Chromatin Organization, Epigenetics and Differentiation: An Evolutionary Perspective

  • Sujata Kumari
  • Amrutha Swaminathan
  • Snehajyoti Chatterjee
  • Parijat Senapati
  • Ramachandran Boopathi
  • Tapas K. KunduEmail author
Part of the Subcellular Biochemistry book series (SCBI, volume 61)


Genome packaging is a universal phenomenon from prokaryotes to higher mammals. Genomic constituents and forces have however, travelled a long evolutionary route. Both DNA and protein elements constitute the genome and also aid in its dynamicity. With the evolution of organisms, these have experienced several structural and functional changes. These evolutionary changes were made to meet the challenging scenario of evolving organisms. This review discusses in detail the evolutionary perspective and functionality gain in the phenomena of genome organization and epigenetics.


Nucleosome Position Histone Variant Linker Histone Histone Chaperone Nucleosome Assembly 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Department of Biotechnology, Government of India (for Programme Support Grant on Chromatin and Disease, Grant No. Grant/DBT/CSH/GIA/1957/2011-12) and JNCASR for financial assistance. TKK is a recipient of the Sir J.C. Bose Fellowship (Department of Science and Technology, Government of India). SK, PS and AS are research fellows of Council of Scientific and Industrial Research (CSIR), Government of India.


  1. Agback P, Baumann H, Knapp S, Ladenstein R, Härd T (1998) Architecture of nonspecific protein-DNA interactions in the Sso7d-DNA complex. Nat Struct Biol 5:579–584PubMedCrossRefGoogle Scholar
  2. Ali BM, Amit R, Braslavsky I, Oppenheim AB, Gileadi O, Stavans J (2001) Compaction of single DNA molecules induced by binding of integration host factor (IHF). Proc Natl Acad Sci U S A 98:10658–10663PubMedCrossRefGoogle Scholar
  3. Almouzni G, Khochbin S, Dimitrov S, Wolffe AP (1994) Histone acetylation influences both gene expression and development of Xenopus laevis. Dev Biol 165:654–669PubMedCrossRefGoogle Scholar
  4. Altman-Price N, Mevarech M (2009) Genetic evidence for the importance of protein acetylation and protein deacetylation in the halophilic archaeon Haloferax volcanii. J Bacteriol 191:1610–1617PubMedCrossRefGoogle Scholar
  5. Anderson RM, Bosch JA, Goll MG, Hesselson D, Dong PD, Shin D, Chi NC, Shin CH, Schlegel A, Halpern M, Stainier DY (2009) Loss of Dnmt1 catalytic activity reveals multiple roles for DNA methylation during pancreas development and regeneration. Dev Biol 334:213–223PubMedCrossRefGoogle Scholar
  6. Auger A, Galarneau L, Altaf M, Nourani A, Doyon Y, Utley RT, Cronier D, Allard S, Côté J (2008) Eaf1 is the platform for NuA4 molecular assembly that evolutionarily links chromatin acetylation to ATP-dependent exchange of histone H2A variants. Mol Cell Biol 28:2257–2270PubMedCrossRefGoogle Scholar
  7. Aul RB, Oko RJ (2002) The major subacrosomal occupant of bull spermatozoa is a novel histone H2B variant associated with the forming acrosome during spermiogenesis. Dev Biol 242:376–387PubMedCrossRefGoogle Scholar
  8. Ausio J, Dong F, vanHolde KE (1989) Use of selectively trypsinized nucleosome core particles to analyze the role of the histone tails in the stabilization of the nucleosome. J Mol Biol 206:451–463PubMedCrossRefGoogle Scholar
  9. Azuara V, Perry P, Sauer S, Spivakov M, Jørgensen HF, John RM, Gouti M, Casanova M, Warnes G, Merkenschlager M, Fisher AG (2006) Chromatin signatures of pluripotent cell lines. Nat Cell Biol 8:532–538PubMedCrossRefGoogle Scholar
  10. Badaut C, Williams R, Arluison V, BouVartigues E, Robert B, Buc H, Rimsky S (2002) The degree of oligomerization of the H-NS nucleoid structuring protein is related to specific binding to DNA. J Biol Chem 277:41657–41666PubMedCrossRefGoogle Scholar
  11. Bailey KA, Pereira SL, Widom J, Reeve JN (2000) Archaeal histone selection of nucleosome positioning sequences and the procaryotic origin of histone-dependent genome evolution. J Mol Biol 303:25–34PubMedCrossRefGoogle Scholar
  12. Bao Y, Shen X (2007) INO80 subfamily of chromatin remodeling complexes. Mutat Res 618:18–29PubMedCrossRefGoogle Scholar
  13. Bao Y, Shen X (2011) SnapShot: chromatin remodeling: INO80 and SWR1. Cell 144:158–158.e152PubMedCrossRefGoogle Scholar
  14. Baxevanis AD, Landsman D (1998) Histone sequence database: New histone fold family members. Nucleic Acids Res 26:372–375PubMedCrossRefGoogle Scholar
  15. Bell GD, Grogan DW (2002) Loss of genetic accuracy in mutants of the thermoacidophile Sulfolobus acidocaldarius. Archaea 1:45–52PubMedCrossRefGoogle Scholar
  16. Beloin C, Jeusset J, Revet B, Mirambeau G, Le Hegarat F, Le Cam E (2003) Contribution of DNA conformation and topology in righthanded DNA wrapping by the Bacillus subtilis LrpC protein. J Biol Chem 278:5333–5342PubMedCrossRefGoogle Scholar
  17. Birck C, Poch O, Romier C, Ruff M, Mengus G, Lavigne AC, Davidson I, Moras D (1998) Human TAFII28 and TAFII18 interact through a histone fold encoded by atypical evolutionary conserved motifs also found in the SPT3 family. Cell 94:239–249PubMedCrossRefGoogle Scholar
  18. Bloomfield VA (1996) DNA condensation. Curr Opin Struct Biol 6:334–341PubMedCrossRefGoogle Scholar
  19. Bogdanovic O, Long SW, van Heeringen SJ, Brinkman AB, Gómez-Skarmeta JL, Stunnenberg HG, Jones PL, Veenstra GJ (2011) Temporal uncoupling of the DNA methylome and transcriptional repression during embryogenesis. Genome Res 21:1313–1327PubMedCrossRefGoogle Scholar
  20. Bonni A, Sun Y, Nadal-Vicens M, Bhatt A, Frank DA, Rozovsky I, Stahl N, Yancopoulos GD, Greenberg ME (1997) Regulation of gliogenesis in the central nervous system by the JAK-STAT signaling pathway. Science 278:477–483PubMedCrossRefGoogle Scholar
  21. Bouffartigues E, Buckle M, Badaut C, Travers A, Rimsky S (2007) H-NS cooperative binding to high-affinity sites in a regulatory element results in transcriptional silencing. Nat Struct Mol Biol 14:441–448PubMedCrossRefGoogle Scholar
  22. Brinkman AB, Ettema TJ, de Vos WM, van der Oost J (2003) The Lrp family of transcriptional regulators. Mol Microbiol 48:287–294PubMedCrossRefGoogle Scholar
  23. Brownell JE, Zhou J, Ranalli T, Kobayashi R, Edmondson DG, Roth SY, Allis CD (1996) Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84:843–851PubMedCrossRefGoogle Scholar
  24. Cai Y, Jin J, Florens L, Swanson SK, Kusch T, Li B, Workman JL, Washburn MP, Conaway RC, Conaway JW (2005) The mammalian YL1 protein is a shared subunit of the TRRAP/TIP60 histone acetyltransferase and SRCAP complexes. J Biol Chem 280:13665–13670PubMedCrossRefGoogle Scholar
  25. Cai Y, Jin J, Yao T, Gottschalk AJ, Swanson SK, Wu S, Shi Y, Washburn MP, Florens L, Conaway RC, Conaway JW (2007) YY1 functions with INO80 to activate transcription. Nat Struct Mol Biol 14:872–874PubMedCrossRefGoogle Scholar
  26. Cakouros D, Mills K, Denton D, Paterson A, Daish T, Kumar S (2008) dLKR/SDH regulates hormone-mediated histone arginine methylation and transcription of cell death genes. J Cell Biol 182:481–495PubMedCrossRefGoogle Scholar
  27. Calvo JM, Matthews RG (1994) The leucine-responsive regulatory protein, a global regulator of metabolism in Escherichia coli. Microbiol Rev 58:466–490PubMedGoogle Scholar
  28. Churikov D, Siino J, Svetlova M, Zhang K, Gineitis A, Morton Bradbury E, Zalensky AO (2004) Novel human testis-specific histone H2B encoded by the interrupted gene on the X chromosome. Genomics 84:745–756PubMedCrossRefGoogle Scholar
  29. Clapier CR, Cairns BR (2009) The biology of chromatin remodeling complexes. Annu Rev Biochem 78:273–304PubMedCrossRefGoogle Scholar
  30. Conaco C, Otto S, Han JJ, Mandel G (2006) Reciprocal actions of REST and a microRNA promote neuronal identity. Proc Natl Acad Sci U S A 103:2422–2427PubMedCrossRefGoogle Scholar
  31. Conaway RC, Conaway JW (2009) The INO80 chromatin remodeling complex in transcription, replication and repair. Trends Biochem Sci 34:71–77PubMedCrossRefGoogle Scholar
  32. Cui L, Miao J (2010) Chromatin-mediated epigenetic regulation in the malaria parasite Plasmodium falciparum. Eukaryot Cell 9:1138–1149PubMedCrossRefGoogle Scholar
  33. Cui Y, Wang Q, Stormo GD, Calvo JM (1995) A consensus sequence for binding of Lrp to DNA. J Bacteriol 177:4872–4880PubMedGoogle Scholar
  34. Dalal Y, Wang H, Lindsay S, Henikoff S (2007) Tetrameric structure of centromeric nucleosomes in interphase Drosophila cells. PLoS Biol 5:e218PubMedCrossRefGoogle Scholar
  35. Dame RT, Goosen N (2002) HU: promoting or counteracting DNA compaction? FEBS Lett 529:151–156PubMedCrossRefGoogle Scholar
  36. Dame RT, Wyman C, Goosen N (2000) H-NS mediated compaction of DNA visualised by atomic force microscopy. Nucleic Acids Res 28:3504–3510PubMedCrossRefGoogle Scholar
  37. Dame RT, Wyman C, Goosen N (2001) Structural basis for preferential binding of H-NS to curved DNA. Biochimie 83:231–234PubMedCrossRefGoogle Scholar
  38. Dame RT, Luijsterburg MS, Krin E, Bertin PN, Wagner R, Wuite GJ (2005a) DNA bridging: a property shared among H-NS-like proteins. J Bacteriol 187:1845–1848PubMedCrossRefGoogle Scholar
  39. Dame RT, van Mameren J, Luijsterburg MS, Mysiak ME, Janicijevic A, Pazdzior G, van derVliet PC, Wyman C, Wuite GJ (2005b) Analysis of scanning force microscopy images of protein induced DNA bending using simulations. Nucleic Acids Res 33:e68PubMedCrossRefGoogle Scholar
  40. Deaton AM, Bird A (2011) CpG islands and the regulation of transcription. Genes Dev 25:1010–1022PubMedCrossRefGoogle Scholar
  41. DeLange RJ, Williams LC, Searcy DG (1981) A histone-like protein (HTa) from Thermoplasma acidophilum. J Biol Chem 256:905–911PubMedGoogle Scholar
  42. Deo M, Yu JY, Chung KH, Tippens M, Turner DL (2006) Detection of mammalian microRNA expression by in situ hybridization with RNA oligonucleotides. Dev Dyn 235:2538–2548PubMedCrossRefGoogle Scholar
  43. Dhavan GM, Crothers DM, Chance MR, Brenowitz M (2002) Concerted binding and bending of DNA by Escherichia coli integration host factor. J Mol Biol 315:1027–1037PubMedCrossRefGoogle Scholar
  44. Dingwall C, Dilworth SM, Black SJ, Kearsey SE, Cox LS, Laskey RA (1987) Nucleoplasmin cDNA sequence reveals polyglutamic acid tracts and a cluster of sequences homologous to putative nuclear localization signals. EMBO J 6:69–74PubMedGoogle Scholar
  45. Dong F, van Holde KE (1991) Nucleosome positioning is determined by the (H3-H4)2 tetramer. Proc Natl Acad Sci U S A 88:10596–10600PubMedCrossRefGoogle Scholar
  46. Dorman CJ (2004) H-NS: a universal regulator for a dynamic genome. Nat Rev Microbiol 2:391–400PubMedCrossRefGoogle Scholar
  47. Downs JA, Allard S, Jobin-Robitaille O, Javaheri A, Auger A, Bouchard N, Kron SJ, Jackson SP, Côté J (2004) Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites. Mol Cell 16:979–990PubMedCrossRefGoogle Scholar
  48. Drlica K, Bendich AJ (2000) Chromosome, bacterial. In: Lederberg J (ed) Encylcopedia of microbiology. Academic, San DiegoGoogle Scholar
  49. Dryhurst D, Thambirajah AA, Ausio J (2004) New twists on H2A.Z: a histone variant with a controversial structural and functional past. Biochem Cell Biol 82:490–497PubMedCrossRefGoogle Scholar
  50. Dutta S, Akey IV, Dingwall C, Hartman KL, Laue T, Nolte RT, Head JF, Akey CW (2001) The crystal structure of nucleoplasmin-core: implications for histone binding and nucleosome assembly. Mol Cell 8:841–853PubMedCrossRefGoogle Scholar
  51. Ebbert R, Birkmann A, Schüller HJ (1999) The product of the SNF2/SWI2 paralogue INO80 of Saccharomyces cerevisiae required for efficient expression of various yeast structural genes is part of a high-molecular-weight protein complex. Mol Microbiol 32:741–751PubMedCrossRefGoogle Scholar
  52. Eberharter A, Sterner DE, Schieltz D, Hassan A, Yates JR, Berger SL, Workman JL (1999) The ADA complex is a distinct histone acetyltransferase complex in Saccharomyces cerevisiae. Mol Cell Biol 19:6621–6631PubMedGoogle Scholar
  53. Eichler JF, Cramer JC, Kirk KL, Bann JG (2005) Biosynthetic incorporation of fluorohistidine into proteins in E. coli: a new probe of macromolecular structure. Chembiochem 6:2170–2173PubMedCrossRefGoogle Scholar
  54. Eirín-López JM, Frehlick LJ, Ausió J (2006) Long-term evolution and functional diversification in the members of the nucleophosmin/nucleoplasmin family of nuclear chaperones. Genetics 173:1835–1850PubMedCrossRefGoogle Scholar
  55. Fahrner RL, Cascio D, Lake JA, Slesarev A (2001) An ancestral nuclear protein assembly: crystal structure of the Methanopyrus kandleri histone. Protein Sci 10:2002–2007PubMedCrossRefGoogle Scholar
  56. Fan G, Beard C, Chen RZ, Csankovszki G, Sun Y, Siniaia M, Biniszkiewicz D, Bates B, Lee PP, Kuhn R, Trumpp A, Poon C, Wilson CB, Jaenisch R (2001) DNA hypomethylation perturbs the function and survival of CNS neurons in postnatal animals. J Neurosci 21:788–797PubMedGoogle Scholar
  57. Fan G, Martinowich K, Chin MH, He F, Fouse SD, Hutnick L, Hattori D, Ge W, Shen Y, Wu H, ten Hoeve J, Shuai K, Sun YE (2005) DNA methylation controls the timing of astrogliogenesis through regulation of JAK-STAT signaling. Development 132:3345–3356PubMedCrossRefGoogle Scholar
  58. Frehlick LJ, Eirín-López JM, Ausió J (2007) New insights into the nucleophosmin/nucleoplasmin family of nuclear chaperones. Bioessays 29:49–59PubMedCrossRefGoogle Scholar
  59. Frenkiel-Krispin D, Ben-Avraham I, Englander J, Shimoni E, Wolf SG, Minsky A (2004) Nucleoid restructuring in stationary-state bacteria. Mol Microbiol 51:395–405PubMedCrossRefGoogle Scholar
  60. Fujii T, Tsunesumi S, Yamaguchi K, Watanabe S, Furukawa Y (2011) Smyd3 is required for the development of cardiac and skeletal muscle in zebrafish. PLoS One 6(8):e23491PubMedCrossRefGoogle Scholar
  61. Gabdank I, Barash D, Trifonov EN (2009) Nucleosome DNA bendability matrix (C. elegans). J Biomol Struct Dyn 26:403–411PubMedCrossRefGoogle Scholar
  62. Gadad S, Shandilya J, Kishore A, Kundu T (2010) NPM3, A member of the nucleophosmin/nucleoplasmin family, enhances activator-dependent transcription. Biochemistry 49:1355–1357PubMedCrossRefGoogle Scholar
  63. Gadad SS, Senapati P, Syed SH, Rajan RE, Shandilya J, Swaminathan V, Chatterjee S, Colombo E, Dimitrov S, Pelicci PG, Ranga U, Kundu TK (2011) The multifunctional protein nucleophosmin (NPM1) is a human linker histone H1 chaperone. Biochemistry 50:2780–2789PubMedCrossRefGoogle Scholar
  64. Govin J, Escoffier E, Rousseaux S, Kuhn L, Ferro M, Thévenon J, Catena R, Davidson I, Garin J, Khochbin S, Caron C (2007) Pericentric heterochromatin reprogramming by new histone variants during mouse spermiogenesis. J Cell Biol 176:283–294PubMedCrossRefGoogle Scholar
  65. Grant PA, Duggan L, Côté J, Roberts SM, Brownell JE, Candau R, Ohba R, Owen-Hughes T, Allis CD, Winston F, Berger SL, Workman JL (1997) Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes Dev 11:1640–1650PubMedCrossRefGoogle Scholar
  66. Grant RA, Filman DJ, Finkel SE, Kolter R, Hogle JM (1998) The crystal structure of Dps, a ferritin homolog that binds and protects DNA. Nat Struct Biol 5:294–303PubMedCrossRefGoogle Scholar
  67. Graumann PL (2001) SMC proteins in bacteria: condensation motors for chromosome segregation? Biochimie 83:53–59PubMedCrossRefGoogle Scholar
  68. Grienenberger A, Miotto B, Sagnier T, Cavalli G, Schramke V, Geli V, Mariol MC, Berenger H, Graba Y, Pradel J (2002) The MYST domain acetyltransferase Chameau functions in epigenetic mechanisms of transcriptional repression. Curr Biol 12:762–766PubMedCrossRefGoogle Scholar
  69. Grisendi S, Mecucci C, Falini B, Pandolfi PP (2006) Nucleophosmin and cancer. Nat Rev Cancer 6:493–505PubMedCrossRefGoogle Scholar
  70. Hargreaves DC, Crabtree GR (2011) ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res 21:396–420PubMedCrossRefGoogle Scholar
  71. Harisanova NT, Ralchev KH (1986) Histones and histone acetylation during the embryonic development of Drosophila hydei. Cell Differ 19:115–124PubMedCrossRefGoogle Scholar
  72. Harrison MR, Georgiou AS, Spaink HP, Cunliffe VT (2011) The epigenetic regulator Histone Deacetylase 1 promotes transcription of a core neurogenic programme in zebrafish embryos. BMC Genomics 12:24PubMedCrossRefGoogle Scholar
  73. Hashimoto H, Suetake I, Tajima S (2003) Monoclonal antibody against dnmt1 arrests the cell division of xenopus early-stage embryos. Exp Cell Res 286:252–262PubMedCrossRefGoogle Scholar
  74. Hayes JJ, Pruss D, Wolffe AP (1994) Contacts of the globular domain of histone H5 and core histones with DNA in a “chromatosome”. Proc Natl Acad Sci U S A 91:7817–7821PubMedCrossRefGoogle Scholar
  75. Hengen PN, Bartram SL, Stewart LE, Schneider TD (1997) Information analysis of Fis binding sites. Nucleic Acids Res 25:4994–5002PubMedCrossRefGoogle Scholar
  76. Hildebrandt ER, Cozzarelli NR (1995) Comparison of recombination in vitro and in E. coli cells: measure of the effective concentration of DNA in vivo. Cell 81:331–340PubMedCrossRefGoogle Scholar
  77. Hingorani K, Szebeni A, Olson MO (2000) Mapping the functional domains of nucleolar protein B23. J Biol Chem 275:24451–24457PubMedCrossRefGoogle Scholar
  78. Hirano M, Hirano T (2004) Positive and negative regulation of SMC–DNA interactions by ATP and accessory proteins. EMBO J 23:2664–2673PubMedCrossRefGoogle Scholar
  79. Hirano M, Hirano T (2006) Opening closed arms: long-distance activation of SMC ATPase by hinge-DNA interactions. Mol Cell 21:175–186PubMedCrossRefGoogle Scholar
  80. Hogan CJ, Aligianni S, Durand-Dubief M, Persson J, Will WR, Webster J, Wheeler L, Mathews CK, Elderkin S, Oxley D, Ekwall K, Varga-Weisz PD (2010) Fission yeast Iec1-ino80-mediated nucleosome eviction regulates nucleotide and phosphate metabolism. Mol Cell Biol 30:657–674PubMedCrossRefGoogle Scholar
  81. Hopfner KP, Karcher A, Shin DS, Craig L, Arthur LM, Carney JP, Tainer JA (2000) Structural biology of Rad50 ATPase: ATPdriven conformational control in DNA double-strand break repair and the ABC-ATPase superfamily. Cell 101:789–800PubMedCrossRefGoogle Scholar
  82. Horz W, Zachau HG (1980) Deoxyribonuclease II as a probe for chromatin structure. I. Location of cleavage sites. J Mol Biol 144:305–327PubMedCrossRefGoogle Scholar
  83. Hsieh J, Nakashima K, Kuwabara T, Mejia E, Gage FH (2004) Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc Natl Acad Sci U S A 101:16659–16664PubMedCrossRefGoogle Scholar
  84. Huang N, Negi S, Szebeni A, Olson MO (2005) Protein NPM3 interacts with the multifunctional nucleolar protein B23/nucleophosmin and inhibits ribosome biogenesis. J Biol Chem 280:5496–5502PubMedCrossRefGoogle Scholar
  85. Ikura T, Ogryzko VV, Grigoriev M, Groisman R, Wang J, Horikoshi M, Scully R, Qin J, Nakatani Y (2000) Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell 102:463–473PubMedCrossRefGoogle Scholar
  86. Ikura T, Tashiro S, Kakino A, Shima H, Jacob N, Amunugama R, Yoder K, Izumi S, Kuraoka I, Tanaka K, Kimura H, Ikura M, Nishikubo S, Ito T, Muto A, Miyagawa K, Takeda S, Fishel R, Igarashi K, Kamiya K (2007) DNA damage-dependent acetylation and ubiquitination of H2AX enhances chromatin dynamics. Mol Cell Biol 27:7028–7040PubMedCrossRefGoogle Scholar
  87. Illingworth RS, Gruenewald-Schneider U, Webb S, Kerr AR, James KD, Turner DJ, Smith C, Harrison DJ, Andrews R, Bird AP (2010) Orphan CpG islands identify numerous conserved promoters in the mammalian genome. PLoS Genet 6:e1001134PubMedCrossRefGoogle Scholar
  88. Ito T, Bulger M, Kobayashi R, Kadonaga JT (1996) Drosophila NAP-1 is a core histone chaperone that functions in ATP-facilitated assembly of regularly spaced nucleosomal arrays. Mol Cell Biol 16:3112–3124PubMedGoogle Scholar
  89. Jafri S, Evoy S, Cho K, Craighead HG, Winans SC (1999) An Lrp type transcriptional regulator from Agrobacterium tumefaciens condenses more than 100 nucleotides of DNA into globular nucleoprotein complexes. J Mol Biol 288:811–824PubMedCrossRefGoogle Scholar
  90. Johnson RC, Johnson LM, Schmidt JW, Gardner JF (2005) Major nucleoid proteins in the structure and function of the Escherichia coli chromosome. In: Patrick Higgins N (ed) The bacterial chromosome. ACM Press, WashingtonGoogle Scholar
  91. Jordi BJ, Fielder AE, Burns CM, Hinton JC, Dover N, Ussery DW, Higgins CF (1997) DNA binding is not sufficient for H-NS-mediated repression of proU expression. J Biol Chem 272:12083–12090PubMedCrossRefGoogle Scholar
  92. Juven-Gershon T, Hsu JY, Theisen JW, Kadonaga JT (2008) The RNA polymerase II core promoter – the gateway to transcription. Curr Opin Cell Biol 20:253–259PubMedCrossRefGoogle Scholar
  93. Kang YJ, Olson MO, Busch H (1974) Phosphorylation of acid-soluble proteins in isolated nucleoli of Novikoff hepatoma ascites cells. Effects of divalent cations. J Biol Chem 249:5580–5585PubMedGoogle Scholar
  94. Kano Y, Imamoto F (1990) Requirement of integration host factor (IHF) for growth of Escherichia coli deficient in HU protein. Gene 89:133–137PubMedCrossRefGoogle Scholar
  95. Kasper LH, Fukuyama T, Biesen MA, Boussouar F, Tong C, de Pauw A, Murray PJ, van Deursen JM, Brindle PK (2006) Conditional knockout mice reveal distinct functions for the global transcriptional coactivators CBP and p300 in T-cell development. Mol Cell Biol 26:789–809PubMedCrossRefGoogle Scholar
  96. Kellenberger E, Arnold-Schulz-Gahrnen B (1992) Chromatins of low protein content: special features of their compaction and condensation. FEMS Microbiol Lett 100:361–370Google Scholar
  97. Kokubo T, Gong DW, Wootton JC, Horikoshi M, Roeder RG, Nakatani Y (1994) Molecular cloning of Drosophila TFIID subunits. Nature 367:484–487PubMedCrossRefGoogle Scholar
  98. Krichevsky AM, Sonntag KC, Isacson O, Kosik KS (2006) Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells 24:857–864PubMedCrossRefGoogle Scholar
  99. Kundu TK, Rao MR (1996) Zinc dependent recognition of a human CpG island sequence by the mammalian spermatidal protein TP2. Biochemistry 35:15626–15632PubMedCrossRefGoogle Scholar
  100. Kusch T, Guelman S, Abmayr SM, Workman JL (2003) Two Drosophila Ada2 homologues function in different multiprotein complexes. Mol Cell Biol 23:3305–3319PubMedCrossRefGoogle Scholar
  101. Kusch T, Florens L, Macdonald WH, Swanson SK, Glaser RL, Yates JR, Abmayr SM, Washburn MP, Workman JL (2004) Acetylation by Tip60 is required for selective histone variant exchange at DNA lesions. Science 306:2084–2087PubMedCrossRefGoogle Scholar
  102. Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12:735–739PubMedCrossRefGoogle Scholar
  103. Laskey RA, Honda BM, Mills AD, Finch JT (1978) Nucleosomes are assembled by an acidic protein which binds histones and transfers them to DNA. Nature 275:416–420PubMedCrossRefGoogle Scholar
  104. Lee JH, Skalnik DG (2005) CpG-binding protein (CXXC finger protein 1) is a component of the mammalian Set1 histone H3- Lys4 methyltransferase complex, the analogue of the yeast Set1/COMPASS complex. J Biol Chem 280:41725–41731PubMedCrossRefGoogle Scholar
  105. Lee HH, Kim HS, Kang JY, Lee BI, Ha JY, Yoon HJ, Lim SO, Jung G, Suh SW (2007) Crystal structure of human nucleophosmin-core reveals plasticity of the pentamer-pentamer interface. Proteins 69:672–678PubMedCrossRefGoogle Scholar
  106. Leonard PM, Smits SH, Sedelnikova SE, Brinkman AB, de Vos WM, van der Oost J, Rice DW, RaVerty JB (2001) Crystal structure of the Lrp-like transcriptional regulator from the archaeon Pyrococcus furiosus. EMBO J 20:990–997PubMedCrossRefGoogle Scholar
  107. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769–773PubMedCrossRefGoogle Scholar
  108. Lindow JC, Britton RA, Grossman AD (2002) Structural maintenance of chromosomes protein of Bacillus subtilis aVects supercoiling in vivo. J Bacteriol 184:5317–5322PubMedCrossRefGoogle Scholar
  109. Lorenz M, Hillisch A, Goodman SD, Diekmann S (1999) Global structure similarities of intact and nicked DNA complexed with IHF measured in solution by Xuorescence resonance energy transfer. Nucleic Acids Res 27:4619–4625PubMedCrossRefGoogle Scholar
  110. Losada A, Hirano T (2005) Dynamic molecular linkers of the genome: the first decade of SMC proteins. Genes Dev 19:1269–1287PubMedCrossRefGoogle Scholar
  111. Luger K, Richmond TJ (1998) DNA binding within the nucleosome core. Curr Opin Struct Biol 8:33–40PubMedCrossRefGoogle Scholar
  112. Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389:251–260PubMedCrossRefGoogle Scholar
  113. MacArthur CA, Shackleford GM (1997) Npm3: a novel, widely expressed gene encoding a protein related to the molecular chaperones nucleoplasmin and nucleophosmin. Genomics 42:137–140PubMedCrossRefGoogle Scholar
  114. Malik HS, Henikoff S (2003) Phylogenomics of the nucleosome. Nat Struct Biol 10:882–891PubMedCrossRefGoogle Scholar
  115. Marin-Husstege M, Muggironi M, Liu A, Casaccia-Bonnefil P (2002) Histone deacetylase activity is necessary for oligodendrocyte lineage progression. J Neurosci 22:10333–10345PubMedGoogle Scholar
  116. Martinez E, Kundu TK, Fu J, Roeder RG (1998) A human SPT3-TAFII31-GCN5-L acetylase complex distinct from transcription factor IID. J Biol Chem 273:23781–23785PubMedCrossRefGoogle Scholar
  117. McLay DW, Clarke HJ (2003) Remodelling the paternal chromatin at fertilization in mammals. Reproduction 125:625–633PubMedCrossRefGoogle Scholar
  118. Melby TE, Ciampaglio CN, Briscoe G, Erickson HP (1998) The symmetrical structure of structural maintenance of chromosomes (SMC) and MukB proteins: long, antiparallel coiled coils, folded at a Xexible hinge. J Cell Biol 142:1595–1604PubMedCrossRefGoogle Scholar
  119. Miao J, Fan Q, Cui L, Li J, Li J, Cui L (2006) The malaria parasite Plasmodium falciparum histones: organization, expression, and acetylation. Gene 369:53–65PubMedCrossRefGoogle Scholar
  120. Mills AD, Laskey RA, Black P, De Robertis EM (1980) An acidic protein which assembles nucleosomes in vitro is the most abundant protein in Xenopus oocyte nuclei. J Mol Biol 139:561–568PubMedCrossRefGoogle Scholar
  121. Minsky A, Shimoni E, Frenkiel-Krispin D (2002) Stress, order and survival. Nat Rev Mol Cell Biol 3:50–60PubMedCrossRefGoogle Scholar
  122. Mizuguchi G, Shen X, Landry J, Wu WH, Sen S, Wu C (2004) ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science 303:343–348PubMedCrossRefGoogle Scholar
  123. Mizuguchi G, Xiao H, Wisniewski J, Smith MM, Wu C (2007) Nonhistone Scm3 and histones CenH3-H4 assemble the core of centromere-specific nucleosomes. Cell 129:1153–1164PubMedCrossRefGoogle Scholar
  124. Montgomery RL, Hsieh J, Barbosa AC, Richardson JA, Olson EN (2009) Histone deacetylases 1 and 2 control the progression of neural precursors to neurons during brain development. Proc Natl Acad Sci U S A 106:7876–7881PubMedCrossRefGoogle Scholar
  125. Murphy LD, Zimmerman SB (1997) Isolation and characterization of spermidine nucleoids from Escherichia coli. J Struct Biol 119:321–335PubMedCrossRefGoogle Scholar
  126. Namboodiri VM, Dutta S, Akey IV, Head JF, Akey CW (2003) The crystal structure of Drosophila NLP-core provides insight into pentamer formation and histone binding. Structure 11:175–186PubMedCrossRefGoogle Scholar
  127. Namboodiri VM, Akey IV, Schmidt-Zachmann MS, Head JF, Akey CW (2004) The structure and function of Xenopus NO38-core, a histone chaperone in the nucleolus. Structure 12:2149–2160PubMedCrossRefGoogle Scholar
  128. Namihira M, Kohyama J, Semi K, Sanosaka T, Deneen B, Taga T, Nakashima K (2009) Committed neuronal precursors confer astrocytic potential on residual neural precursor cells. Dev Cell 16:245–255PubMedCrossRefGoogle Scholar
  129. Nasmyth K, Haering CH (2005) The structure and function of SMC and kleisin complexes. Annu Rev Biochem 74:595–648PubMedCrossRefGoogle Scholar
  130. Oberto J, Rouvie`re-Yaniv J (1996) Serratia marcescens contains a heterodimeric HU protein like Escherichia coli and Salmonella typhimurium. J Bacteriol 178:293–297PubMedGoogle Scholar
  131. Ogryzko VV, Kotani T, Zhang X, Schiltz RL, Howard T, Yang XJ, Howard BH, Qin J, Nakatani Y (1998) Histone-like TAFs within the PCAF histone acetylase complex. Cell 94:35–44PubMedCrossRefGoogle Scholar
  132. Ohlsson R, Kanduri C (2002) New twists on the epigenetics of CpG islands. Genome Res 12:525–526PubMedCrossRefGoogle Scholar
  133. Okuwaki M (2008) The structure and functions of NPM1/Nucleophsmin/B23, a multifunctional nucleolar acidic protein. J Biochem 143:441–448PubMedCrossRefGoogle Scholar
  134. Okuwaki M, Matsumoto K, Tsujimoto M, Nagata K (2001) Function of nucleophosmin/B23, a nucleolar acidic protein, as a histone chaperone. FEBS Lett 506:272–276PubMedCrossRefGoogle Scholar
  135. Ouzounis CA, Kyrpides NC (1996) Parallel origins of the nucleosome core and eukaryotic transcription from Archaea. J Mol Evol 42:234–239PubMedCrossRefGoogle Scholar
  136. Pan CQ, Finkel SE, Cramton SE, Feng JA, Sigman DS, Johnson RC (1996) Variable structures of Fis–DNA complexes determined by Xanking DNA–protein contacts. J Mol Biol 264:675–695PubMedCrossRefGoogle Scholar
  137. Patterton HG, Landel CC, Landsman D, Peterson CL, Simpson RT (1998) The biochemical and phenotypic characterization of hho1p, the putative linker histone H1 of Saccharomyces cerevisiae. J Biol Chem 273:7268–7276PubMedCrossRefGoogle Scholar
  138. Paull TT, Johnson RC (1995) DNA looping by Saccharomyces cerevisiae high mobility group proteins NHP6A/B. Consequences for nucleoprotein complex assembly and chromatin condensation. J Biol Chem 270:8744–8754PubMedCrossRefGoogle Scholar
  139. Paull TT, Haykinson MJ, Johnson RC (1993) The nonspecific DNA-binding and -bending proteins HMG1 and HMG2 promote the assembly of complex nucleoprotein structures. Genes Dev 7:1521–1534PubMedCrossRefGoogle Scholar
  140. Peng JC, Valouev A, Swigut T, Zhang J, Zhao Y, Sidow A, Wysocka J (2009) Jarid2/Jumonji coordinates control of PRC2 enzymatic activity and target gene occupancy in pluripotent cells. Cell 139:1290–1302PubMedCrossRefGoogle Scholar
  141. Pereira SL, Reeve JN (1998) Histones and nucleosomes in Archaea and Eukarya: a comparative analysis. Extremophiles 2:141–148PubMedCrossRefGoogle Scholar
  142. Pereira SL, Grayling RA, Lurz R, Reeve JN (1997) Archaeal nucleosomes. Proc Natl Acad Sci U S A 94:12633–12637PubMedCrossRefGoogle Scholar
  143. Platonova O, Akey IV, Head JF, Akey CW (2011) Crystal structure and function of human nucleoplasmin (Npm2): a histone chaperone in oocytes and embryos. Biochemistry 50:8078–8089PubMedCrossRefGoogle Scholar
  144. Prestayko AW, Olson MO, Busch H (1974) Phosphorylation of proteins of ribosomes and nucleolar preribosomal particles in vivo in Novikoff hepatoma ascites cells. FEBS Lett 44:131–135PubMedCrossRefGoogle Scholar
  145. Pusarla RH, Bhargava P (2005) Histones in functional diversification Core histone variants. FEBS J 272:5149–5168PubMedCrossRefGoogle Scholar
  146. Rai K, Nadauld LD, Chidester S, Manos EJ, James SR, Karpf AR, Cairns BR, Jones DA (2006) Zebra fish Dnmt1 and Suv39h1 regulate organ-specific terminal differentiation during development. Mol Cell Biol 26:7077–7085PubMedCrossRefGoogle Scholar
  147. Rai K, Chidester S, Zavala CV, Manos EJ, James SR, Karpf AR, Jones DA, Cairns BR (2007) Dnmt2 functions in the cytoplasm to promote liver, brain, and retina development in zebrafish. Genes Dev 21:261–266PubMedCrossRefGoogle Scholar
  148. Ramaswamy A, Bahar I, Ioshikhes I (2005) Structural dynamics of nucleosome core particle: comparison with nucleosomes containing histone variants. Proteins 58:683–696PubMedCrossRefGoogle Scholar
  149. Rapoport AE, Trifonov EN (2011) “Anticipated” nucleosome positioning pattern in prokaryotes. Gene 488:41–45PubMedCrossRefGoogle Scholar
  150. Rapoport AE, Frenkel ZM, Trifonov EN (2011) Nucleosome positioning pattern derived from oligonucleotide compositions of genomic sequences. J Biomol Struct Dyn 28:567–574PubMedCrossRefGoogle Scholar
  151. Reeve JN (2003) Archaeal chromatin and transcription. Mol Microbiol 48:587–598PubMedCrossRefGoogle Scholar
  152. Rice PA, Yang S, Mizuuchi K, Nash HA (1996) Crystal structure of an IHF–DNA complex: a protein-induced DNA U-turn. Cell 87:1295–1306PubMedCrossRefGoogle Scholar
  153. Rimsky S, Travers A (2011) Pervasive regulation of nucleoid structure and function by nucleoid-associated proteins. Curr Opin Microbiol 14:136–141PubMedCrossRefGoogle Scholar
  154. Robinson H, Gao YG, McCrary BS, Edmondson SP, Shriver JW, Wang AH (1998) The hyperthermophile chromosomal protein Sac7d sharply kinks DNA. Nature 392:202–205PubMedCrossRefGoogle Scholar
  155. Ruhl DD, Jin J, Cai Y, Swanson S, Florens L, Washburn MP, Conaway RC, Conaway JW, Chrivia JC (2006) Purification of a human SRCAP complex that remodels chromatin by incorporating the histone variant H2A.Z into nucleosomes. Biochemistry 45:5671–5677PubMedCrossRefGoogle Scholar
  156. Salvany L, Chiva M, Arnan C, Ausió J, Subirana JA, Saperas N (2004) Mutation of the small acidic tract A1 drastically reduces nucleoplasmin activity. FEBS Lett 576:353–357PubMedCrossRefGoogle Scholar
  157. Sandman K, Reeve JN (1999) Archaeal nucleosome positioning by CTG repeats. J Bacteriol 181:1035–1038PubMedGoogle Scholar
  158. Sandman K, Krzycki JA, Dobrinski B, Lurz R, Reeve JN (1990) HMf, a DNA-binding protein isolated from the hyperthermophilic archaeon Methanothermus fervidus, is most closely related to histones. Proc Natl Acad Sci U S A 87:5788–5791PubMedCrossRefGoogle Scholar
  159. Sandman K, Grayling RA, Dobrinski B, Lurz R, Reeve JN (1994) Growth-phase-dependent synthesis of histones in the archaeon Methanothermus ferviidus. Proc Natl Acad Sci U S A 91:12624–12628PubMedCrossRefGoogle Scholar
  160. Sandman K, Pereira SL, Reeve JN (1997) Diversity of prokaryotic chromosomal proteins and the origin of the nucleosome. Cell Mol Life Sci 54:1350–1364CrossRefGoogle Scholar
  161. Schneider R, Lurz R, Luder G, Tolksdorf C, Travers A, Muskhelishvili G (2001) An architectural role of the Escherichia coli chromatin protein FIS in organising DNA. Nucleic Acids Res 29:5107–5114PubMedCrossRefGoogle Scholar
  162. Schneider TD, Arteaga-Salas JM, Mentele E, David R, Nicetto D, Imhof A, Rupp RA (2011) Stage-specific histone modification profiles reveal global transitions in the Xenopus embryonic epigenome. PLoS One 6:e22548PubMedCrossRefGoogle Scholar
  163. Segal E, Fondufe-Mittendorf Y, Chen L, Thåström A, Field Y, Moore IK, Wang JP, Widom J (2006) A genomic code for nucleosome positioning. Nature 442:772–778PubMedCrossRefGoogle Scholar
  164. Shechter D, Nicklay JJ, Chitta RK, Shabanowitz J, Hunt DF, Allis CD (2009) Analysis of histones in Xenopus laevis. I. A distinct index of enriched variants and modifications exists in each cell type and is remodeled during developmental transitions. J Biol Chem 284:1064–1074PubMedCrossRefGoogle Scholar
  165. Shen X, Mizuguchi G, Hamiche A, Wu C (2000) A chromatin remodelling complex involved in transcription and DNA processing. Nature 406:541–544PubMedCrossRefGoogle Scholar
  166. Shen X, Ranallo R, Choi E, Wu C (2003) Involvement of actin-related proteins in ATP-dependent chromatin remodeling. Mol Cell 12:147–155PubMedCrossRefGoogle Scholar
  167. Shen S, Li J, Casaccia-Bonnefil P (2005) Histone modifications affect timing of oligodendrocyte progenitor differentiation in the developing rat brain. J Cell Biol 169:577–589PubMedCrossRefGoogle Scholar
  168. Shimozaki K, Namihira M, Nakashima K, Taga T (2005) Stage- and site-specific DNA demethylation during neural cell development from embryonic stem cells. J Neurochem 93:432–439PubMedCrossRefGoogle Scholar
  169. Shioda M, Sugimori K, Shiroga T (1989) Nucleosome-like structures associated with chromosomes of the archaebacterium Halobacterium salinarium. J Bacteriol 171:4514–4517PubMedGoogle Scholar
  170. Skoko D, Yan J, Johnson RC, Marko JF (2005) Low-force DNA condensation and discontinuous high-force decondensation reveal a loop-stabilizing function of the protein Fis. Phys Rev Lett 95:208101PubMedCrossRefGoogle Scholar
  171. Slesarev AI, Belova GI, Kozyavkin SA, Lake JA (1998) Evidence for an early prokaryotic origin of histones H2A and H4 prior to the emergence of eukaryotes. Nucleic Acids Res 26:427–430PubMedCrossRefGoogle Scholar
  172. Smith ER, Eisen A, Gu W, Sattah M, Pannuti A, Zhou J, Cook RG, Lucchesi JC, Allis CD (1998) ESA1 is a histone acetyltransferase that is essential for growth in yeast. Proc Natl Acad Sci U S A 95:3561–3565PubMedCrossRefGoogle Scholar
  173. Smolik S, Jones K (2007) Drosophila dCBP is involved in establishing the DNA replication checkpoint. Mol Cell Biol 27:135–146PubMedCrossRefGoogle Scholar
  174. Spangenberg C, Eisfeld K, Stünkel W, Luger K, Flaus A, Richmond TJ, Truss M, Beato M (1998) The mouse mammary tumor virus promoter positioned on a tetramer of histones H3 and H4 binds nuclear factor 1 and OTF1. J Mol Biol 278:725–739PubMedCrossRefGoogle Scholar
  175. Spurio R, Durrenberger M, Falconi M, La Teana A, Pon CL, Gualerzi CO (1992) Lethal overproduction of the Escherichia coli nucleoid protein H-NS: ultramicroscopic and molecular autopsy. Mol Gen Genet 231:201–211PubMedGoogle Scholar
  176. Stancheva I, Meehan RR (2000) Transient depletion of xDnmt1 leads to premature gene activation in Xenopus embryos. Genes Dev 14:313–327PubMedGoogle Scholar
  177. Stancheva I, Hensey C, Meehan RR (2001) Loss of the maintenance methyltransferase, xDnmt1, induces apoptosis in Xenopus embryos. EMBO J 20:1963–1973PubMedCrossRefGoogle Scholar
  178. Starich MR, Sandman K, Reeve JN, Summers MF (1996) NMR structure of HMfB from the hyperthermophile, Methanothermus fer6idus, confirms that this archaeal protein is a histone. J Mol Biol 255:187–203PubMedCrossRefGoogle Scholar
  179. Strunnikov AV (2006) SMC complexes in bacterial chromosome condensation and segregation. Plasmid 55:135–144PubMedCrossRefGoogle Scholar
  180. Swaminathan V, Kishore A, Febitha K, Kundu T (2005) Human histone chaperone nucleophosmin enhances acetylation-dependent chromatin transcription. Mol Cell Biol 25:7534–7545PubMedCrossRefGoogle Scholar
  181. Swinger KK, Rice PA (2004) IHF and HU: Xexible architects of bent DNA. Curr Opin Struct Biol 14:28–35PubMedCrossRefGoogle Scholar
  182. Swinger KK, Lemberg KM, Zhang Y, Rice PA (2003) Flexible DNA bending in HU–DNA cocrystal structures. EMBO J 22:3749–3760PubMedCrossRefGoogle Scholar
  183. Takayanagi S, Morimura S, Kusaoke H, Yokoyama Y, Kano K, Shioda M (1992) Chromosomal structure of the halophilic archaebacterium Halobacterium salinarium. J Bacteriol 174:7207–7216PubMedGoogle Scholar
  184. Talwar S, Pocklington MJ, Maclean N (1984) The methylation pattern of tRNA genes in Xenopus laevis. Nucleic Acids Res 12:2509–2517PubMedCrossRefGoogle Scholar
  185. Tao Y, Neppl RL, Huang ZP, Chen J, Tang RH, Cao R, Zhang Y, Jin SW, Wang DZ (2011) The histone methyltransferase Set7/9 promotes myoblast differentiation and myofibril assembly. J Cell Biol 194:551–565PubMedCrossRefGoogle Scholar
  186. Thatcher H, Gorovsky MA (1994) Phylogenetic analysis of the core histones H2A, H2B, H3 and H4. Nucleic Acids Res 22:174–179PubMedCrossRefGoogle Scholar
  187. Thaw P, Sedelnikova SE, Muranova T, Wiese S, Ayora S, Alonso JC, Brinkman AB, Akerboom J, van der Oost J, RaVerty JB (2006) Structural insight into gene transcriptional regulation and eVector binding by the Lrp/AsnC family. Nucleic Acids Res 34:1439–1449PubMedCrossRefGoogle Scholar
  188. Tittle RK, Sze R, Ng A, Nuckels RJ, Swartz ME, Anderson RM, Bosch J, Stainier DY, Eberhart JK, Gross JM (2011) Uhrf1 and Dnmt1 are required for development and maintenance of the zebrafish lens. Dev Biol 350:50–63PubMedCrossRefGoogle Scholar
  189. Toulmé F, LeCam E, Teyssier C, Delain E, Sautière P, Maurizot JC, Culard F (1995) Conformational changes of DNA minicircles upon the binding of the archaebacterial histone-like protein MC1. J Biol Chem 270:6286–6291PubMedCrossRefGoogle Scholar
  190. Trifonov EN (2011a) Cracking the chromatin code: precise rule of nucleosome positioning. Phys Life Rev 8:39–50PubMedCrossRefGoogle Scholar
  191. Trifonov EN (2011b) Thirty years of multiple sequence codes. Genomics Proteomics Bioinformatics 9:1–6PubMedCrossRefGoogle Scholar
  192. van Noort J, Verbrugge S, Goosen N, Dekker C, Dame RT (2004) Dual architectural roles of HU: formation of Xexible hinges and rigid Wlaments. Proc Natl Acad Sci U S A 101:6969–6974PubMedCrossRefGoogle Scholar
  193. Villar-Garea A, Imhof A (2008) Fine mapping of posttranslational modifications of the linker histone H1 from Drosophila melanogaster. PLoS One 3:e1553PubMedCrossRefGoogle Scholar
  194. Viré E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C, Morey L, Van Eynde A, Bernard D, Vanderwinden JM, Bollen M, Esteller M, Di Croce L, de Launoit Y, Fuks F (2006) The polycomb group protein EZH2 directly controls DNA methylation. Nature 439:871–874PubMedCrossRefGoogle Scholar
  195. Voo KS, Carlone DL, Jacobsen BM, Flodin A, Skalnik DG (2000) Cloning of a mammalian transcriptional activator that binds unmethylated CpG motifs and shares a CXXC domain with DNA methyltransferase, human trithorax, and methyl-CpG binding domain protein 1. Mol Cell Biol 20:2108–2121PubMedCrossRefGoogle Scholar
  196. White CL, Suto RK, Luger K (2001) Structure of the yeast nucleosome core particle reveals fundamental changes in internucleosome interactions. EMBO J 20:5207–5218PubMedCrossRefGoogle Scholar
  197. Wolffe A (1992) Chromatin: structure and function. Academic, San DiegoGoogle Scholar
  198. Wong MM, Cox LK, Chrivia JC (2007) The chromatin remodeling protein, SRCAP, is critical for deposition of the histone variant H2A.Z at promoters. J Biol Chem 282:26132–26139PubMedCrossRefGoogle Scholar
  199. Wu WH, Alami S, Luk E, Wu CH, Sen S, Mizuguchi G, Wei D, Wu C (2005) Swc2 is a widely conserved H2AZ-binding module essential for ATP-dependent histone exchange. Nat Struct Mol Biol 12:1064–1071PubMedCrossRefGoogle Scholar
  200. Yao TP, Oh SP, Fuchs M, Zhou ND, Ch’ng LE, Newsome D, Bronson RT, Li E, Livingston DM, Eckner R (1998) Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell 93:361–372PubMedCrossRefGoogle Scholar
  201. Yu EY, Steinberg-Neifach O, Dandjinou AT, Kang F, Morrison AJ, Shen X, Lue NF (2007) Regulation of telomere structure and functions by subunits of the INO80 chromatin remodeling complex. Mol Cell Biol 27:5639–5649PubMedCrossRefGoogle Scholar
  202. Zalensky AO, Siino JS, Gineitis AA, Zalenskaya IA, Tomilin NV, Yau P, Bradbury EM (2002) Human testis/sperm-specific histone H2B (hTSH2B). Molecular cloning and characterization. J Biol Chem 277:43474–43480PubMedCrossRefGoogle Scholar
  203. Zhu W, Sandman K, Lee GE, Reeve JN, Summers MF (1998) NMR structure and comparison of the archaeal histone HFoB from the mesophile Methanobacterium formicicum with HMfB from the hyperthermophile Methanothermus ferviidus. Biochemistry 37:10573–10580PubMedCrossRefGoogle Scholar
  204. Zimmerman SB, Murphy LD (1996) Macromolecular crowding and the mandatory condensation of DNA in bacteria. FEBS Lett 390:245–248PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Sujata Kumari
    • 1
  • Amrutha Swaminathan
    • 1
  • Snehajyoti Chatterjee
    • 1
  • Parijat Senapati
    • 1
  • Ramachandran Boopathi
    • 1
  • Tapas K. Kundu
    • 1
    Email author
  1. 1.Transcription and Disease Laboratory, Molecular Biology and Genetics Unit (MBGU)Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR)BangaloreIndia

Personalised recommendations