Regulation of TCRbeta gene assembly by a promoter/enhancer holocomplex. Immunity 24(4):381–391PubMedCrossRefGoogle Scholar
  111. Osborne CS, Chakalova L, Brown KE, Carter D, Horton A, Debrand E, Goyenechea B, Mitchell JA, Lopes S, Reik W, Fraser P (2004) Active genes dynamically colocalize to shared sites of ongoing transcription. Nat Genet 36(10):1065–1071PubMedCrossRefGoogle Scholar
  112. Osborne CS, Chakalova L, Mitchell JA, Horton A, Wood AL, Bolland DJ, Corcoran AE, Fraser P (2007) Myc dynamically and preferentially relocates to a transcription factory occupied by Igh. PLoS Biol 5(8):e192PubMedCrossRefGoogle Scholar
  113. Ottaviani D, Lever E, Takousis P, Sheer D (2008) Anchoring the genome. Genome Biol 9(1):201PubMedCrossRefGoogle Scholar
  114. Palstra RJ, Tolhuis B, Splinter E, Nijmeijer R, Grosveld F, de Laat W (2003) The beta-globin nuclear compartment in development and erythroid differentiation. Nat Genet 35(2):190–194PubMedCrossRefGoogle Scholar
  115. Parada LA, McQueen PG, Misteli T (2004) Tissue-specific spatial organization of genomes. Genome Biol 5(7):R44PubMedCrossRefGoogle Scholar
  116. Patrinos GP, de Krom M, de Boer E, Langeveld A, Imam AMA, Strouboulis J, de Laat W, Grosveld FG (2004) Multiple interactions between regulatory regions are required to stabilize an active chromatin hub. Genes Dev 18(12):1495–1509PubMedCrossRefGoogle Scholar
  117. Pauler FM, Sloane MA, Huang R, Regha K, Koerner MV, Tamir I, Sommer A, Aszodi A, Jenuwein T, Barlow DP (2009) H3K27me3 forms BLOCs over silent genes and intergenic regions and specifies a histone banding pattern on a mouse autosomal chromosome. Genome Res 19(2):221–233PubMedCrossRefGoogle Scholar
  118. Pegoraro G, Kubben N, Wickert U, Göhler H, Hoffmann K, Misteli T (2009) Ageing-related chromatin defects through loss of the NURD complex. Nat Cell Biol 11(10):1261–1267PubMedCrossRefGoogle Scholar
  119. Portela A, Esteller M (2010) Epigenetic modifications and human disease. Nat Biotechnol 28(10):1057–1068PubMedCrossRefGoogle Scholar
  120. Potts W, Tucker D, Wood H, Martin C (2000) Chicken beta-globin 5′HS4 insulators function to reduce variability in transgenic founder mice. Biochem Biophys Res Commun 273(3):1015–1018PubMedCrossRefGoogle Scholar
  121. Qiu X, Vu TH, Lu Q, Ling JQ, Li T, Hou A, Wang SK, Chen HL, Hu JF, Hoffman AR (2008) A complex DNA looping configuration associated with the silencing of the maternal Igf2 allele. Mol Endocrinol 22:1476–1488PubMedCrossRefGoogle Scholar
  122. Razin SV (2001) The nuclear matrix and chromosomal DNA loops: is their any correlation between partitioning of the genome into loops and functional domains? Cell Mol Biol Lett 6(1):59–69PubMedGoogle Scholar
  123. Romig H, Fackelmayer FO, Renz A, Ramsperger U, Richter A (1992) Characterization of SAF-A, a novel nuclear DNA binding protein from HeLa cells with high affinity for nuclear matrix/scaffold attachment DNA elements. EMBO J 11(9):3431–3440PubMedGoogle Scholar
  124. Ryba T, Hiratani I, Lu J, Itoh M, Kulik M, Zhang J, Schulz TC, Robins AJ, Dalton S, Gilbert DM (2010) Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types. Genome Res 20(6):761–770PubMedCrossRefGoogle Scholar
  125. Sandre-Giovannoli AD, Bernard R, Cau P, Navarro C, Amiel J, Boccaccio I, Lyonnet S, Stewart CL, Munnich A, Merrer ML, Lévy N (2003) Lamin a truncation in Hutchinson-Gilford progeria. Science 300(5628):2055PubMedCrossRefGoogle Scholar
  126. Sarg B, Koutzamani E, Helliger W, Rundquist I, Lindner HH (2002) Postsynthetic trimethylation of histone H4 at lysine 20 in mammalian tissues is associated with aging. J Biol Chem 277(42):39195–39201PubMedCrossRefGoogle Scholar
  127. Sayegh CE, Sayegh C, Jhunjhunwala S, Riblet R, Murre C (2005) Visualization of looping involving the immunoglobulin heavy-chain locus in developing B cells. Genes Dev 19(3):322–327PubMedCrossRefGoogle Scholar
  128. Scaffidi P, Misteli T (2006) Lamin A-dependent nuclear defects in human aging. Science 312(5776):1059–1063PubMedCrossRefGoogle Scholar
  129. Schoenfelder S, Clay I, Fraser P (2010a) The transcriptional interactome: gene expression in 3D. Curr Opin Genet Dev 20(2):127–133PubMedCrossRefGoogle Scholar
  130. Schoenfelder S, Sexton T, Chakalova L, Cope NF, Horton A, Andrews S, Kurukuti S, Mitchell JA, Umlauf D, Dimitrova DS, Eskiw CH, Luo Y, Wei CL, Ruan Y, Bieker JJ, Fraser P (2010b) Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nat Genet 42(1):53–61PubMedCrossRefGoogle Scholar
  131. Schübeler D, Scalzo D, Kooperberg C, van Steensel B, Delrow J, Groudine M (2002) Genome-wide DNA replication profile for Drosophila melanogaster: a link between transcription and replication timing. Nat Genet 32(3):438–442PubMedCrossRefGoogle Scholar
  132. Seligson DB, Horvath S, Shi T, Yu H, Tze S, Grunstein M, Kurdistani SK (2005) Global histone modification patterns predict risk of prostate cancer recurrence. Nature 435(7046):1262–1266PubMedCrossRefGoogle Scholar
  133. Seligson DB, Horvath S, McBrian MA, Mah V, Yu H, Tze S, Wang Q, Chia D, Goodglick L, Kurdistani SK (2009) Global levels of histone modifications predict prognosis in different cancers. Am J Pathol 174(5):1619–1628PubMedCrossRefGoogle Scholar
  134. Sexton T, Bantignies F, Cavalli G (2009) Genomic interactions: chromatin loops and gene meeting points in transcriptional regulation. Semin Cell Dev Biol 20(7):849–855PubMedCrossRefGoogle Scholar
  135. Shen S, Liu A, Li J, Wolubah C, Casaccia-Bonnefil P (2008) Epigenetic memory loss in aging oligodendrocytes in the corpus callosum. Neurobiol Aging 29(3):452–463PubMedCrossRefGoogle Scholar
  136. Shumaker DK, Dechat T, Kohlmaier A, Adam SA, Bozovsky MR, Erdos MR, Eriksson M, Goldman AE, Khuon S, Collins FS, Jenuwein T, Goldman RD (2006) Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. Proc Natl Acad Sci U S A 103(23):8703–8708PubMedCrossRefGoogle Scholar
  137. Simonis M, Kooren J, de Laat W (2007) An evaluation of 3c-based methods to capture DNA interactions. Nat Methods 4(11):895–901PubMedCrossRefGoogle Scholar
  138. Sinha S, Malonia SK, Mittal SPK, Singh K, Kadreppa S, Kamat R, Mukhopadhyaya R, Pal JK, Chattopadhyay S (2010) Coordinated regulation of p53 apoptotic targets BAX and PUMA by SMAR1 through an identical MAR element. EMBO J 29(4):830–842PubMedCrossRefGoogle Scholar
  139. Skok JA, Gisler R, Novatchkova M, Farmer D, de Laat W, Busslinger M (2007) Reversible contraction by looping of the Tcra and Tcrb loci in rearranging thymocytes. Nat Immunol 8(4):378–387PubMedCrossRefGoogle Scholar
  140. Solovei I, Kreysing M, Lanctôt C, Kösem S, Peichl L, Cremer T, Guck J, Joffe B (2009) Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution. Cell 137(2):356–368PubMedCrossRefGoogle Scholar
  141. Solovyan VT, Bezvenyuk ZA, Salminen A, Austin CA, Courtney MJ (2002) The role of topoisomerase II in the excision of DNA loop domains during apoptosis. J Biol Chem 277(24):21458–21467PubMedCrossRefGoogle Scholar
  142. Spellman PT, Rubin GM (2002) Evidence for large domains of similarly expressed genes in the Drosophila genome. J Biol 1(1):5PubMedCrossRefGoogle Scholar
  143. Spilianakis CG, Flavell RA (2004) Long-range intrachromosomal interactions in the T helper type 2 cytokine locus. Nat Immunol 5(10):1017–1027PubMedCrossRefGoogle Scholar
  144. Spilianakis CG, Lalioti MD, Town T, Lee GR, Flavell RA (2005) Interchromosomal associations between alternatively expressed loci. Nature 435(7042):637–645PubMedCrossRefGoogle Scholar
  145. Sutherland H, Bickmore WA (2009) Transcription factories: gene expression in unions? Nat Rev Genet 10(7):457–466PubMedCrossRefGoogle Scholar
  146. Tanabe H, Müller S, Neusser M, von Hase J, Calcagno E, Cremer M, Solovei I, Cremer C, Cremer T (2002) Evolutionary conservation of chromosome territory arrangements in cell nuclei from higher primates. Proc Natl Acad Sci U S A 99(7):4424–4429PubMedCrossRefGoogle Scholar
  147. Tolhuis B, Palstra RJ, Splinter E, Grosveld F, de Laat W (2002) Looping and interaction between hypersensitive sites in the active beta-globin locus. Mol Cell 10(6):1453–1465PubMedCrossRefGoogle Scholar
  148. Touchon M, Nicolay S, Arneodo A, d’Aubenton Carafa Y, Thermes C (2003) Transcription-coupled TA and GC strand asymmetries in the human genome. FEBS Lett 555(3):579–582PubMedCrossRefGoogle Scholar
  149. Touchon M, Nicolay S, Audit B, Of Brodie EBB, d’Aubenton Carafa Y, Arneodo A, Thermes C (2005) Replication-associated strand asymmetries in mammalian genomes: toward detection of replication origins. Proc Natl Acad Sci U S A 102(28):9836–9841PubMedCrossRefGoogle Scholar
  150. Towbin BD, Meister P, Gasser SM (2009) The nuclear envelope–a scaffold for silencing? Curr Opin Genet Dev 19(2):180–186PubMedCrossRefGoogle Scholar
  151. Vakoc CR, Letting DL, Gheldof N, Sawado T, Bender MA, Groudine M, Weiss MJ, Dekker J, Blobel GA (2005) Proximity among distant regulatory elements at the beta-globin locus requires GATA-1 and FOG-1. Mol Cell 17(3):453–462PubMedCrossRefGoogle Scholar
  152. Versteeg R, van Schaik BDC, van Batenburg MF, Roos M, Monajemi R, Caron H, Bussemaker HJ, van Kampen AHC (2003) The human transcriptome map reveals extremes in gene density, intron length, GC content, and repeat pattern for domains of highly and weakly expressed genes. Genome Res 13(9):1998–2004PubMedCrossRefGoogle Scholar
  153. Volpi EV, Chevret E, Jones T, Vatcheva R, Williamson J, Beck S, Campbell RD, Goldsworthy M, Powis SH, Ragoussis J, Trowsdale J, Sheer D (2000) Large-scale chromatin organization of the major histocompatibility complex and other regions of human chromosome 6 and its response to interferon in interphase nuclei. J Cell Sci 113(Pt 9):1565–1576PubMedGoogle Scholar
  154. Wang L, Di LJ, Lv X, Zheng W, Xue Z, Guo ZC, Liu DP, Liang CC (2009) Inter-MAR association contributes to transcriptionally active looping events in human beta-globin gene cluster. PLoS One 4(2):e4629PubMedCrossRefGoogle Scholar
  155. Wang CM, Tsai SN, Yew TW, Kwan YW, Ngai SM (2010) Identification of histone methylation multiplicities patterns in the brain of senescence-accelerated prone mouse 8. Biogerontology 11(1):87–102PubMedCrossRefGoogle Scholar
  156. Wen B, Wu H, Shinkai Y, Irizarry RA, Feinberg AP (2009) Large histone H3 lysine 9 dimethylated chromatin blocks distinguish differentiated from embryonic stem cells. Nat Genet 41(2):246–250PubMedCrossRefGoogle Scholar
  157. White EJ, Emanuelsson O, Scalzo D, Royce T, Kosak S, Oakeley EJ, Weissman S, Gerstein M, Groudine M, Snyder M, Schübeler D (2004) DNA replication-timing analysis of human chromosome 22 at high resolution and different developmental states. Proc Natl Acad Sci U S A 101(51):17771–17776PubMedCrossRefGoogle Scholar
  158. Williams RRE, Broad S, Sheer D, Ragoussis J (2002) Subchromosomal positioning of the epidermal differentiation complex (EDC) in keratinocyte and lymphoblast interphase nuclei. Exp Cell Res 272(2):163–175PubMedCrossRefGoogle Scholar
  159. Williams A, Spilianakis CG, Flavell RA (2010) Interchromosomal association and gene regulation in trans. Trends Genet 26(4):188–197PubMedCrossRefGoogle Scholar
  160. Woodfine K, Fiegler H, Beare DM, Collins JE, McCann OT, Young BD, Debernardi S, Mott R, Dunham I, Carter NP (2004) Replication timing of the human genome. Hum Mol Genet 13(2):191–202PubMedCrossRefGoogle Scholar
  161. Woodfine K, Beare DM, Ichimura K, Debernardi S, Mungall AJ, Fiegler H, Collins VP, Carter NP, Dunham I (2005) Replication timing of human chromosome 6. Cell Cycle 4(1):172–176PubMedCrossRefGoogle Scholar
  162. Worman HJ, Ostlund C, Wang Y (2010) Diseases of the nuclear envelope. Cold Spring Harb Perspect Biol 2(2):a000760PubMedCrossRefGoogle Scholar
  163. Xu N, Tsai CL, Lee JT (2006) Transient homologous chromosome pairing marks the onset of X inactivation. Science 311(5764):1149–1152PubMedCrossRefGoogle Scholar
  164. Xu N, Donohoe ME, Silva SS, Lee JT (2007) Evidence that homologous X-chromosome pairing requires transcription and Ctcf protein. Nat Genet 39(11):1390–1396PubMedCrossRefGoogle Scholar
  165. Yasui D, Miyano M, Cai S, Varga-Weisz P, Kohwi-Shigematsu T (2002) SATB1 targets chromatin remodelling to regulate genes over long distances. Nature 419(6907):641–645PubMedCrossRefGoogle Scholar
  166. Yokoyama T, Silversides DW, Waymire KG, Kwon BS, Takeuchi T, Overbeek PA (1990) Conserved cysteine to serine mutation in tyrosinase is responsible for the classical albino mutation in laboratory mice. Nucleic Acids Res 18(24):7293–7298PubMedCrossRefGoogle Scholar
  167. Zhang J, Xu F, Hashimshony T, Keshet I, Cedar H (2002) Establishment of transcriptional competence in early and late S phase. Nature 420(6912):198–202PubMedCrossRefGoogle Scholar
  168. Zhang R, Poustovoitov MV, Ye X, Santos HA, Chen W, Daganzo SM, Erzberger JP, Serebriiskii IG, Canutescu AA, Dunbrack RL, Pehrson JR, Berger JM, Kaufman PD, Adams PD (2005) Formation of MacroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA. Dev Cell 8(1):19–30PubMedCrossRefGoogle Scholar
  169. Zlatanova J, Caiafa P (2009) CCCTC-binding factor: to loop or to bridge. Cell Mol Life Sci 66(10):1647–1660PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Benoît Moindrot
    • 1
  • Philippe Bouvet
    • 1
  • Fabien Mongelard
    • 1
    Email author
  1. 1.Laboratoire Joliot-Curie, Centre National de la Recherche Scientifique (CNRS)/Ecole Normale Supérieure de LyonUniversité de LyonLyonFrance

Personalised recommendations