Skip to main content

Genetic, Hormonal, and Neural Underpinnings of Human Aggressive Behavior

  • Chapter
  • First Online:

Part of the book series: Handbooks of Sociology and Social Research ((HSSR))

Abstract

This chapter reviews the social neuroscience literature on human aggression, including research in molecular genetics, neuroendocrinology, neuroimaging, and social psychology. The findings indicate that (1) the amygdala and orbitofrontal cortex (OFC) are critical components of the neural circuitry of aggression; (2) the serotonergic system plays a crucial role in modulating aggression; (3) testosterone and cortisol influence aggression, likely through modulation of the amygdala and orbitofrontal cortex; and (4) environmental risk factors (media violence) and protective factors (emotion regulation) may modulate aggression via alterations in these biological systems and neural circuits. We end the chapter by discussing new directions for future research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anderson, C. A., Shibuya, A., Ihori, N., et al. (2010). Violent video game effects on aggression, empathy, and prosocial behavior in eastern and western countries: A meta-analytic review. Psychological Bulletin, 136, 151–173.

    Article  Google Scholar 

  • Archer, J., & Southhall, N. (2009). Does cost-benefit analysis or self-control predict involvement in bullying behavior by male prisoners? Aggressive Behavior, 35, 31–40.

    Article  Google Scholar 

  • Archer, J., Graham-Kevan, N., & Davies, M. (2005). Testosterone and aggression: A reanalysis of Book, Starzyk, and Quinsey’s (2001) study. Aggression and Violent Behavior, 10, 241–261.

    Article  Google Scholar 

  • Baron, R. A., & Richardson, D. R. (1994). Human aggression (2nd ed.). New York: Plenum.

    Google Scholar 

  • Bartlett, C. P., & Anderson, C. A. (2011). Re-appraising the situation and its impact on aggressive behavior. Personality and Social Psychology Bulletin, 37(12), 1564–1573.

    Article  Google Scholar 

  • Bartz, J. A., Zaki, J., Bolger, N., et al. (2011). Social effects of oxytocin in humans: Context and person matter. Trends in Cognitive Sciences, 15, 301–309.

    Google Scholar 

  • Beaver, J. D., Lawrence, A. D., Passamonti, L., & Calder, A. J. (2008). Appetitive motivation predicts the neural response to facial signals of aggression. The Journal of Neuroscience, 28, 2719–2725.

    Article  Google Scholar 

  • Bechara, A., Damasio, H., & Damasio, A. R. (2000). Emotion, decision making and the orbitofrontal cortex. Cerebral Cortex, 10, 295–307.

    Article  Google Scholar 

  • Beer, J. S., Heerey, E. A., Keltner, D., Scabini, D., & Knight, R. T. (2003). The regulatory function of self-conscious emotion: Insights from patients with orbitofrontal damage. Journal of Personality and Social Psychology, 85, 594–604.

    Article  Google Scholar 

  • Beer, J. S., John, O. P., Scabini, D., & Knight, R. T. (2006). Orbitofrontal cortex and social behavior: Integrating self-monitoring and emotion-cognition interactions. Journal of Cognitive Neuroscience, 18, 871–879.

    Article  Google Scholar 

  • Beitchman, J. H., Baldassarra, L., Mik, H., et al. (2006). Serotonin transporter polymorphisms and persistent, pervasive childhood aggression. The American Journal of Psychiatry, 163, 1103–1105.

    Article  Google Scholar 

  • Berman, M. E., McCloskey, M. S., Fanning, J. R., Schumacher, J. A., & Coccaro, E. F. (2009). Serotonin augmentation reduces response to attack in aggressive individuals. Psychological Science, 20, 714–720.

    Article  Google Scholar 

  • Blair, R. J. R. (2004). The roles of orbital frontal cortex in the modulation of antisocial behavior. Brain and Cognition, 55, 198–208.

    Article  Google Scholar 

  • Brunner, H. G., Nelen, M., Breakefield, X. O., et al. (1993). Abnormal-behavior associated with a point mutation in the structural gene for monoamine oxidase-A. Science, 262, 578–580.

    Article  Google Scholar 

  • Buckholz, J. W., & Meyer-Lindenberg, A. (2008). MAOA and the neurogenetic architecture of human aggression. Trends in Neurosciences, 31, 120–129.

    Article  Google Scholar 

  • Bufkin, J. L., & Luttrell, V. R. (2005). Neuroimaging studies of aggressive and violent behavior: Current findings and implications for criminology and criminal justice. Trauma, Violence & Abuse, 6, 176–191.

    Article  Google Scholar 

  • Buss, D. M., & Shackelford, T. K. (1997). Human aggression in evolutionary psychological perspective. Clinical Psychology Review, 17, 605–619.

    Article  Google Scholar 

  • Card, N. A., Stucky, B. D., Sawalani, G. M., & Little, T. D. (2008). Direct and indirect aggression during childhood and adolescence: A meta-analytic review of gender differences, intercorrelations, and relations to maladjustment. Child Development, 79, 1185–1229.

    Article  Google Scholar 

  • Carnagey, N. L., Anderson, C. A., & Bartholow, B. D. (2007). Media violence and social neuroscience: New questions and new opportunities. Current Directions in Psychological Science, 16, 178–182.

    Article  Google Scholar 

  • Carré, J. M., & Mehta, P. H. (2011). Importance of considering testosterone–cortisol interactions in predicting human aggression and dominance. Aggressive Behavior, 37, 1–3.

    Article  Google Scholar 

  • Carré, J. M., Putnam, S. K., & McCormick, C. M. (2009). Testosterone responses to competition predict future aggressive behavior at a cost to reward in men. Psychoneuroendocrinology, 34, 561–570.

    Article  Google Scholar 

  • Carré, J. M., Gilchrist, J. D., Morrissey, M. D., et al. (2010). Motivational and situational factors and the relationship between testosterone dynamics and human aggression during competition. Biological Psychology, 84, 346–353.

    Article  Google Scholar 

  • Carré, J. M., McCormick, C. M., & Hariri, A. R. (2011). The social neuroendocrinology of human aggression. Psychoneuroendocrinology, 36, 935–944.

    Article  Google Scholar 

  • Carré, J. M., Fisher, P. M., Manuck, S. B., & Hariri, A. R. (2012). Interaction between trait anxiety and trait anger predict amygdala reactivity to angry facial expressions in men but not women. Social Cognitive and Affective Neurosciences, 7(2), 213–221.

    Article  Google Scholar 

  • Caspi, A., McClay, J., Moffitt, T. E., et al. (2002). Role of genotype in the cycle of violence in maltreated children. Science, 297, 851–854.

    Article  Google Scholar 

  • Caspi, A., Hariri, A. R., Holmes, A., et al. (2010). Genetic sensitivity to the environment: the case of the serotonin transporter gene and its implications for studying complex diseases and traits. The American Journal of Psychiatry, 167, 509–527.

    Article  Google Scholar 

  • Chamberlain, N. L., Driver, E. D., & Miesfeld, R. L. (1994). The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function. Nucleic Acids Research, 22, 3181–3186.

    Article  Google Scholar 

  • Chan, S. C., Raine, A., & Lee, T. M. (2010). Attentional bias toward negative affective stimuli and reactive aggression in male batterers. Psychiatry Research, 176, 246–249.

    Article  Google Scholar 

  • Choong, C. S., & Wilson, E. M. (1998). Trinucleotide repeats in the human androgen receptor: A molecular basis for disease. Journal of Molecular Endocrinology, 21, 235–257.

    Article  Google Scholar 

  • Coccaro, E. F., Kavoussi, R. J., Hauger, R. L., Cooper, T. B., & Ferris, C. F. (1998). Cerebrospinal fluid vasopressin levels: Correlates with aggression and serotonin function in personality-disordered subjects. Archives of General Psychiatry, 55, 708–714.

    Article  Google Scholar 

  • Coccaro, E. F., McCloskey, M. S., Fitzgerald, D. A., & Phan, K. L. (2007). Amygdala and orbitofrontal reactivity to social threat in individuals with impulsive aggression. Biological Psychiatry, 62, 168–178.

    Article  Google Scholar 

  • Coccaro, E. F., Sripada, C. S., Yanowitch, R. N., & Phan, K. L. (2011). Corticolimbic function in impulsive aggressive behavior. Biological Psychiatry, 69, 1153–1159.

    Article  Google Scholar 

  • Collias, N. E., Barfield, R. J., & Tarvyd, E. S. (2002). Testosterone versus psychological castration in the expression of dominance, territoriality, and breeding behavior by male village weavers (Ploceus cucullatus). Behaviour, 139, 801–824.

    Article  Google Scholar 

  • Crockett, M. J., Clark, L., Tabibnia, G., Lieberman, M. D., & Robbins, T. W. (2008). Serotonin modulates behavioral reactions to unfairness. Science, 320, 1739.

    Article  Google Scholar 

  • Damasio, H., Grabowski, T., Frank, R., Galaburda, A. M., & Damasio, A. R. (1994). The return of Phineas Gage: Clues about the brain from the skull of a famous patient. Science, 264, 1102–1105.

    Article  Google Scholar 

  • Davidson, R. J., Putnam, K. M., & Larson, C. L. (2000). Dysfunction in the neural circuitry of emotion regulation: A possible prelude to violence. Science, 289, 591–594.

    Article  Google Scholar 

  • Davis, M., & Whalen, P. J. (2001). The amygdala: Vigilance and emotion. Molecular Psychiatry, 6, 13–34.

    Article  Google Scholar 

  • De Dreu, C. K. W., Greer, L. L., Handgraaf, M. J., et al. (2010). The neuropeptide oxytocin regulates parochial altruism in intergroup conflict among humans. Science, 328, 1408–1411.

    Article  Google Scholar 

  • De Martino, B., Kumaran, D., Seymour, B., & Dolan, R. J. (2006). Frames, biases, and rational decision-making in the human brain. Science, 313, 684–687.

    Article  Google Scholar 

  • Denson, T. F., Capper, M. M., Oaten, M., et al. (2011a). Self-control training decreases aggression in response to provocation in aggressive individuals. Journal of Research in Personality, 45, 252–256.

    Article  Google Scholar 

  • Denson, T. F., Pedersen, W. C., Friese, M., et al. (2011b). Understanding impulsive aggression: Angry rumination and reduced self-control capacity are mechanisms underlying the provocation-aggression relationship. Personality and Social Psychology Bulletin, 37, 850–862.

    Article  Google Scholar 

  • Dickerson, S. S., & Kemeny, M. E. (2004). Acute stressors and cortisol responses: A theoretical integration and synthesis of laboratory research. Psychological Bulletin, 130, 355–391.

    Article  Google Scholar 

  • Dodge, K. A., & Coie, J. D. (1987). Social-information-processing factors in reactive and proactive aggression in children’s peer groups. Journal of Personality and Social Psychology, 53, 1146–1158.

    Article  Google Scholar 

  • Edwards, A., Hammond, H. A., Jin, L., Caskey, C. T., & Chakraborty, R. (1992). Genetic variation at 5-trimeric and tetrameric tandem repeat loci in 4 human population groups. Genomics, 12, 241–253.

    Article  Google Scholar 

  • Eisenberger, N. I., Way, B. M., Taylor, S. E., et al. (2007). Understanding genetic risk for aggression: Clues from the brain’s response to social exclusion. Biological Psychiatry, 61, 1100–1108.

    Article  Google Scholar 

  • Fabiansson, E. C., Denson, T. F., Grisham, J. R., Moulds, M. L., & Schira, M. M. (2012). Don’t look back in anger: Neural correlates of reappraisal, analytical rumination, and angry rumination during recall of an anger-inducing autobiographical memory. NeuroImage, 59(3), 2974–2981.

    Article  Google Scholar 

  • Ford, M. B., & Collins, N. L. (2010). Self-esteem moderates neuroendocrine and psychological responses to interpersonal rejection. Journal of Personality and Social Psychology, 98, 405–419.

    Article  Google Scholar 

  • Frazzetto, G., Lorenzo, D., Valeria, C., et al. (2007). Early trauma and increased risk for physical aggression during adulthood: The moderating role of MAOA genotype. PloS One, 2, e486.

    Article  Google Scholar 

  • Geniole, S. N., Carré, J. M., & McCormick, C. M. (2010). State, not trait, neuroendocrine function predicts costly reactive aggression in men after social exclusion and inclusion. Biological Psychology, 87, 137–145.

    Article  Google Scholar 

  • Giammanco, M., Tabacchi, G., Giammanco, S., Di Majo, D., & La Guardia, M. (2005). Testosterone and aggressiveness. Medical Science Monitor, 11, 136–145.

    Google Scholar 

  • Gleason, E. D., Fuxjager, M. J., Oyegbile, T. O., & Marler, C. A. (2009). Testosterone release and social context: When it occurs and why. Frontiers in Neuroendocrinology, 30, 460–469.

    Article  Google Scholar 

  • Goldin, P. R., McRae, K., Ramel, W., & Gross, J. J. (2008). The neural bases of emotion regulation during reappraisal and suppression of negative emotion. Biological Psychiatry, 63, 577–586.

    Article  Google Scholar 

  • Gospic, K., Mohlin, E., Fransson, P., et al. (2011). Limbic justice – Amygdala involvement in immediate rejection in the ultimatum game. PLoS Biology, 9, e1001054.

    Article  Google Scholar 

  • Hariri, A. R. (2009). The neurobiology of individual differences in complex behavioral traits. Annual Reviews in Neuroscience, 32, 247–255.

    Article  Google Scholar 

  • Hariri, A. R., & Weinberger, D. R. (2003). Functional neuroimaging of genetic variation in serotonergic neurotransmission. Genes, Brain, and Behavior, 2, 341–349.

    Article  Google Scholar 

  • Hariri, A. R., Mattay, V. S., Tessitore, A., et al. (2002). Serotonin transporter genetic variation and the response of the human amygdala. Science, 297, 400–403.

    Article  Google Scholar 

  • Heils, A., Teufel, A., Susanne, P., et al. (1996). Allelic variation of human serotonin transporter gene expression. Journal of Neurochemistry, 66, 2621–2624.

    Article  Google Scholar 

  • Hermans, E. J., Ramsey, N. F., & van Honk, J. (2008). Exogenous testosterone enhances responsiveness to social threat in the neural circuitry of social aggression in humans. Biological Psychiatry, 63, 263–270.

    Article  Google Scholar 

  • Josephs, R. A., Mehta, P. H., & Carré, J. M. (2011). Gender and social environment modulate the effects of testosterone on social behavior: Comment on Eisenegger et al. Trends in Cognitive Sciences, 15, 509–510.

    Article  Google Scholar 

  • Josephs, R. A., Telch, M. J., Hixon, J. G., Evans, J. J., Lee, H., Knopik, V. S., McGeary, J. E., Hariri, A. R., & Beevers, C. G. (2012). Genetic and hormonal sensitivity to threat: Testing a serotonin transporter genotype x testosterone interaction. Psychoneuroendocrinology, 37, 752–761.

    Google Scholar 

  • Kelly, C. R., Grinband, J., & Hirsch, J. (2007). Repeated exposure to media violence is associated with diminished response in an inhibitory frontolimbic network. PloS One, 2, e1268.

    Article  Google Scholar 

  • Klinesmith, J., Kasser, T., & McAndrew, F. T. (2006). Guns, testosterone, and aggression: An experimental test of a meditational hypothesis. Psychological Science, 17, 568–571.

    Article  Google Scholar 

  • Koenigs, M., & Tranel, D. (2007). Irrational economic decision-making after ventromedial prefrontal damage: Evidence from the ultimatum game. The Journal of Neuroscience, 27, 951–956.

    Article  Google Scholar 

  • Krahe, B., & Moeller, I. (2010). Longitudinal effects of media violence on aggression and empathy among German adolescents. Journal of Applied Developmental Psychology, 31, 401–409.

    Article  Google Scholar 

  • Kringelbach, M. L., & Rolls, E. T. (2004). The functional neuroanatomy of the human orbitofrontal cortex: Evidence from neuroimaging and neuropsychology. Progress in Neurobiology, 72, 341–372.

    Article  Google Scholar 

  • Leary, M. R., Kowalski, R. M., Smith, L., et al. (2003). Teasing, rejection, and violence: Case studies of the school shootings. Aggressive Behavior, 29, 202–214.

    Article  Google Scholar 

  • Leary, M. R., Twenge, J. M., & Guinlivan, E. (2006). Interpersonal rejection as a determinant of anger and aggression. Personality and Social Psychology Review, 10, 111–132.

    Article  Google Scholar 

  • LeDoux, J. E. (2000). Emotion circuits in the brain. Annual Reviews of Neuroscience, 23, 155–184.

    Article  Google Scholar 

  • Lee, T. M., Chan, S. C., & Raine, A. (2008). Strong limbic and weak frontal activation to aggressive stimuli in spouse abusers. Molecular Psychiatry, 13, 655–656.

    Article  Google Scholar 

  • Manuck, S. B., Marsland, A. L., Flory, J. D., et al. (2010). Salivary testosterone and a trinucleotide (CAG) length polymorphism in the androgen receptor gene predict amygdala reactivity in men. Psychoneuroendocrinology, 35, 94–104.

    Article  Google Scholar 

  • Matsuo, K., Nicoletti, M., Nemoto, K., et al. (2009). A voxel-based morphometry study of frontal gray matter correlates of impulsivity. Human Brain Mapping, 30, 1188–1195.

    Article  Google Scholar 

  • Mazur, A. (1985). A biosocial model of status in face-to-face primate groups. Social Forces, 64, 377–402.

    Google Scholar 

  • Mazur, A., & Booth, A. (1998). Testosterone and dominance in men. The Behavioral and Brain Sciences, 21, 353–397.

    Article  Google Scholar 

  • McDermott, R., Tingley, D., Cowden, J., et al. (2009). Monoamine oxidase A gene (MAOA) predicts behavioral aggression following provocation. Proceedings of the National Academy of Sciences of the USA, 106, 2118–2123.

    Article  Google Scholar 

  • McRae, K., Reiman, E. M., Fort, C. L., Chen, K., & Lane, R. D. (2008). Association between trait emotional awareness and dorsal anterior cingulate activity during emotion is arousal-dependent. NeuroImage, 41, 648–655.

    Article  Google Scholar 

  • Mehta, P. H., & Beer, J. S. (2010). Neural mechanisms of the testosterone-aggression relation: The role of orbitofrontal cortex. Journal of Cognitive Neuroscience, 22, 2357–2368.

    Article  Google Scholar 

  • Mehta, P. H., & Josephs, R. A. (2006). Testosterone change after losing predicts the decision to compete again. Hormones and Behavior, 50, 684–692.

    Article  Google Scholar 

  • Mehta, P. H., & Josephs, R. A. (2010). Testosterone and cortisol jointly regulate dominance: Evidence for a dual-hormone hypothesis. Hormones and Behavior, 58, 898–906.

    Article  Google Scholar 

  • Mehta, P. H., Jones, A. C., & Josephs, R. A. (2008). The social endocrinology of dominance: Basal testosterone predicts cortisol changes and behavior following victory and defeat. Journal of Personality and Social Psychology, 94, 1078–1093.

    Article  Google Scholar 

  • Mehta, P. H., Wuerrhman, E., & Josephs, R. A. (2009). When are low testosterone levels advantageous?: The moderating role of individual versus intergroup competition. Hormones and Behavior, 56, 158–162.

    Article  Google Scholar 

  • Mehta, P. H., Yap, A., & Mor, S. (2010, October). The biology of bargaining: Dynamic hormone changes during negotiation predict economic profit. Talk presented at the conference for the Social and Affective Neuroscience Society, Chicago, IL.

    Google Scholar 

  • Mercy, J., Butchart, A., Farrington, D., & Cerda, M. (2002). Youth violence. In E. G. Krug, L. L. Dahlberg, J. A. Mercy, A. B. Zwi, & R. Lozano (Eds.), World report on violence and health. Geneva: World Health Organization.

    Google Scholar 

  • Meyer-Lindenberg, A., Buckholtz, J. W., Kolachana, B., Hariri, A. R., Pezawas, L., et al. (2006). Neural mechanisms of genetic risk for impulsivity and violence in humans. Proceedings of the National Academy of Sciences of USA, 103, 6269–6274.

    Article  Google Scholar 

  • Moretti, L., Dragone, D., & di Pellegrino, G. (2009). Reward and social valuation deficits following ventromedial prefrontal damage. Journal of Cognitive Neuroscience, 21, 128–140.

    Article  Google Scholar 

  • Munafo, M. R., Brown, S. M., & Hariri, A. R. (2008). Serotonin transporter (5-HTTLPR) genotype and amygdala activation: A meta-analysis. Biological Psychiatry, 63, 852–857.

    Article  Google Scholar 

  • Nelson, R. J., & Trainor, B. C. (2007). Neural mechanisms of aggression. Nature Reviews Neuroscience, 8, 536–546.

    Article  Google Scholar 

  • New, A. S., Hazlett, E., Buchsbaum, M. S., Goodman, M., Reynolds, D., et al. (2002). Blunted prefrontal cortical 18fluorodeoxyglucose positron emission tomography response to meta-chloropiperazine in impulsive aggression. Archives of General Psychiatry, 59, 621–629.

    Article  Google Scholar 

  • New, A. S., Buchsbaum, M. S., Hazlett, E. A., et al. (2004). Fluoxetine increases relative metabolic rate in prefrontal cortex in impulsive aggression. Psychopharmacology, 176, 451–458.

    Article  Google Scholar 

  • Newman, S. W. (1999). The medial extended amygdala in male reproductive behavior: A node in the mammalian social behavior network. Annals of New York Academy of Sciences, 877, 242–257.

    Article  Google Scholar 

  • Ochsner, K. N., Bunge, S. A., Gross, J. J., et al. (2002). Rethinking feelings: An fMRI study of the cognitive regulation of emotion. Journal of Cognitive Neuroscience, 14, 1215–1229.

    Article  Google Scholar 

  • Ochsner, K. N., Ray, R. D., Hughes, B., et al. (2009). Bottom-up and top-down processes in emotion generation: Common and distinct neural mechanisms. Psychological Science, 20, 1322–1331.

    Article  Google Scholar 

  • Office of the Surgeon General. (2001). Youth violence: A report of the Surgeon General. U.S. Department of Health and Human Services. Retrieved October, 2011, from http://www.mentalhealth.org/youthviolence/default.asp

  • Oliveira, R. F. (2009). Social behavior in context: Hormonal modulation of behavioral plasticity and social competence. Integrative and Comparative Biology, 49, 423–440.

    Article  Google Scholar 

  • Oliveira, R. F., Almada, V. C., & Canario, A. V. M. (1996). Social modulation of sex steroid concentrations in the urine of male cichlid fish Oreochromis mossambicus. Hormones and Behavior, 30, 2–12.

    Article  Google Scholar 

  • Passamonti, L., Crockett, M. J., Apergis-Schoute, A. M., et al. (2012). Effects of acute tryptophan depletion on prefrontal-amygdala connectivity while viewing facial signals of aggression. Biological Psychiatry, 71(1), 36–43.

    Article  Google Scholar 

  • Popma, A., Vermeiren, R., Geluk, C. A. M. L., et al. (2007). Cortisol moderates the relationship between testosterone and aggression in delinquent male adolescents. Biological Psychiatry, 61, 405–411.

    Article  Google Scholar 

  • Rahman, S., Sahakian, B. J., Cardinal, R. N., Rogers, R. D., & Robbins, T. W. (2001). Decision making and neuropsychiatry. Trends in Cognitive Sciences, 5, 271–277.

    Article  Google Scholar 

  • Raine, A., Buchsbaum, M., & LaCasse, L. (1997). Brain abnormalities in murderers indicated by positron emission tomography. Biological Psychiatry, 42, 495–508.

    Article  Google Scholar 

  • Rajender, S., Pandu, G., Sharma, J. D., Gandhi, K. P. C., Singh, L., & Thangaraj, K. (2008). Reduced CAG repeats length in androgen receptor gene is associated with violent criminal behavior. International Journal of Legal Medicine, 122, 367–372.

    Article  Google Scholar 

  • Reif, A., Rösler, M., Freitag, C. M., et al. (2007). Nature and nurture predispose to violent behavior: Serotonergic genes and adverse childhood environment. Neuropsychopharmacology, 32, 2375–2383.

    Article  Google Scholar 

  • Rolls, E. T., et al. (1994). Emotion-related learning in patients with social and emotional changes associated with frontal-lobe damage. Journal of Neurology, Neurosurgery, and Psychiatry, 57, 1518–1524.

    Article  Google Scholar 

  • Rubinow, D. R., & Schmidt, P. J. (1996). Androgens, brain, and behavior. The American Journal of Psychiatry, 153, 974–984.

    Google Scholar 

  • Ruiz-de-la-Torre, J. L., & Manteca, X. (1999). Effects of testosterone on aggressive behaviour after social mixing in male lambs. Physiology & Behavior, 68, 109–113.

    Article  Google Scholar 

  • Sabol, S., Hu, S., & Hamer, D. (1998). A functional polymorphism in the monamine oxidase A gene promoter. Human Genetics, 103, 273–279.

    Article  Google Scholar 

  • Sapolsky, R. M. (1991). Testicular function, social rank and personality among wild baboons. Psychoneuroendocrinology, 16, 281–293.

    Article  Google Scholar 

  • Shoal, G. D., Giancola, P. R., & Kirillova, G. P. (2003). Salivary cortisol, personality, and aggressive behavior in adolescent boys: A 5-year longitudinal study. Journal of the American Academy of Child and Adolescent Psychiatry, 42, 1101–1107.

    Article  Google Scholar 

  • Siegel, A., Bhatt, S., Bhatt, R., et al. (2007). The neurobiological bases for development of pharmacological treatments of aggressive disorders. Current Neuropharmacology, 5, 135–147.

    Article  Google Scholar 

  • Siever, L. J. (2008). Neurobiology of aggression and violence. The American Journal of Psychiatry, 165, 429–442.

    Article  Google Scholar 

  • Simmons, Z. L., & Roney, J. R. (2011). Variation in CAG repeat length of the androgen receptor gene predicts variables associated with intrasexual competitiveness in human males. Hormones and Behavior, 60, 306–312.

    Article  Google Scholar 

  • Sjoberg, R. L., Ducci, F., Barr, C. S., et al. (2008). A non-additive interaction of a functional MAO-A VNTR and testosterone predicts antisocial behavior. Neuropsychopharmacology, 33, 425–430.

    Article  Google Scholar 

  • Strenziok, M., et al. (2010). Lower lateral orbitofrontal cortex density associated with more frequent exposure to television and movie violence in male adolescents. The Journal of Adolescent Health, 46, 607–609.

    Article  Google Scholar 

  • Strüber, D., Lück, M., & Roth, G. (2008). Sex, aggression and impulse control: An integrative account. Neurocase, 14, 93–121.

    Article  Google Scholar 

  • Thompson, R., Gupta, S., Miller, K., Mills, S., & Orr, S. (2004). The effects of vasopressin on human facial responses related to social communication. Psychoneuroendocrinology, 29, 35–48.

    Article  Google Scholar 

  • Thompson, R. R., George, K., Walton, J. C., Orr, S. P., & Benson, J. (2006). Sex-specific influences of vasopressin on human social communication. Proceedings of the National Academy of Sciences of USA, 103, 7889–7894.

    Article  Google Scholar 

  • Tucker, D. M., Luu, P., & Pribram, K. H. (1995). Social and emotional self-regulation. Annals of the New York Academy of Sciences, 769, 213–239.

    Article  Google Scholar 

  • van Wingen, G. A., Zylick, S. A., Pieters, S., Mattern, C., Verkes, R. J., Buitelaar, J. K., & Fernandez, G. (2008). Testosterone increases amygdala reactivity in middle-aged women to a young adulthood level. Neuropsychopharmacology, 34, 539–547.

    Article  Google Scholar 

  • van Wingen, G., Mattern, C., Verkes, R. J., Buitelaar, J., & Fernández, G. (2010). Testosterone reduces amygdala-orbitofrontal cortex coupling. Psychoneuroendocrinology, 35, 105–113.

    Article  Google Scholar 

  • Vermeersch, H., T’Sjoen, G., Kaufman, J. M., Vincke, J., & Van Houtte, M. (2010). Testosterone, androgen receptor gene CAG repeat length, mood and behaviour in adolescent males. European Journal of Endocrinology, 163, 319–328.

    Article  Google Scholar 

  • Wingfield, J. C., Hegner, R. E., Dufty, A. M., Jr., & Ball, G. F. (1990). The ‘challenge hypothesis’: Theoretical implications for patterns of testosterone secretion, mating systems, and breeding strategies. The American Naturalist, 136, 829–846.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranjal H. Mehta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Mehta, P.H., Goetz, S.M., Carré, J.M. (2013). Genetic, Hormonal, and Neural Underpinnings of Human Aggressive Behavior. In: Franks, D.D., Turner, J.H. (eds) Handbook of Neurosociology. Handbooks of Sociology and Social Research. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4473-8_5

Download citation

Publish with us

Policies and ethics