Skip to main content

Histone Variants and Transcription Regulation

  • Chapter
  • First Online:

Part of the book series: Subcellular Biochemistry ((SCBI,volume 61))

Abstract

Histones are the protein components of chromatin and are important for its organization and compaction. Although core histones are exclusively expressed during S phase of the cell cycle, there exist variants of canonical histones that are expressed throughout the cell cycle. These histone variants are often deposited at defined regions of the genome and they play important roles in a variety of cellular processes, such as transcription regulation, heterochromatin formation and DNA repair. In this chapter, we will focus on several histone variants that have been linked to transcription regulation, and highlight their physical and functional features that facilitate their activities in this context.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbott DW, Ivanova VS, Wang X, Bonner WM, Ausió J (2001) Characterization of the stability and folding of H2A.Z chromatin particles: implications for transcriptional activation. J Biol Chem 276:41945–41949

    Article  PubMed  CAS  Google Scholar 

  • Abbott DW, Laszczak M, Lewis JD, Su H, Moore SC, Hills M, Dimitrov S, Ausió J (2004) Structural characterization of macroH2A containing chromatin. Biochemistry 43:1352–1359

    Article  PubMed  CAS  Google Scholar 

  • Adam M, Robert F, Larochelle M, Gaudreau L (2001) H2A.Z is required for global chromatin integrity and for recruitment of RNA polymerase II under specific conditions. Mol Cell Biol 21:6270–6279

    Article  PubMed  CAS  Google Scholar 

  • Agelopoulos M, Thanos D (2006) Epigenetic determination of a cell-specific gene expression program by ATF-2 and the histone variant macroH2A. EMBO J 25:4843–4853

    Article  PubMed  CAS  Google Scholar 

  • Ahmad K, Henikoff S (2002) The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol Cell 9:1191–1200

    Article  PubMed  CAS  Google Scholar 

  • Akhmanova AS, Bindels PC, Xu J, Miedema K, Kremer H, Hennig W (1995) Structure and expression of histone H3.3 genes in Drosophila melanogaster and Drosophila hydei. Genome 38:586–600

    Article  PubMed  CAS  Google Scholar 

  • Alberts B (2002) Molecular biology of the cell, 4th edn. Garland Science, New York

    Google Scholar 

  • Albig W, Doenecke D (1997) The human histone gene cluster at the D6S105 locus. Hum Genet 101:284–294

    Article  PubMed  CAS  Google Scholar 

  • Allis CD, Glover CV, Bowen JK, Gorovsky MA (1980) Histone variants specific to the transcriptionally active, amitotically dividing macronucleus of the unicellular eucaryote, Tetrahymena thermophila. Cell 20:609–617

    Article  PubMed  CAS  Google Scholar 

  • Amat R, Gudas LJ (2011) RARγ is required for correct deposition and removal of Suz12 and H2A.Z in embryonic stem cells. J Cell Physiol 226:293–298

    Article  PubMed  CAS  Google Scholar 

  • Angelov D, Molla A, Perche P-Y, Hans F, Côté J, Khochbin S, Bouvet P, Dimitrov S (2003) The histone variant macroH2A interferes with transcription factor binding and SWI/SNF nucleosome remodeling. Mol Cell 11:1033–1041

    Article  PubMed  CAS  Google Scholar 

  • Angelov D, Verdel A, An W, Bondarenko V, Hans F, Doyen CM, Studitsky VM, Hamiche A, Roeder RG, Bouvet P, Dimitrov S (2004) SWI/SNF remodeling and p300-dependent transcription of histone variant H2ABbd nucleosomal arrays. EMBO J 23:3815–3824

    Article  PubMed  CAS  Google Scholar 

  • Araya I, Nardocci G, Morales J, Vera M, Molina A, Alvarez M (2010) MacroH2A subtypes contribute antagonistically to the transcriptional regulation of the ribosomal cistron during seasonal acclimatization of the carp fish. Epigenetics Chromatin 3:14

    Article  PubMed  CAS  Google Scholar 

  • Ausió J (2006) Histone variants—the structure behind the function. Brief Funct Genomic Proteomic 5:228

    Article  PubMed  CAS  Google Scholar 

  • Banaszynski LA, Allis CD, Lewis PW (2010) Histone variants in metazoan development. Dev Cell 19:662–674

    Article  PubMed  CAS  Google Scholar 

  • Bao Y, Konesky K, Park Y-J, Rosu S, Dyer PN, Rangasamy D, Tremethick DJ, Laybourn PJ, Luger K (2004) Nucleosomes containing the histone variant H2A.Bbd organize only 118 base pairs of DNA. EMBO J 23:3314–3324

    Article  PubMed  CAS  Google Scholar 

  • Barski A, Cuddapah S, Cui K, Roh T-Y, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837

    Article  PubMed  CAS  Google Scholar 

  • Beck HC, Nielsen EC, Matthiesen R, Jensen LH, Sehested M, Finn P, Grauslund M, Hansen AM, Jensen ON (2006) Quantitative proteomic analysis of post-translational modifications of human histones. Mol Cell Proteomics 5:1314–1325

    Article  PubMed  CAS  Google Scholar 

  • Bergmann JH, Rodríguez MG, Martins NMC, Kimura H, Kelly DA, Masumoto H, Larionov V, Jansen LET, Earnshaw WC (2011) Epigenetic engineering shows H3K4me2 is required for HJURP targeting and CENP-A assembly on a synthetic human kinetochore. EMBO J 30:328–340

    Article  PubMed  CAS  Google Scholar 

  • Braunschweig U, Hogan GJ, Pagie L, van Steensel B (2009) Histone H1 binding is inhibited by histone variant H3.3. EMBO J 28:3635–3645

    Article  PubMed  CAS  Google Scholar 

  • Bruce K, Myers FA, Mantouvalou E, Lefevre P, Greaves I, Bonifer C, Tremethick DJ, Thorne AW, Crane-Robinson C (2005) The replacement histone H2A.Z in a hyperacetylated form is a feature of active genes in the chicken. Nucleic Acids Res 33:5633–5639

    Article  PubMed  CAS  Google Scholar 

  • Buschbeck M, Uribesalgo I, Wibowo I, Rué P, Martin D, Gutierrez A, Morey L, Guigó R, López-Schier H, Di Croce L (2009) The histone variant macroH2A is an epigenetic regulator of key developmental genes. Nat Struct Mol Biol 16:1074–1079

    Article  PubMed  CAS  Google Scholar 

  • Chadwick BP, Willard HF (2001a) A novel chromatin protein, distantly related to histone H2A, is largely excluded from the inactive X chromosome. J Cell Biol 152:375–384

    Article  PubMed  CAS  Google Scholar 

  • Chadwick BP, Willard HF (2001b) Histone H2A variants and the inactive X chromosome: identification of a second macroH2A variant. Hum Mol Genet 10:1101–1113

    Article  PubMed  CAS  Google Scholar 

  • Chakravarthy S, Gundimella SKY, Caron C, Perche P-Y, Pehrson JR, Khochbin S, Luger K (2005) Structural characterization of the histone variant macroH2A. Mol Cell Biol 25:7616–7624

    Article  PubMed  CAS  Google Scholar 

  • Chang EY, Ferreira H, Somers J, Nusinow DA, Owen-Hughes T, Narlikar GJ (2008) MacroH2A allows ATP-dependent chromatin remodeling by SWI/SNF and ACF complexes but specifically reduces recruitment of SWI/SNF. Biochemistry 47:13726–13732

    Article  PubMed  CAS  Google Scholar 

  • Changolkar LN, Pehrson JR (2002) Reconstitution of nucleosomes with histone macroH2A1.2. Biochemistry 41:179–184

    Article  PubMed  CAS  Google Scholar 

  • Changolkar LN, Singh G, Cui K, Berletch JB, Zhao K, Disteche CM, Pehrson JR (2010) Genome-wide distribution of macroH2A1 histone variants in mouse liver chromatin. Mol Cell Biol 30:5473–5483

    Article  PubMed  CAS  Google Scholar 

  • Choo JH, Kim JD, Kim J (2007) MacroH2A1 knockdown effects on the Peg3 imprinted domain. BMC Genomics 8:479

    Article  PubMed  CAS  Google Scholar 

  • Chow C-M, Georgiou A, Szutorisz H, Maia e Silva A, Pombo A, Barahona I, Dargelos E, Canzonetta C, Dillon N (2005) Variant histone H3.3 marks promoters of transcriptionally active genes during mammalian cell division. EMBO Rep 6:354–360

    Article  PubMed  CAS  Google Scholar 

  • Coon JJ, Ueberheide B, Syka JEP, Dryhurst DD, Ausio J, Shabanowitz J, Hunt DF (2005) Protein identification using sequential ion/ion reactions and tandem mass spectrometry. Proc Natl Acad Sci USA 102:9463–9468

    Article  PubMed  CAS  Google Scholar 

  • Costanzi C, Pehrson JR (1998) Histone macroH2A1 is concentrated in the inactive X chromosome of female mammals. Nature 393:599–601

    Article  PubMed  CAS  Google Scholar 

  • Costanzi C, Pehrson JR (2001) MACROH2A2, a new member of the MARCOH2A core histone family. J Biol Chem 276:21776–21784

    Article  PubMed  CAS  Google Scholar 

  • Creyghton MP, Markoulaki S, Levine SS, Hanna J, Lodato MA, Sha K, Young RA, Jaenisch R, Boyer LA (2008) H2AZ is enriched at polycomb complex target genes in ES cells and is necessary for lineage commitment. Cell 135(4):649–661

    Article  PubMed  CAS  Google Scholar 

  • Cuadrado A, Corrado N, Perdiguero E, Lafarga V, Muñoz-Canoves P, Nebreda AR (2010) Essential role of p18Hamlet/SRCAP-mediated histone H2A.Z chromatin incorporation in muscle differentiation. EMBO J 29:2014–2025

    Article  PubMed  CAS  Google Scholar 

  • Daury L, Chailleux C, Bonvallet J, Trouche D (2006) Histone H3.3 deposition at E2F-regulated genes is linked to transcription. EMBO Rep 7:66–71

    Article  PubMed  CAS  Google Scholar 

  • Delbarre E, Jacobsen BM, Reiner AH, Sorensen AL, Kuntziger T, Collas P (2010) Chromatin environment of histone variant H3. 3 revealed by quantitative imaging and genome-scale chromatin and DNA immunoprecipitation. Mol Biol Cell 21:1872

    Article  PubMed  CAS  Google Scholar 

  • Dion MF, Kaplan T, Kim M, Buratowski S, Friedman N, Rando OJ (2007) Dynamics of replication-independent histone turnover in budding yeast. Science 315:1405–1408

    Article  PubMed  CAS  Google Scholar 

  • Dominski Z, Marzluff WF (1999) Formation of the 3′end of histone mRNA. Gene 239:1–14

    Article  PubMed  CAS  Google Scholar 

  • Doyen C-M, An W, Angelov D, Bondarenko V, Mietton F, Studitsky VM, Hamiche A, Roeder RG, Bouvet P, Dimitrov S (2006a) Mechanism of polymerase II transcription repression by the histone variant macroH2A. Mol Cell Biol 26:1156–1164

    Article  PubMed  CAS  Google Scholar 

  • Doyen C-M, Montel F, Gautier T, Menoni H, Claudet C, Delacour-Larose M, Angelov D, Hamiche A, Bednar J, Faivre-Moskalenko C, Bouvet P, Dimitrov S (2006b) Dissection of the unusual structural and functional properties of the variant H2A.Bbd nucleosome. EMBO J 25:4234–4244

    Article  PubMed  CAS  Google Scholar 

  • Draker R, Cheung P (2009) Transcriptional and epigenetic functions of histone variant H2A.Z. Biochem Cell Biol 87:19–25

    Article  PubMed  CAS  Google Scholar 

  • Draker R, Sarcinella E, Cheung P (2011) USP10 deubiquitylates the histone variant H2A.Z and both are required for androgen receptor-mediated gene activation. Nucleic Acids Res. doi:10.1093/nar/gkq1352

  • Drané P, Ouararhni K, Depaux A, Shuaib M, Hamiche A (2010) The death-associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3. Genes Dev 24:1253–1265

    Article  PubMed  CAS  Google Scholar 

  • Faast R, Thonglairoam V, Schulz TC, Beall J, Wells JRE, Taylor H, Matthaei K, Rathjen PD, Tremethick DJ, Lyons I (2001) Histone variant H2A.Z is required for early mammalian development. Curr Biol 11:1183–1187

    Article  PubMed  CAS  Google Scholar 

  • Fan JY, Gordon F, Luger K, Hansen JC, Tremethick DJ (2002) The essential histone variant H2A.Z regulates the equilibrium between different chromatin conformational states. Nat Struct Biol 9:172–176

    Article  PubMed  CAS  Google Scholar 

  • Fan JY, Rangasamy D, Luger K, Tremethick DJ (2004) H2A.Z alters the nucleosome surface to promote HP1 [alpha]-mediated chromatin fiber folding. Mol Cell 16:655–661

    Article  PubMed  CAS  Google Scholar 

  • Farris SD, Rubio ED, Moon JJ, Gombert WM, Nelson BH, Krumm A (2005) Transcription-induced chromatin remodeling at the c-myc gene involves the local exchange of histone H2A.Z. J Biol Chem 280:25298–25303

    Article  PubMed  CAS  Google Scholar 

  • Flaus A, Rencurel C, Ferreira H, Wiechens N, Owen-Hughes T (2004) Sin mutations alter inherent nucleosome mobility. EMBO J 23:343–353

    Article  PubMed  CAS  Google Scholar 

  • Foster ER, Downs JA (2005) Histone H2A phosphorylation in DNA double-strand break repair. FEBS J 272:3231–3240

    Article  PubMed  CAS  Google Scholar 

  • Frank D, Doenecke D, Albig W (2003) Differential expression of human replacement and cell cycle dependent H3 histone genes. Gene 312:135–143

    Article  PubMed  CAS  Google Scholar 

  • Gamble MJ, Frizzell KM, Yang C, Krishnakumar R, Kraus WL (2010) The histone variant macroH2A1 marks repressed autosomal chromatin, but protects a subset of its target genes from silencing. Genes Dev 24:21–32

    Article  PubMed  CAS  Google Scholar 

  • Garrick D, Sharpe JA, Arkell R, Dobbie L, Smith AJ, Wood WG, Higgs DR, Gibbons RJ (2006) Loss of Atrx affects trophoblast development and the pattern of X-inactivation in extraembryonic tissues. PLoS Genet 2(4):e58

    Article  PubMed  CAS  Google Scholar 

  • Gautier T, Abbott DW, Molla A, Verdel A, Ausio J, Dimitrov S (2004) Histone variant H2ABbd confers lower stability to the nucleosome. EMBO Rep 5:715–720

    Article  PubMed  CAS  Google Scholar 

  • Gévry N, Chan HM, Laflamme L, Livingston DM, Gaudreau L (2007) p21 transcription is regulated by differential localization of histone H2A.Z. Genes Dev 21:1869–1881

    Article  PubMed  CAS  Google Scholar 

  • Gévry N, Hardy S, Jacques P-E, Laflamme L, Svotelis A, Robert F, Gaudreau L (2009) Histone H2A.Z is essential for estrogen receptor signaling. Genes Dev 23:1522–1533

    Article  PubMed  CAS  Google Scholar 

  • Goldberg AD, Banaszynski LA, Noh K-M, Lewis PW, Elsaesser SJ, Stadler S, Dewell S, Law M, Guo X, Li X (2010) Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 140:678–691

    Article  PubMed  CAS  Google Scholar 

  • González-Romero R, Méndez J, Ausió J, Eirín-López JM (2008) Quickly evolving histones, nucleosome stability and chromatin folding: all about histone H2A.Bbd. Gene 413:1–7

    Article  PubMed  CAS  Google Scholar 

  • Gorovsky MA (1996) Essential and nonessential histone H2A variants in Tetrahymena thermophila. Mol Cell Biol 16:4305–4311

    Google Scholar 

  • Guillemette B, Bataille AR, Gévry N, Adam M, Blanchette M, Robert F, Gaudreau L (2005) Variant histone H2A.Z is globally localized to the promoters of inactive yeast genes and regulates nucleosome positioning. PLoS Biol 3:e384

    Article  PubMed  CAS  Google Scholar 

  • Hake SB, Allis CD (2006) Histone H3 variants and their potential role in indexing mammalian genomes: the “H3 barcode hypothesis”. Proc Natl Acad Sci USA 103:6428–6435

    Article  PubMed  CAS  Google Scholar 

  • Hake SB, Garcia BA, Duncan EM, Kauer M, Dellaire G, Shabanowitz J, Bazett-Jones DP, Allis CD, Hunt DF (2005) Expression patterns and post-translational modifications associated with mammalian histone H3 variants. J Biol Chem 281:559–568

    Article  PubMed  CAS  Google Scholar 

  • Hake SB, Garcia BA, Duncan EM, Kauer M, Dellaire G, Shabanowitz J, Bazett-Jones DP, Allis CD, Hunt DF (2006) Expression patterns and post-translational modifications associated with mammalian histone H3 variants. J Biol Chem 281:559–568

    Article  PubMed  CAS  Google Scholar 

  • Hardy S, Jacques P-E, Gévry N, Forest A, Fortin M-E, Laflamme L, Gaudreau L, Robert F (2009) The euchromatic and heterochromatic landscapes are shaped by antagonizing effects of transcription on H2A.Z deposition. PLoS Genet 5:e1000687

    Article  PubMed  CAS  Google Scholar 

  • Harris ME, Bohni R, Schneiderman MH, Ramamurthy L, Schumperli D, Marzluff WF (1991) Regulation of histone mRNA in the unperturbed cell cycle: evidence suggesting control at two posttranscriptional steps. Mol Cell Biol 11:2416

    PubMed  CAS  Google Scholar 

  • Henikoff S, Ahmad K (2005) Assembly of variant histones into chromatin. Annu Rev Cell Dev Biol 21:133–153

    Article  PubMed  CAS  Google Scholar 

  • Hua S, Kallen CB, Dhar R, Baquero MT, Mason CE, Russell BA, Shah PK, Liu J, Khramtsov A, Tretiakova MS, Krausz TN, Olopade OI, Rimm DL, White KP (2008) Genomic analysis of estrogen cascade reveals histone variant H2A.Z associated with breast cancer progression. Mol Syst Biol 4:188

    Article  PubMed  CAS  Google Scholar 

  • Iouzalen N, Moreau J, Méchali M (1996) H2A.ZI, a new variant histone expressed during Xenopus early development exhibits several distinct features from the core histone H2A. Nucleic Acids Res 24:3947–3952

    Article  PubMed  CAS  Google Scholar 

  • Jackson JD, Gorovsky MA (2000) Histone H2A.Z has a conserved function that is distinct from that of the major H2A sequence variants. Nucleic Acids Res 28:3811–3816

    Article  PubMed  CAS  Google Scholar 

  • Jin C, Felsenfeld G (2007) Nucleosome stability mediated by histone variants H3.3 and H2A.Z. Genes Dev 21:1519–1529

    Article  PubMed  CAS  Google Scholar 

  • Jin C, Zang C, Wei G, Cui K, Peng W, Zhao K, Felsenfeld G (2009) H3.3/H2A.Z double variant-containing nucleosomes mark “nucleosome-free regions” of active promoters and other regulatory regions. Nat Genet 41:941–945

    Article  PubMed  CAS  Google Scholar 

  • Jufvas Å, Strålfors P, Vener AV (2011) Histone variants and their post-translational modifications in primary human fat cells. PLoS One 6:e15960

    Article  PubMed  CAS  Google Scholar 

  • Kamakaka RT (2005) Histone variants: deviants? Genes Dev 19:295–316

    Article  PubMed  CAS  Google Scholar 

  • Kapoor A, Goldberg MS, Cumberland LK, Ratnakumar K, Segura MF, Emanuel PO, Menendez S, Vardabasso C, Leroy G, Vidal CI, Polsky D, Osman I, Garcia BA, Hernando E, Bernstein E (2010) The histone variant macroH2A suppresses melanoma progression through regulation of CDK8. Nature 468:1105–1109

    Article  PubMed  CAS  Google Scholar 

  • Kobor MS, Venkatasubrahmanyam S, Meneghini MD, Gin JW, Jennings JL, Link AJ, Madhani HD, Rine J (2004) A protein complex containing the conserved Swi2/Snf2-related ATPase Swr1p deposits histone variant H2A.Z into euchromatin. PLoS Biol 2:E131

    Article  PubMed  Google Scholar 

  • Kornberg RD (1974) Chromatin structure: a repeating unit of histones and DNA. Science 184:868–871

    Article  PubMed  CAS  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  PubMed  CAS  Google Scholar 

  • Lewis PW, Elsaesser SJ, Noh K-M, Stadler SC, Allis CD (2010) Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres. Proc Natl Acad Sci USA 107:14075–14080

    Article  PubMed  CAS  Google Scholar 

  • Li B, Pattenden SG, Lee D, Gutiérrez J, Chen J, Seidel C, Gerton J, Workman JL (2005) Preferential occupancy of histone variant H2AZ at inactive promoters influences local histone modifications and chromatin remodeling. Proc Natl Acad Sci USA 102:18385–18390

    Article  PubMed  CAS  Google Scholar 

  • Loyola A, Bonaldi T, Roche D, Imhof A, Almouzni G (2006) PTMs on H3 variants before chromatin assembly potentiate their final epigenetic state. Mol Cell 24:309–316

    Article  PubMed  CAS  Google Scholar 

  • Luk E, Ranjan A, FitzGerald PC, Mizuguchi G, Huang Y, Wei D, Wu C (2010) Stepwise histone replacement by SWR1 requires dual activation with histone H2A.Z and canonical nucleosome. Cell 143:725–736

    Article  PubMed  CAS  Google Scholar 

  • Lusser A, Kadonaga JT (2003) Chromatin remodeling by ATP-dependent molecular machines. Bioessays 25:1192–1200

    Article  PubMed  CAS  Google Scholar 

  • Marzluff WF, Gongidi P, Woods KR, Jin J, Maltais LJ (2002) The human and mouse replication-dependent histone genes. Genomics 80:487–498

    Article  PubMed  CAS  Google Scholar 

  • McKittrick E, Gafken PR, Ahmad K, Henikoff S (2004) Histone H3.3 is enriched in covalent modifications associated with active chromatin. Proc Natl Acad Sci USA 101:1525–1530

    Article  PubMed  CAS  Google Scholar 

  • Meneghini MD, Wu M, Madhani HD (2003) Conserved histone variant H2A.Z protects euchromatin from the ectopic spread of silent heterochromatin. Cell 112:725–736

    Article  PubMed  CAS  Google Scholar 

  • Michaelson JS, Bader D, Kuo F, Kozak C, Leder P (1999) Loss of Daxx, a promiscuously interacting protein, results in extensive apoptosis in early mouse development. Genes Dev 13:1918–1923

    Article  PubMed  CAS  Google Scholar 

  • Millar CB, Xu F, Zhang K, Grunstein M (2006) Acetylation of H2AZ Lys 14 is associated with genome-wide gene activity in yeast. Genes Dev 20:711–722

    Article  PubMed  CAS  Google Scholar 

  • Mito Y, Henikoff JG, Henikoff S (2005) Genome-scale profiling of histone H3.3 replacement patterns. Nat Genet 37:1090–1097

    Article  PubMed  CAS  Google Scholar 

  • Nagaki K, Cheng Z, Ouyang S, Talbert PB, Kim M, Jones KM, Henikoff S, Buell CR, Jiang J (2004) Sequencing of a rice centromere uncovers active genes. Nat Genet 36:138–145

    Article  PubMed  CAS  Google Scholar 

  • Ng K, Pullirsch D, Leeb M, Wutz A (2007) Xist and the order of silencing. EMBO Rep 8:34–39

    Article  PubMed  CAS  Google Scholar 

  • Nusinow DA, Hernandez-Munoz I, Fazzio TG, Shah GM, Kraus WL, Panning B (2007) Poly(ADP-ribose) polymerase 1 is inhibited by a histone H2A variant, macroH2A, and contributes to silencing of the inactive X chromosome. J Biol Chem 282:12851–12859

    Article  PubMed  CAS  Google Scholar 

  • Ooi SL, Henikoff JG, Henikoff S (2010) A native chromatin purification system for epigenomic profiling in Caenorhabditis elegans. Nucleic Acids Res 38:e26

    Article  PubMed  CAS  Google Scholar 

  • Osley MA (1991) The regulation of histone synthesis in the cell cycle. Annu Rev Biochem 60:827–861

    Article  PubMed  CAS  Google Scholar 

  • Ouararhni K, Hadj-Slimane R, Ait-Si-Ali S, Robin P, Mietton F, Harel-Bellan A, Dimitrov S, Hamiche A (2006) The histone variant mH2A1.1 interferes with transcription by down-regulating PARP-1 enzymatic activity. Genes Dev 20:3324–3336

    Article  PubMed  CAS  Google Scholar 

  • Pehrson JR, Fried VA (1992) MacroH2A, a core histone containing a large nonhistone region. Science 257:1398–1400

    Article  PubMed  CAS  Google Scholar 

  • Placek BJ, Huang J, Kent JR, Dorsey J, Rice L, Fraser NW, Berger SL (2009) The histone variant H3.3 regulates gene expression during lytic infection with herpes simplex virus type 1. J Virol 83:1416–1421

    Article  PubMed  CAS  Google Scholar 

  • Pusarla RH, Bhargava P (2005) Histones in functional diversification. FEBS J 272:5149–5168

    Article  PubMed  CAS  Google Scholar 

  • Rangasamy D, Berven L, Ridgway P, Tremethick DJ (2003) Pericentric heterochromatin becomes enriched with H2A.Z during early mammalian development. EMBO J 22:1599–1607

    Article  PubMed  CAS  Google Scholar 

  • Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, Barrette T, Pandey A, Chinnaiyan AM (2004) Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression. Proc Natl Acad Sci USA 101:9309–9314

    Article  PubMed  CAS  Google Scholar 

  • Roberts C, Sutherland HF, Farmer H, Kimber W, Halford S, Carey A, Brickman JM, Wynshaw-Boris A, Scambler PJ (2002) Targeted mutagenesis of the Hira gene results in gastrulation defects and patterning abnormalities of mesoendodermal derivatives prior to early embryonic lethality. Mol Cell Biol 22:2318–2328

    Article  PubMed  CAS  Google Scholar 

  • Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273:5858

    Article  PubMed  CAS  Google Scholar 

  • Santenard A, Ziegler-Birling C, Koch M, Tora L, Bannister AJ, Torres-Padilla M-E (2010) Heterochromatin formation in the mouse embryo requires critical residues of the histone variant H3.3. Nat Cell Biol 12:853–862

    Article  PubMed  CAS  Google Scholar 

  • Santisteban MS, Kalashnikova T, Smith MM (2000) Histone H2A.Z regulates transcription and is partially redundant with nucleosome remodeling complexes. Cell 103:411–422

    Article  PubMed  CAS  Google Scholar 

  • Santisteban MS, Hang M, Smith MM (2011) Histone variant H2A.Z and RNA polymerase II transcription elongation. Mol Cell Biol 31:1848–1860

    Article  PubMed  CAS  Google Scholar 

  • Sarcinella E, Zuzarte PC, Lau PNI, Draker R, Cheung P (2007) Monoubiquitylation of H2A.Z distinguishes its association with euchromatin or facultative heterochromatin. Mol Cell Biol 27:6457–6468

    Article  PubMed  CAS  Google Scholar 

  • Schenk R, Jenke A, Zilbauer M, Wirth S, Postberg J (2011) H3.5 is a novel hominid-specific histone H3 variant that is specifically expressed in the seminiferous tubules of human testes. Chromosoma. doi:10.1007/s00412-011-0310-4

  • Schwartz BE, Ahmad K (2005) Transcriptional activation triggers deposition and removal of the histone variant H3.3. Genes Dev 19:804–814

    Article  PubMed  CAS  Google Scholar 

  • Shukla MS, Syed SH, Goutte-Gattat D, Richard JLC, Montel F, Hamiche A, Travers A, Faivre-Moskalenko C, Bednar J, Hayes JJ, Angelov D, Dimitrov S (2010) The docking domain of histone H2A is required for H1 binding and RSC-mediated nucleosome remodeling. Nucleic Acids Res 39:2559–2570

    Article  PubMed  CAS  Google Scholar 

  • Slupianek A, Yerrum S, Safadi FF, Monroy MA (2010) The chromatin remodeling factor SRCAP modulates expression of prostate specific antigen and cellular proliferation in prostate cancer cells. J Cell Physiol 224:369–375

    Article  PubMed  CAS  Google Scholar 

  • Sporn JC, Kustatscher G, Hothorn T, Collado M, Serrano M, Muley T, Schnabel P, Ladurner AG (2009) Histone macroH2A isoforms predict the risk of lung cancer recurrence. Oncogene 28:3423–3428

    Article  PubMed  CAS  Google Scholar 

  • Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    Article  PubMed  CAS  Google Scholar 

  • Sullivan KF, Hechenberger M, Masri K (1994) Human CENP-A contains a histone H3 related histone fold domain that is required for targeting to the centromere. J Cell Biol 127:581

    Article  PubMed  CAS  Google Scholar 

  • Sutcliffe EL, Parish IA, He YQ, Juelich T, Tierney ML, Rangasamy D, Milburn PJ, Parish CR, Tremethick DJ, Rao S (2009) Dynamic histone variant exchange accompanies gene induction in T cells. Mol Cell Biol 29:1972–1986

    Article  PubMed  CAS  Google Scholar 

  • Suto RK, Clarkson MJ, Tremethick DJ, Luger K (2000) Crystal structure of a nucleosome core particle containing the variant histone H2A.Z. Nat Struct Biol 7:1121–1124

    Article  PubMed  CAS  Google Scholar 

  • Svotelis A, Gévry N, Grondin G, Gaudreau L (2010) H2A.Z overexpression promotes cellular proliferation of breast cancer cells. Cell Cycle 9:364–370

    Article  PubMed  CAS  Google Scholar 

  • Szenker E, Ray-Gallet D, Almouzni G (2011) The double face of the histone variant H3.3. Cell Res 21:421–434

    Article  PubMed  CAS  Google Scholar 

  • Tagami H, Ray-Gallet D, Almouzni G, Nakatani Y (2004) Histone H3. 1 and H3. 3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 116:51–61

    Article  PubMed  CAS  Google Scholar 

  • Talbert PB, Henikoff S (2010) Histone variants–ancient wrap artists of the epigenome. Nat Rev Mol Cell Biol 11:264–275

    Article  PubMed  CAS  Google Scholar 

  • Tamura T, Smith M, Kanno T, Dasenbrock H, Nishiyama A, Ozato K (2009) Inducible deposition of the histone variant H3.3 in interferon-stimulated genes. J Biol Chem 284:12217–12225

    Article  PubMed  CAS  Google Scholar 

  • Taverna SD, Li H, Ruthenburg AJ, Allis CD, Patel DJ (2007) How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat Struct Mol Biol 14:1025–1040

    Article  PubMed  CAS  Google Scholar 

  • Thakar A, Gupta P, Ishibashi T, Finn R, Silva-Moreno B, Uchiyama S, Fukui K, Tomschik M, Ausio J, Zlatanova J (2009) H2A.Z and H3.3 histone variants affect nucleosome structure: biochemical and biophysical studies. Biochemistry 48:10852–10857

    Article  PubMed  CAS  Google Scholar 

  • Thiriet C, Hayes JJ (2005) Chromatin in need of a fix: phosphorylation of H2AX connects chromatin to DNA repair. Mol Cell 18:617–622

    Article  PubMed  CAS  Google Scholar 

  • Tulin A, Stewart D, Spradling AC (2002) The Drosophila heterochromatic gene encoding poly(ADP-ribose) polymerase (PARP) is required to modulate chromatin structure during development. Genes Dev 16:2108–2119

    Article  PubMed  CAS  Google Scholar 

  • Updike DL, Mango SE (2006) Temporal regulation of foregut development by HTZ-1/H2A.Z and PHA-4/FoxA. PLoS Genet 2:e161

    Article  PubMed  CAS  Google Scholar 

  • van Daal A, Elgin SC (1992) A histone variant, H2AvD, is essential in Drosophila melanogaster. Mol Biol Cell 3:593–602

    PubMed  Google Scholar 

  • Weber CM, Henikoff JG, Henikoff S (2010) H2A.Z nucleosomes enriched over active genes are homotypic. Nat Struct Mol Biol 17:1500–1507

    Google Scholar 

  • Wirbelauer C, Bell O, Schübeler D (2005) Variant histone H3.3 is deposited at sites of nucleosomal displacement throughout transcribed genes while active histone modifications show a promoter-proximal bias. Genes Dev 19:1761–1766

    Article  PubMed  CAS  Google Scholar 

  • Wong MM, Cox LK, Chrivia JC (2007) The chromatin remodeling protein, SRCAP, is critical for deposition of the histone variant H2A.Z at promoters. J Biol Chem 282:26132–26139

    Article  PubMed  CAS  Google Scholar 

  • Wong LH, Ren H, Williams E, McGhie J, Ahn S, Sim M, Tam A, Earle E, Anderson MA, Mann J, Choo KHA (2009) Histone H3.3 incorporation provides a unique and functionally essential telomeric chromatin in embryonic stem cells. Genome Res 19:404–414

    Article  PubMed  CAS  Google Scholar 

  • Yan H, Ito H, Nobuta K, Ouyang S, Jin W, Tian S, Lu C, Venu RC, Wang G-L, Green PJ, Wing RA, Buell CR, Meyers BC, Jiang J (2006) Genomic and genetic characterization of rice Cen3 reveals extensive transcription and evolutionary implications of a complex centromere. Plant Cell 18:2123–2133

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Roberts DN, Cairns BR (2005a) Genome-wide dynamics of Htz1, a histone H2A variant that poises repressed/basal promoters for activation through histone loss. Cell 123:219–231

    Article  PubMed  CAS  Google Scholar 

  • Zhang R, Poustovoitov MV, Ye X, Santos HA, Chen W, Daganzo SM, Erzberger JP, Serebriiskii IG, Canutescu AA, Dunbrack RL (2005b) Formation of MacroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA. Dev Cell 8:19–30

    Article  PubMed  CAS  Google Scholar 

  • Zhou J, Fan JY, Rangasamy D, Tremethick DJ (2007) The nucleosome surface regulates chromatin compaction and couples it with transcriptional repression. Nat Struct Mol Biol 14:1070–1076

    Article  PubMed  CAS  Google Scholar 

  • Zilberman D, Coleman-Derr D, Ballinger T, Henikoff S (2008) Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks. Nature 456:125–129

    Article  PubMed  CAS  Google Scholar 

  • Zlatanova J, Thakar A (2008) H2A.Z: view from the top. Structure 16:166–179

    Article  PubMed  CAS  Google Scholar 

  • Zucchi I, Mento E, Kuznetsov VA, Scotti M, Valsecchi V, Simionati B, Vicinanza E, Valle G, Pilotti S, Reinbold R, Vezzoni P, Albertini A, Dulbecco R (2004) Gene expression profiles of epithelial cells microscopically isolated from a breast-invasive ductal carcinoma and a nodal metastasis. Proc Natl Acad Sci USA 101:18147–18152

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Cheung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Law, C., Cheung, P. (2013). Histone Variants and Transcription Regulation. In: Kundu, T. (eds) Epigenetics: Development and Disease. Subcellular Biochemistry, vol 61. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4525-4_14

Download citation

Publish with us

Policies and ethics