Kinematics of Rigid Bodies

  • Jadran Lenarčič
  • Tadej Bajd
  • Michael M. Stanišić
Part of the Intelligent Systems, Control and Automation: Science and Engineering book series (ISCA, volume 60)


The motion of rigid bodies is presented using standard vector and matrix algebra. Combinations of translations and rotations, as well as linear and angular velocities and linear and angular translations, are studied. The characteristic properties of the rotation matrix and of the homogeneous transformation matrix are described. Different ways to represent the orientation of the body are introduced, such as the Euler angles, the YPR angles and the invariants of the rotation matrix.


Angular Velocity Planar Motion Orientation Angle Coordinate Frame Rotation Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J. Angeles, Rational Kinematics (Springer, New York, 1988) zbMATHCrossRefGoogle Scholar
  2. 10.
    O. Bottema, B. Roth, Theoretical Kinematics (Dover, New York, 1979/1990) Google Scholar
  3. 15.
    J.J. Craig, Introduction to Robotics: Mechanics and Control, 3rd edn. (Pearson/Prentice-Hall, Upper Saddle River, 2005) Google Scholar
  4. 17.
    J. Denavit, R.S. Hartenberg, J. Appl. Mech. 22(2), 215 (1955) MathSciNetzbMATHGoogle Scholar
  5. 46.
    J. Lenarčič, in International Encyclopedia of Robotics, ed. by R. Dorf (Wiley, New York, 1988) Google Scholar
  6. 58.
    J.M. McCarthy, An Introduction to Theoretical Kinematics (MIT Press, Cambridge, 1990) Google Scholar
  7. 67.
    R. Paul, Robot Manipulators: Mathematics, Programming and Control (MIT Press, Cambridge, 1981) Google Scholar
  8. 77.
    L. Sciavicco, B. Siciliano, Modeling and Control of Robot Manipulators, 2nd edn. (Springer, London, 2000) CrossRefGoogle Scholar
  9. 84.
    L.W. Tsai, Robot Analysis, The Mechanics of Serial and Parallel Manipulators (Wiley, New York, 1999) Google Scholar
  10. 86.
    M. Vukobratović, M. Kirćanski, Kinematics and Trajectory Synthesis of Manipulation Robots (Springer, Berlin, 1986) zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Jadran Lenarčič
    • 1
  • Tadej Bajd
    • 2
  • Michael M. Stanišić
    • 3
  1. 1.J. Stefan InstituteLjubljana-Vic-RudnikSlovenia
  2. 2.Faculty of Electrical EngineeringUniversity of LjubljanaLjubljana-Vic-RudnikSlovenia
  3. 3.Aerospace and Mechanical EngineeringNotre Dame UniversityNotre DameUSA

Personalised recommendations