Skip to main content

Bayesian Methods for Non-stationary Extreme Value Analysis

  • Chapter
  • First Online:
Extremes in a Changing Climate

Part of the book series: Water Science and Technology Library ((WSTL,volume 65))

Abstract

Non-stationary models for extremes have attracted significant attention in recent years. These models require adapted estimation methods. Bayesian inference offers an attractive framework to estimate non-stationary models and, importantly, to quantify estimation and predictive uncertainties.

This chapter therefore focuses on the application of Bayesian inference to non-stationary extreme models. It is organized as a step-by-step building of non-stationary models of increasing generality. The principles of Bayesian inference are introduced using the simple case of a univariate and stationary distribution. The construction of at-site non-stationary models, using regression functions linking parameter values with time-varying covariates, is then presented. The difficulty of identifying non-stationary components based on the sole use of at-site data is also discussed, and motivates the construction of regional non-stationary models. Such models are based on the concept of “regional parameters”, i.e. parameters being assumed identical for all sites within a homogeneous region. The inference of regional models poses an additional difficulty compared to the at-site approach: the existence of spatial dependences makes the derivation of the inference equations challenging. A practical solution, based on the use of spatial copulas, is briefly presented. Lastly, a generalization of the “regional parameter” paradigm, based on Bayesian hierarchical modeling, is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AghaKouchak A, Bardossy A, Habib E (2010a) Conditional simulation of remotely sensed rainfall data using a non-Gaussian v-transformed copula. Adv Water Resour 33(6):624–634. doi:10.1016/j.advwatres.2010.02.010

    Article  Google Scholar 

  • AghaKouchak A, Bardossy A, Habib E (2010b) Copula-based uncertainty modelling: application to multisensor precipitation estimates. Hydrol Process 24(15):2111–2124. doi:10.1002/hyp. 7632

    Google Scholar 

  • AghaKouchak A, Habib E, Bardossy A (2010c) A comparison of three remotely sensed rainfall ensemble generators. Atmos Res 98(2–4):387–399. doi:10.1016/j.atmosres.2010.07.016

    Article  Google Scholar 

  • AghaKouchak A, Ciach G, Habib E (2010d) Estimation of tail dependence coefficient in rainfall accumulation fields. Adv Water Resour 33(9):1142–1149. doi:10.1016/j.advwatres.2010.07.003

    Article  Google Scholar 

  • AghaKouchak A, Behrangi A, Sorooshian S, Hsu K, Amitai E (2011) Evaluation of satellite-retrieved extreme precipitation rates across the central United States. J Geophys Res Atmos 116:D02115. doi:10.1029/2010jd014741

    Article  Google Scholar 

  • Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) 2nd International symposium on information theory. Akadémiai Kiadó, Budapest

    Google Scholar 

  • Aryal SK, Bates BC, Campbell EP, Li Y, Palmer MJ, Viney NR (2009) Characterizing and modeling temporal and spatial trends in rainfall extremes. J Hydrometeorol 10(1):241–253

    Article  Google Scholar 

  • Bárdossy A, Li J (2008) Geostatistical interpolation using copulas. Water Resour Res 44(7):W07412. doi:10.1029/2007wr006115

    Article  Google Scholar 

  • Bernier J, Parent E, Boreux J-J (2000) Statistique pour l’environnement: traitement bayésien de l’incertitude. Technique & Documentation, Paris, 364 pp

    Google Scholar 

  • Bos CS (2002) A comparison of marginal likelihood computation methods. In: Hardle W, Ronz B (eds) Compstat2002. Physica-Verlag, Heidelberg

    Google Scholar 

  • Chib S (1995) Marginal likelihood from the Gibbs output. J Am Stat Assoc 90(432):1313–1321

    Article  Google Scholar 

  • Chiles J-P, Delfiner P (1999) Geostatistics: modeling spatial uncertainty. Wiley, New York

    Book  Google Scholar 

  • Clark JS (2005) Why environmental scientists are becoming Bayesians. Ecol Lett 8:2–14

    Article  Google Scholar 

  • Coles S (2001) An introduction to statistical modeling of extreme values. Verlag, London, 210 pp

    Google Scholar 

  • Coles SG, Powell EA (1996) Bayesian methods in extreme value modelling: a review and new developments. Int Stat Rev 64(1):119–136

    Article  Google Scholar 

  • Coles S, Heffernan JE, Tawn JA (1999) Dependence measures for extreme value analyses. Extremes 2:339–365

    Article  Google Scholar 

  • Coles S, Pericchi LR, Sisson S (2003) A fully probabilistic approach to extreme rainfall modelling. J Hydrol 273(1–4):35–50

    Article  Google Scholar 

  • Cooley D, Nychka D, Naveau P (2007) Bayesian spatial modeling of extreme precipitation return levels. J Am Stat Assoc 102(479):824–840

    Article  Google Scholar 

  • Cox DR, Isham VS, Northrop PJ (2002) Floods: some probabilistic and statistical approaches. Philos Trans R Soc Math Phys Eng Sci 360(1796):1389–1408

    Article  Google Scholar 

  • Cunderlik JM, Burn DH (2003) Non-stationary pooled frequency analysis. J Hydrol 276:210–223

    Article  Google Scholar 

  • Dalrymple T (1960) Flood frequency analyses. In: US Geological Survey (ed) Water-supply paper 1543-A. U.S. G.P.O, Washington, DC

    Google Scholar 

  • De Haan L, Pereira TT (2006) Spatial extremes: models for the stationary case. Ann Stat 34(1):146–168

    Article  Google Scholar 

  • Diggle PJ, Tawn JA, Moyeed RA (1998) Model-based geostatistics. J R Stat Soc Ser C Appl Stat 47:299–326

    Article  Google Scholar 

  • Dobson AJ (2001) An introduction to generalised linear models. Chapman & Hall, London, 240 pp

    Book  Google Scholar 

  • Efron B (2005) Bayesians, frequentists, and scientists. J Am Stat Assoc 100(469):1–5. doi:10.1198/01621450500003

    Article  Google Scholar 

  • El Adlouni S, Favre AC, Bobee B (2006) Comparison of methodologies to assess the convergence of Markov chain Monte Carlo methods. Comput Stat Data Anal 50(10):2685–2701

    Article  Google Scholar 

  • El Adlouni S, Ouarda TBMJ, Zhang X, Roy R, Bobée B (2007) Generalized maximum likelihood estimators for the nonstationary generalized extreme value model. Water Resour Res 43(3):W03410. doi:10.1029/2005wr004545

    Article  Google Scholar 

  • Garavaglia F, Lang M, Paquet E, Gailhard J, Garcon R, Renard B (2011) Reliability and robustness of a rainfall compound distribution model based on weather pattern sub-sampling. Hydrol Earth Syst Sci 15(2):519–532. doi:10.5194/hess-15-519-2011

    Article  Google Scholar 

  • Gelfand AE, Sahu SK (1999) Identifiability, improper priors, and Gibbs sampling for generalized linear models. J Am Stat Assoc 94:247–253

    Article  Google Scholar 

  • Gelman A (2008) Objections to Bayesian statistics. Bayesian Anal 3(3):445–450

    Google Scholar 

  • Gelman A, Carlin JB, Stern HS, Rubin DB (2004) Bayesian data analysis, 2nd edn. Chapman & Hall, London, 696 pp

    Google Scholar 

  • Genest C, Favre AC, Béliveau J, Jacques C (2007) Metaelliptical copulas and their use in frequency analysis of multivariate hydrological data. Water Resour Res 43:W09401. doi:10.1029/2006WR005275

  • Geweke J (1992) Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. In: Bernardo JM, Berger JO, Dawid AP, Smith AFM (eds) Bayesian statistics 4. Oxford University Press, Oxford, pp 169–193

    Google Scholar 

  • Gunasekara TAG, Cunnane C (1992) Split sampling technique for selecting a flood frequency-analysis procedure. J Hydrol 130(1–4):189–200

    Article  Google Scholar 

  • Haario H, Saksman E, Tamminen J (2001) An adaptive metropolis algorithm. Bernoulli 7(2):223–242

    Article  Google Scholar 

  • Haario H, Saksman E, Tamminen J (2005) Componentwise adaptation for high dimensional MCMC. Comput Stat 20(2):265–273

    Article  Google Scholar 

  • Hanel M, Buishand TA, Ferro CAT (2009) A nonstationary index flood model for precipitation extremes in transient regional climate model simulations. J Geophys Res Atmos 114:D15107. doi:10.1029/2009jd011712

    Article  Google Scholar 

  • Hastings WK (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57:97–109

    Article  Google Scholar 

  • Heffernan JE, Tawn JA (2004) A conditional approach for multivariate extreme values. J R Stat Soc 66:497–546

    Article  Google Scholar 

  • Interagency Advisory Committee on Water Data (1982) Guidelines for determining flood-flow frequency: Bulletin 17B of the Hydrology Subcommittee. U.S. Geological Survey, Reston

    Google Scholar 

  • Jeffreys H (1946) An invariant form for the prior probability in estimation problems. Proc R Soc Lond A Math Phys Sci 186(1007):453–461

    Article  Google Scholar 

  • Kass RE, Raftery AE (1995) Bayes factors. J Am Stat Assoc 90(430):773–795

    Article  Google Scholar 

  • Katz RW, Parlange MB, Naveau P (2002) Statistics of extremes in hydrology. Adv Water Resour 25(8–12):1287–1304

    Article  Google Scholar 

  • Keef C, Svensson C, Tawn JA (2009) Spatial dependence in extreme river flows and precipitation for Great Britain. J Hydrol 378(3–4):240–252

    Article  Google Scholar 

  • Khaliq MN, Ouarda TBMJ, Ondo JC, Gachon P, Bobee B (2006) Frequency analysis of a sequence of dependent and/or non-stationary hydro-meteorological observations: a review. Water Resour Res 329(3–4):534–552

    Google Scholar 

  • Kuczera G (1999) Comprehensive at-site flood frequency analysis using Monte Carlo Bayesian inference. Water Resour Res 35(5):1551–1557

    Article  Google Scholar 

  • Laio F, Tamea S (2007) Verification tools for probabilistic forecasts of continuous hydrological variables. Hydrol Earth Syst Sci 11(4):1267–1277

    Article  Google Scholar 

  • Lima CHR, Lall U (2009) Hierarchical Bayesian modeling of multisite daily rainfall occurrence: rainy season onset, peak, and end. Water Resour Res 45:W07422. doi:10.1029/2008WR007485

  • Lima CHR, Lall U (2010) Spatial scaling in a changing climate: a hierarchical Bayesian model for non-stationary multi-site annual maximum and monthly streamflow. J Hydrol 383(3–4):307–318

    Article  Google Scholar 

  • Lunn DJ, Thomas A, Best N, Spiegelhalter D (2000) WinBUGS – a Bayesian modelling framework: concepts, structure, and extensibility. Stat Comput 10(4):325–337

    Article  Google Scholar 

  • Maraun D, Rust HW, Osborn TJ (2010) Synoptic airflow and UK daily precipitation extremes development and validation of a vector generalised linear model. Extremes 13(2):133–153. doi:10.1007/s10687-010-0102-x

    Article  Google Scholar 

  • Marshall L, Nott D, Sharma A (2004) A comparative study of Markov chain Monte Carlo methods for conceptual rainfall-runoff modeling. Water Resour Res 40:W02501. doi:10.1029/2003WR002378

  • Martin AD, Quinn KM, Park JH (2011) MCMCpack: Markov chain Monte Carlo in R. J Stat Softw 42(9)

    Google Scholar 

  • Martins ES, Stedinger JR (2000) Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data. Water Resour Res 36(3):737–744

    Article  Google Scholar 

  • Merz R, Bloschl G (2008a) Flood frequency hydrology: 1. Temporal, spatial, and causal expansion of information. Water Resour Res 44:W08432. doi:10.1029/2007WR006744

  • Merz R, Bloschl G (2008b) Flood frequency hydrology: 2. Combining data evidence. Water Resour Res 44:W08433. doi:10.1029/2007WR006745

  • Metropolis N, Ulam S (1949) The Monte Carlo method. J Am Stat Assoc 44:335–341

    Article  Google Scholar 

  • Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087–1092

    Article  Google Scholar 

  • Meylan P, Favre A-C, Musy A (2008) Hydrologie fréquentielle: Une science prédictive. Presses polytechniques et universitaires romandes, Lausanne, 173 pp

    Google Scholar 

  • Micevski T (2007) Nonhomogeneity in eastern Australian flood frequency data: identification and regionalisation. PhD thesis, University of Newcastle, Newcastle, Australia, 129 pp

    Google Scholar 

  • Micevski T, Kuczera G, Franks SW (2006) A Bayesian hierarchical regional flood model. Paper presented at 30th hydrology and water resources symposium, Engineers Australia, Launceston, Tas, Australia, 4–7 December

    Google Scholar 

  • Mikosch T (2005) How to model multivariate extremes if one must? Stat Neerl 59(3):324–338

    Article  Google Scholar 

  • Naveau P, Cooley D, Poncet P (2005) Spatial extremes analysis in climate studies. Paper presented at extreme value analysis, Gothenburg, Sweden

    Google Scholar 

  • Padoan SA, Ribatet M, Sisson SA (2010) Likelihood-based inference for max-stable processes. J Am Stat Assoc 105(489):263–277

    Article  Google Scholar 

  • Parent E, Bernier J (2003) Encoding prior experts judgments to improve risk analysis of extreme hydrological events via POT modeling. J Hydrol 283(1–4):1–18

    Article  Google Scholar 

  • Perreault L (2000) Analyse bayésienne rétrospective d’une rupture dans les séquences de variables aléatoires hydrologiques. PhD thesis, ENGREF/INRS-Eau, 200 pp

    Google Scholar 

  • Perreault L, Bernier J, Bobee B, Parent E (2000a) Bayesian change-point analysis in hydrometeorological time series. Part 2. Comparison of change-point models and forecasting. J Hydrol 235(3–4):242–263

    Article  Google Scholar 

  • Perreault L, Bernier J, Bobee B, Parent E (2000b) Bayesian change-point analysis in hydrometeorological time series. Part 1. The normal model revisited. J Hydrol 235(3–4):221–241

    Article  Google Scholar 

  • Perreault L, Parent E, Bernier J, Bobee B, Slivitzky M (2000c) Retrospective multivariate Bayesian change-point analysis: a simultaneous single change in the mean of several hydrological sequences. Stoch Environ Res Risk Assess 14(4–5):243–261

    Article  Google Scholar 

  • Plummer M, Best N, Cowles K, Vines K (2006) CODA: convergence diagnosis and output analysis for MCMC. R News 6(1):7–11

    Google Scholar 

  • Pujol N, Neppel L, Sabatier R (2007) Regional tests for trend detection in maximum precipitation series in the French Mediterranean region. Hydrol Sci J J Sci Hydrol 52(5):956–973

    Google Scholar 

  • Raftery AE (1996) Approximate Bayes factors and accounting for model uncertainty in generalized linear models. Biometrika 83(2):251–266

    Article  Google Scholar 

  • Reis DS, Stedinger JR, Martins ES (2005) Bayesian generalized least squares regression with application to log Pearson type 3 regional skew estimation. Water Resour Res 41(10)

    Google Scholar 

  • Renard B, Lang M (2007) Use of a Gaussian copula for multivariate extreme value analysis: some case studies in hydrology. Adv Water Resour 30(4):897–912

    Article  Google Scholar 

  • Renard B, Garreta V, Lang M (2006) An application of Bayesian analysis and MCMC methods to the estimation of a regional trend in annual maxima. Water Resour Res 42(12)

    Google Scholar 

  • Renard B, Kavetski D, Thyer M, Kuczera G, Franks SW (2010) Understanding predictive uncertainty in hydrologic modeling: the challenge of identifying input and structural errors. Water Resour Res 46:W05521. doi:10.1029/2009WR008328

  • Ribatet M, Sauquet E, Gresillon JM, Ouarda TBMJ (2006) A regional Bayesian POT model for flood frequency analysis. Stoch Environ Res Risk Assess 21(4):327–339

    Article  Google Scholar 

  • Robert CP (2001) The Bayesian choice: from decision-theoretic motivations to computational implementation. Springer, New York

    Google Scholar 

  • Robert CP, Casella G (2004) Monte Carlo statistical methods. Springer, New York, 650 pp

    Google Scholar 

  • Salvadori G, De Michele C, Kottegoda NT, Rosso R (2007) Extremes in nature: an approach using copulas. Springer, Dordrecht, 292 pp

    Google Scholar 

  • Schalther M, Tawn JA (2003) A dependence measure for multivariate and spatial extreme values: properties and inference. Biometrika 90(1):139–156

    Article  Google Scholar 

  • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464

    Article  Google Scholar 

  • Spiegelhalter DJ, Best NG, Carlin BR, van der Linde A (2002) Bayesian measures of model complexity and fit. J R Stat Soc Ser B Stat Methodol 64:583–616

    Article  Google Scholar 

  • Stedinger JR (1983) Design-events with specified flood risk. Water Resour Res 19(2):511–522

    Article  Google Scholar 

  • Stedinger JR, Tasker GD (1985) Regional hydrologic analysis: 1. Ordinary, weighted and generalized least squares compared. Water Resour Res 21(9):1421–1432, [Correction, Water Resour Res 1422(1425): 1844, 1986.]

    Article  Google Scholar 

  • Strupczewski WG, Kaczmarek Z (2001) Non-stationary approach to at-site flood frequency modelling II. Weighted least squares estimation. J Hydrol 248(1–4):143–151

    Article  Google Scholar 

  • Strupczewski WG, Singh VP, Feluch W (2001) Non-stationary approach to at-site flood frequency modelling I. Maximum likelihood estimation. J Hydrol 248(1–4):123–142

    Article  Google Scholar 

  • Thyer M, Kuczera G (2000) Modeling long-term persistence in hydroclimatic time series using a hidden state Markov model. Water Resour Res 36(11):3301–3310

    Article  Google Scholar 

  • Thyer M, Kuczera G (2003a) A hidden Markov model for modelling long-term persistence in multi-site rainfall time series. 2. Real data analysis. J Hydrol 275(1–2):27–48

    Article  Google Scholar 

  • Thyer M, Kuczera G (2003b) A hidden Markov model for modelling long-term persistence in multi-site rainfall time series 1. Model calibration using a Bayesian approach. J Hydrol 275(1–2):12–26

    Article  Google Scholar 

Download references

Acknowledgments

Part of this work is funded by the French Research Agency (ANR) through the project EXTRAFLO (https://extraflo.cemagref.fr/). Météo France is gratefully acknowledged for providing the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Renard .

Editor information

Editors and Affiliations

Appendix

Appendix

3.1.1 The Chib Method for Computing Marginal Likelihoods

The marginal likelihood is the normalizing constant of the posterior distribution. For a given model M (omitted from the notation for simplicity), it can therefore be written as follows:

$$ p(\user2{y}) = \frac{{p(\user2{y}|\user2{\theta })p(\user2{\theta })}}{{p(\user2{\theta }|\user2{y})}} = \frac{{f(\user2{\theta })}}{{p(\user2{\theta }|\user2{y})}} $$
(3.51)

In this equation, the numerator is the unnormalized posterior pdf and can therefore be computed for any θ. The difficulty is to compute the denominator, i.e. the normalized posterior pdf \( p(\user2{\theta }|\user2{y}) \).

Chib’s approach (1995) to this problem is first based on the observation that relation (3.51) holds for any θ value. For a given value \( {{\user2{\theta }}^{*}} \), it is then possible to decompose the normalized posterior pdf \( p({{\user2{\theta }}^{*}}|\user2{y}) \) evaluated at \( {{\user2{\theta }}^{*}} \) as follows:

$$ \begin{aligned}[b] p({{\user2{\theta }}^{*}}|\user2{y}) & = p(\theta_1^{*}|\user2{y})p(\theta_2^{*}|\theta_1^{*},\user2{y}) \times ... \times p(\theta_k^{*}|\theta_1^{*},...,\theta_{{k - 1}}^{*},\user2{y}) \times ... \\ & \quad \times p(\theta_{{{{N}_D}}}^{*}|\theta_1^{*},...,\theta_{{{{N}_D} - 1}}^{*},\user2{y})\end{aligned} $$
(3.52)

Equation (3.52) decomposes the computation of a N D -dimensional pdf into the multiplication of N D one-dimensional pdfs. Each term \( p( \theta_k^{*}|\theta_1^{*},...,\theta_{{k - 1}}^{*},\user2{y}) \) is the first marginal distribution of the distribution \( p( {{\theta }_k},{{\theta }_{{k + 1}}}...,{{\theta }_{{{{N}_D}}}}|\theta_1^{*},...,\theta_{{k - 1}}^{*},\user2{y}) \), evaluated at \( \theta_k^{*} \). Consequently, Chib’s proposal is to perform additional MCMC sampling from the conditional distributions \( p( {{\theta }_k},{{\theta }_{{k + 1}}}...,{{\theta }_{{{{N}_D}}}}|\theta_1^{*},...,\theta_{{k - 1}}^{*},\user2{y}) \) for k = 2:N D , and to use the first marginal sample to compute each term \( p( \theta_k^{*}|\theta_1^{*},...,\theta_{{k - 1}}^{*},\user2{y}) \). Since the latter is a one-dimensional distribution, estimating its normalized pdf based on MCMC samples poses no difficulty, either using a kernel density estimate or one-dimensional numerical integration.

Although Chib’s approach is computationally demanding in high-dimensional problems, it remains one of the most stable approximations of the marginal likelihood (Bos 2002). Note that \( {{\user2{\theta }}^{*}} \) should preferably be chosen in a high-density area of the posterior distribution (e.g. the posterior mode) to improve the efficiency of the approximation.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Renard, B., Sun, X., Lang, M. (2013). Bayesian Methods for Non-stationary Extreme Value Analysis. In: AghaKouchak, A., Easterling, D., Hsu, K., Schubert, S., Sorooshian, S. (eds) Extremes in a Changing Climate. Water Science and Technology Library, vol 65. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4479-0_3

Download citation

Publish with us

Policies and ethics