Advertisement

Redundant Mechanisms

  • Jadran Lenarčič
  • Tadej Bajd
  • Michael M. Stanišić
Part of the Intelligent Systems, Control and Automation: Science and Engineering book series (ISCA, volume 60)

Abstract

A redundant mechanism is one that contains more degrees of freedom than are needed to perform a given task. Redundant mechanisms can solve a given primary task in an infinite number of ways. This feature allows the robot to simultaneously solve additional secondary tasks. The system of differential equations defining the kinematics of a redundant mechanism is underdetermined. This requires special mathematical approaches to solve the inverse kinematics problem. One of these is the so-called task-priority approach, in which the secondary task is subordinated to the primary task. We show in this chapter that humans and animals also take advantage of kinematic redundancy to optimize their motion.

Keywords

Jacobian Matrix Weighting Matrix Primary Task Null Space Secondary Task 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 7.
    D.R. Baker, C.W. Wampler, Int. J. Robot. Res. 7(2), 3 (1988) CrossRefGoogle Scholar
  2. 13.
    G.S. Cirikjian, J.W. Burdick, IEEE Trans. Robot. Autom. 10(3), 343 (1994) CrossRefGoogle Scholar
  3. 27.
    J.M. Hollerbach, K.C. Suh, IEEE J. Robot. Autom. 3(3), 308 (1987) CrossRefGoogle Scholar
  4. 35.
    J. Kieffer, J. Lenarčič, in Proceedings 3rd International Symposium on Advances in Robot Kinematics, Ferrara, Italy (1992), pp. 65–72 Google Scholar
  5. 36.
    C.A. Klein, C.H. Huang, IEEE Trans. Syst. Man Cybern. 13(3), 245 (1983) CrossRefGoogle Scholar
  6. 37.
    C.A. Klein, C. Chu-Jenq, S. Ahmed, IEEE Trans. Robot. Autom. 11(1), 50 (1995) CrossRefGoogle Scholar
  7. 48.
    J. Lenarčič, Lab. Robot. Autom. 8, 11 (1996) CrossRefGoogle Scholar
  8. 49.
    J. Lenarčič, in Proceedings IEEE International Conference on Robotics and Automation, Leuven, Belgium (1998), pp. 3235–3240 Google Scholar
  9. 50.
    J. Lenarčič, Robot. Auton. Syst. 30, 231 (2000) CrossRefGoogle Scholar
  10. 51.
    J. Lenarčič, CIT, J. Comput. Inf. Technol. 10(2), 125 (2002) Google Scholar
  11. 56.
    A.A. Maciejewski, C.A. Klein, Int. J. Robot. Res. 4(3), 109 (1985) CrossRefGoogle Scholar
  12. 62.
    Y. Nakamura, H. Hanafusa, T. Yoshikawa, Int. J. Robot. Res. 6(2), 3 (1987) CrossRefGoogle Scholar
  13. 65.
    D.N. Nenchev, J. Robot. Syst. 6(6), 769 (1989) zbMATHCrossRefGoogle Scholar
  14. 71.
    R.G. Roberts, A.A. Maciejewski, IEEE Trans. Robot. Autom. 12(4), 543 (1996) MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Jadran Lenarčič
    • 1
  • Tadej Bajd
    • 2
  • Michael M. Stanišić
    • 3
  1. 1.J. Stefan InstituteLjubljana-Vic-RudnikSlovenia
  2. 2.Faculty of Electrical EngineeringUniversity of LjubljanaLjubljana-Vic-RudnikSlovenia
  3. 3.Aerospace and Mechanical EngineeringNotre Dame UniversityNotre DameUSA

Personalised recommendations