Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 858 Accesses

Abstract

In the last chapter, we have seen how to analytically treat the interplay between nonlinearity and disorder in the framework of the spin glass theory. The emerging results show how the increasing degree of disorder can drastically change the underlying thermodynamics by switching the optical device from a standard laser to a random one while controlling the furnished energy permits to observe the nonlinear emerging phenomena, like the mode-locked transition. By an experimental point of view, the latter mechanism is much simpler to control and hence the related literature is much wider than the former one. Here, we want to visually demonstrate through a set of experiments that the random laser emission depends not only on the furnished energy, the nonlinear processes, but primarily on the structural informations, that is the degree of disorder inside. In order to study how random laser features are affected and controlled by the state of the motion of the sample, and then on the disordered considered configuration, we have to choose the more appropriate physical system. Here, we use shaken granular materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We use “first order” to denote the fact that scattering is neglected, indeed scattering events in the light-matter interaction Hamiltonian appears at second-order.

  2. 2.

    The laser spot is measured by a scanning blade technique

  3. 3.

    Without scatterers inside.

  4. 4.

    i.e. the transmission.

References

  1. Cao H (2003) Waves Random Media Complex Media 13:R1

    Google Scholar 

  2. Jaeger H, Nagel S (1992) Science 255:1523

    Google Scholar 

  3. Jaeger H, Nagel S, Behringer R (1996) Rev Mod Phys 68:1259

    Google Scholar 

  4. Poeschel T, Brilliantov N (2003) Granular gas dynamics, vol 624. Springer, Berlin

    Google Scholar 

  5. Poeschel T, Luding S (2001) Granular gases, vol 564. Springer, Berlin

    Google Scholar 

  6. McLennan J (1989) Introduction to nonequilibrium statistical mechanics. Prentice Hall, Englewood Cliffs

    Google Scholar 

  7. Puglisi A, Visco P, Barrat A, Trizac E, van Wijland F (2005) Phys Rev Lett 95:110202

    Google Scholar 

  8. Lawandy NM, Balachandran RM, Gomes ASL, Sauvain E (1994) Nature 368:436

    Google Scholar 

  9. Goeuedard C, Husson D, Sauteret C, Auzel F, Migus A (1993) J Opt Soc B 10:2358

    Google Scholar 

  10. Briskina C, Markushev V, Ter-Gabrielyan NE (1996) Quantum Electron 26:923

    Google Scholar 

  11. Cao H et al (1999) Phys Rev Lett 82:2278

    Google Scholar 

  12. Ryzhkov M, Markushev V, Briskina C, Cao H, (2005) Lasing in powdered ZnO: current state of affairs. In: Proceedings of CAOL 2005. 2nd international conference on advanced optoelectronics and lasers, vol 1, pp 72–75

    Google Scholar 

  13. Dice G, Mujumdar S, Elezzabi A (2005) Appl Phys Lett 86:131105

    Google Scholar 

  14. Popov O, Zilbershtein A, Davidov D (2006) Appl Phys Lett 89:191116

    Google Scholar 

  15. Meng X, Fujita K, Zong Y, Murai S, Tanaka K (2008) Appl Phys Lett 92:201112

    Google Scholar 

  16. Meng X, Fujita K, Murai S, Tanaka K (2009) Phys Rev A 79:053817

    Google Scholar 

  17. Wiersma DS, Vanalbada MP, Lagendijk A (1995) Nature 373:203

    Google Scholar 

  18. Wiersma DS (2008) Nature Phys 4:359

    Google Scholar 

  19. Letokhov VS (1968) Sov Phys JETP 26:835

    Google Scholar 

  20. Wiersma DS, Lagendijk A (1996) Phys Rev E 54:4256

    Google Scholar 

  21. Balachandran RM, Lawandy NM, Moon JA (1997) Opt Lett 22:319

    Google Scholar 

  22. Guerin W, Michaud F, Kaiser R (2008) Phys Rev Lett 101:093002

    Google Scholar 

  23. Cao H, Ling Y, Xu J, Cao C, Kumar P (2001) Phys Rev Lett 86:4524

    Google Scholar 

  24. Anderson PW (1958) Phys Rev 109:1492

    Google Scholar 

  25. Conti C, Leonetti M, Fratalocchi A, Angelani L, Ruocco G (2008) Phys Rev Lett 101:143901

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viola Folli .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Folli, V. (2012). The Granular Laser. In: Nonlinear Optics and Laser Emission through Random Media. Springer Theses. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4513-1_9

Download citation

Publish with us

Policies and ethics