Skip to main content

Effects of Heavy Metals and Metalloids on Soil Organisms

  • Chapter
  • First Online:

Part of the book series: Environmental Pollution ((EPOL,volume 22))

Abstract

At the molecular level metals and metalloids cause organisms to produce chemicals such as metallothioneins to bind metals and reduce their toxicity and/or chemicals such as heat shock proteins that repair any damage done. On a cellular scale metal-rich P and S “granules” are often produced, particularly in cells that line the digestive organs, which concentrate and detoxify the contaminants. Granules either accumulate or are excreted. If metals accumulate, the location of accumulation varies between species though is often either in an organ analogous to the liver or at sites which are shed during moulting. Countless studies document effects on weight, reproduction and mortality of organisms. Variation in results are due to a complex combination of contaminant bioavailability, uptake pathways, exposure duration and soil properties. At the field scale metal and metalloid contaminants usually result in either population decline due to toxic effects/loss of prey or population growth due to the removal of predators or competition. Populations of different species are affected in different ways, modifying community structure and ecosystems. Organisms found in contaminated soils in which naïve introduced individuals of the same species can not survive exhibit either acclimation/tolerance (reversible changes in physiology) or adaptation/resistance (a change in genetic structure). A large number of toxicity tests exist to investigate and demonstrate the impact of metals and metalloids on organisms. Omic technologies offer great potential to help develop our level of understanding of these effects but are not yet a mature technology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aceves, M. B., Grace, C., Ansorena, J., Dendooven, L., & Brookes, P. C. (1999). Soil microbial biomass and organic C in a gradient of zinc concentrations in soils around a mine soil tip. Soil Biology and Biochemistry, 31, 867–876.

    CAS  Google Scholar 

  2. Andre, A., Antunes, S. C., Goncalves, F., & Pereira, R. (2009). Bait-lamina assay as a tool to assess the effects of metal contamination in the feeding activity of soil invertebrates within a uranium mine area. Environmental Pollution, 157, 2468–2377.

    Google Scholar 

  3. Andre, J., Charnock, J., Stürzenbaum, S. R., Kille, P., Morgan, J. A., & Hodson, M. E. (2009). Accumulated metal speciation in earthworm populations with multigenerational exposure to metalliferous soils: Cell fractionation and high energy synchrotron analyses. Environmental Science and Technology, 43, 6822–6829.

    CAS  Google Scholar 

  4. Andre, J., King, R. A., Stürzenbaum, S. R., Kille, P., Hodson, M. E., & Morgan, A. J. (2010). Molecular genetic differentiation in earthworms inhabiting a heterogeneous Pb-polluted landscape. Environmental Pollution, 158, 883–890.

    CAS  Google Scholar 

  5. Andre, J., Stürzenbaum, S. R., Kille, P., Morgan, A. J., & Hodson, M. E. (2010). Metal bioaccumulation and cellular fractionation in an epigeic earthworm (Lumbricus rubellus): The interactive influences of population exposure histories, site-specific geochemistry and mitochondrial genotype. Soil Biology and Biochemistry, 42, 1566–1573.

    CAS  Google Scholar 

  6. Arnold, R. E., Hodson, M. E., Black, S., & Davies, N. A. (2003). The influence of mineral solubility and soil solution concentration on the toxicity of copper to Eisenia fetida Savigny. Pedobiologica, 47, 622–632.

    CAS  Google Scholar 

  7. Arnold, B. E., Hodson, M. E., Charnock, J., & Peijnenburg, W. J. G. M. (2008). Comparison of subcellular partitioning, distribution and internal speciation of Cu between Cu-tolerant and naïve populations of Dendrodrilus rubidus Savigny. Environmental Science and Technology, 42, 3900–3905.

    CAS  Google Scholar 

  8. Arnold, R. E., Hodson, M. E., & Langdon, C. J. (2008). A Cu tolerant population of the earthworm Dendrodrilus rubidus Savigny at Coniston Copper mines, Cumbria, UK. Environmental Pollution, 152, 713–722.

    CAS  Google Scholar 

  9. Arts, M. J. S. J., Schill, R. O., Knigge, T., Eckwert, H., Kammenga, J. E., & Kohler, H. R. (2004). Stress proteins (hsp70, hsp60) induced in isopods and nematodes by field exposure to metals in a gradient near Avonmouth, UK. Ecotoxicology, 13, 739–755.

    CAS  Google Scholar 

  10. ASTM. (2009). D5660 – 96 Standard test method for assessing the microbial detoxification of chemically contaminated water and soil using a toxicity test with a luminescent marine bacterium.

    Google Scholar 

  11. Aziz, N. A., Morgan, A. J., & Kille, P. (1999). Metal resistance in earthworms: Genetic adaptation or physiological acclimation. Pedobiologia, 43, 594–601.

    CAS  Google Scholar 

  12. Bååth, E. (1989). Effects of heavy metals in soil on microbial processes and populations (a review). Water, Air, and Soil Pollution, 47, 335–379.

    Google Scholar 

  13. Barkay, T., Tripp, S. C., & Olson, B. H. (1985). Effect of metal-rich sewage sludge application on the bacterial communities of grasslands. Applied and Environmental Microbiology, 49, 333–337.

    CAS  Google Scholar 

  14. Begon, M., Townsend, C. R., & Harper, J. L. (2006). Ecology: From individuals to ecosystems. Oxford: Blackwell Publishing.

    Google Scholar 

  15. Bengtsson, G., & Rundgren, S. (1982). Population density and species number of enchytraeids in coniferous forest soils polluted by a brass mill. Pedobiologia, 24, 211–218.

    Google Scholar 

  16. Bengtsson, G., & Rundgren, S. (1988). The Gusum case: A brass mill and the distribution of soil Collembola. Canadian Journal of Zoology, 66, 1518–1526.

    Google Scholar 

  17. Bengtsson, G., & Rundgren, S. (1992). Evolutionary response of earthworms to long term metal exposure. Oikos, 63, 289–297.

    Google Scholar 

  18. Bengtsson, G., Nordstrom, S., & Rundgren, S. (1983). Population density and tissue metal concentration of Lumbricids in forest soils near a brass mill. Environmental Pollution (A), 30, 87–108.

    CAS  Google Scholar 

  19. Bengtsson, G., Gunnarsson, T., & Rundgren, S. (1985). Influence of metals on reproduction, mortality and population growth in Onychiurus armatus (Collembola). Journal of Applied Ecology, 22, 967–978.

    CAS  Google Scholar 

  20. Bisessar, S. (1982). Effect of heavy metals on the micro-organisms in soils near a secondary lead smelter. Water, Air, and Soil Pollution, 17, 305–308.

    CAS  Google Scholar 

  21. Blindauer, C. A. (2009). Bacterial metallothioneins. In A. Siegel, H. Sigel, & R. K. O. Sigel (Eds.), Metal ions in life sciences 5. Metallothioneins and related chelators (pp. 51–81). Cambridge: RSC Publishing.

    Google Scholar 

  22. Brandon, R. N. (1995). Adaptation and environment. Princeton: Princeton University Press.

    Google Scholar 

  23. Brulle, F., Mitta, G., Cocquerelle, C., Vieau, D., Lemière, S., Leprêtre, A., & Vandenbulcke, F. (2006). Cloning and real-time PCR testing of 14 potential biomarkers in Eisenia fetida following cadmium exposure. Environmental Science and Technology, 40, 2844–2850.

    CAS  Google Scholar 

  24. Bundy, J. G., Keun, H. C., Sidhu, J. K., Spurgeon, D. J., Svendsen, C., Kille, P., & Morgan, A. J. (2007). Metabolic profile biomarkers of metal contamination in a sentinel terrestrial species are applicable across multiple sites. Environmental Science and Technology, 41, 4458–4464.

    CAS  Google Scholar 

  25. Bundy, J. G., Sidhu, J. K., Rana, F., Spurgeon, D. J., Svendsen, C., Wren, J. F., Stürzenbaum, S. R., Morgan, A. J., & Kille, P. (2008). “Systems toxicology” approach identifies coordinated metabolic responses to copper in a terrestrial non-model invertebrate, the earthworm Lumbricus rubellus. BMC Biology, 6, 25.

    Google Scholar 

  26. Burgos, M. G., Winters, C., Stürzenbaum, S. R., Randerson, P. F., Kille, P., & Morgan, A. J. (2005). Cu and Cd effects on the earthworm Lumbricus rubellus in the laboratory: Multivariate statistical analysis of relationships between exposure, biomarkers, and ecologically relevant parameters. Environmental Science and Technology, 39, 1757–1763.

    CAS  Google Scholar 

  27. Castro, I. V., Ferreira, E. M., & McGrath, S. P. (2003). Survival and plasmid stability of rhizobia introduced into a contaminated soil. Soil Biology and Biochemistry, 35, 49–54.

    CAS  Google Scholar 

  28. Chabicovsky, M., Niederstätter, H., Thaler, R., Hödl, E., Parson, W., Rossmanith, W., & Dallinger, R. (2003). Localization and quantification of Cd and Cu-specific metallothionein isoform mRNA in cells and organs of the terrestrial gastropod Helix pomatia. Toxicology and Applied Pharmacology, 190, 23–36.

    Google Scholar 

  29. Chander, K., Brookes, P. C., & Harding, S. A. (1995). Microbial biomass dynamics following addition of metal-enriched sewage sludges to a sandy loam. Soil Biology and Biochemistry, 27, 1409–1421.

    CAS  Google Scholar 

  30. Chaperon, S., & Sauve, S. (2008). Toxicity interactions of cadmium, copper and lead on soil urease and dehydrogenase activity in relation to chemical speciation. Ecotoxicology and Environmental Safety, 70, 1–9.

    CAS  Google Scholar 

  31. Chaudri, A., McGrath, S., Gibbs, P., Chambers, B., Carlton-Smith, C., Bacon, J., Campbell, C., & Aitken, M. (2008). Population size of indigenous Rhizobium leguminosarum biovar trifolii in long-term field experiments with sewage sludge cake, metal-amended liquid sludge or metal salts: Effects of zinc, copper and cadmium. Soil Biology and Biochemistry, 40, 1670–1680.

    CAS  Google Scholar 

  32. Cotter-Howells, J., Charnock, J. M., Winters, C., Kille, P., Fry, J. C., & Morgan, A. J. (2005). Metal compartmentation and speciation in a soil sentinel: The earthworm, Dendrodrilus rubidus. Environmental Science and Technology, 39, 7731–7740.

    CAS  Google Scholar 

  33. Crouau, Y., & Pinelli, E. (2008). Comparative ecotoxicity of three polluted industrial soils for the Collembola Folsomia candida. Ecotoxicology and Environmental safety, 71, 643–649.

    CAS  Google Scholar 

  34. Dai, J., Becquer, T., Rouiller, J. H., Reversat, G., Bernhard-Reversat, F., & Lavelle, P. (2004). Influence of heavy metals no C and N mineralisation and microbial biomass in Zn-, Pb-, Cu-, and Cd-contaminated soils. Applied Soil Ecology, 25, 99–109.

    Google Scholar 

  35. Dalgren, K. E., Waara, S., Duker, A., von Kronhelm, T., & van Hees, P. A. W. (2009). Anaerobic bioremediation of a soil with mixed contaminants: Explosives degradation and influence on heavy metal distribution, monitored as changes in concentration and toxicity. Water, Air, and Soil Pollution, 202, 301–313.

    Google Scholar 

  36. Dallinger, R., & Rainbow, P. S. (1992). Ecotoxicology of metals in invertebrates. Boca Raton: Lewis Publishers.

    Google Scholar 

  37. Dallinger, R., Berger, B., Hunziker, P., Birchler, N., Hauer, C., & Kagi, J. H. (1993). Purification and primary structure of snail metallothionein: Similarity of the N-terminal sequence with histones H4 and H2A. European Journal of Biochemistry, 216, 739–746.

    CAS  Google Scholar 

  38. Dallinger, R., Berger, B., Hunziker, P., & Kagi, J. H. (1997). Metallothionein in snail Cd and Cu metabolism. Nature, 388, 237–238.

    CAS  Google Scholar 

  39. Dallinger, R., Chabicovsky, M., & Berger, B. (2004). Isoform-specific quantification of metallothionein in the terrestrial gastropod Helix pomatia 1. Molecular, biochemical and methodical background. Environmental Toxicology and Chemistry, 23, 890–901.

    CAS  Google Scholar 

  40. Davies, N. A., Hodson, M. E., & Black, S. (2003). Is the OECD acute worm toxicity test environmentally relevant? The effect of mineral form on calculated lead toxicity. Environmental Pollution, 121, 49–54.

    CAS  Google Scholar 

  41. Davies, N. A., Hodson, M. E., & Black, S. (2003). The influence of time on lead toxicity and bioaccumulation determined by the OECD earthworm toxicity test. Environmental Pollution, 121, 55–61.

    CAS  Google Scholar 

  42. Dell’Amico, E., Mazzocchi, M., Cavalca, L., Allievi, L., & Andreoni, V. (2008). Assessment of bacterial community structure in a long-term copper-polluted ex-vineyard soil. Micobiology Research, 163, 671–683.

    Google Scholar 

  43. Díaz-Raviña, N., Bååth, E., & Frostegård, Å. (1994). Multiple heavy metal tolerance of soil bacterial communities and its measurement by a thymidine incorporation technique. Applied and Environmental Microbiology, 60, 2238–2247.

    Google Scholar 

  44. Donker, M. H., & Bogert, C. G. (1991). Adaptations to cadmium in three populations of the isopod Porcellio scaber. Comparative Biochemistry and Physiology, 100C, 143–146.

    CAS  Google Scholar 

  45. Dusek, L. (1995). The effect of cadmium on the activity of nitrifying populations in two different grassland soils. Plant and Soil, 177, 43–53.

    CAS  Google Scholar 

  46. Ernst, G., Zimmermann, S., Christie, P., & Frey, B. (2008). Mercury, cadmium and lead concentrations in different ecophysiological groups of earthworms in forest soils. Environmental Pollution, 156, 1304–1313.

    CAS  Google Scholar 

  47. Fountain, M. T., & Hopkin, S. P. (2001). Continuous monitoring of Folsomia candida (Insecta: Collembola) in a metal exposure test. Ecotoxicology and Environmental Safety, 48, 275–286.

    CAS  Google Scholar 

  48. Fountain, M. T., & Hopkin, S. P. (2004). A comparative study of the effects of metal contamination on Collembola in the field and in the laboratory. Ecotoxicology, 13, 573–587.

    CAS  Google Scholar 

  49. Fritze, H., Niini, S., Mikkola, K., & Mäkinen, A. (1989). Soil microbial effects of a Cu-Ni smelter in southwest Finland. Biology and Fertility of Soil, 8, 87–94.

    CAS  Google Scholar 

  50. Gadd, G. M. (1990). Heavy metal accumulation by bacteria and other microorganisms. Experientia, 46, 834–840.

    CAS  Google Scholar 

  51. Giller, K. E., Witter, E., & McGrath, S. P. (1998). Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: A review. Soil Biology and Biochemistry, 30, 1389–1414.

    CAS  Google Scholar 

  52. Gimbert, F., Vijver, M. G., Coeurdassier, M., Scheiffler, R., Peijnenburg, W. J. G. M., Badot, P. M., & de Vaufleury, A. (2008). How subcellular partitioning can help to understand heavy metal accumulation and elimination kinetics in snails. Environmental Toxicology and Chemistry, 27, 1284–1292.

    CAS  Google Scholar 

  53. Grelle, C., Fabre, M. C., Lepretre, A., & Descamps, M. (2000). Myriapod and isopod communities in soils contaminated by heavy metals in northern France. European Journal of Soil Science, 51, 425–433.

    CAS  Google Scholar 

  54. Guo, Q., Sidhu, J. K., Ebbels, T. M. D., Rana, F., Spurgeon, D. J., Svendsen, C., Stürzenbaum, S. R., Kille, P., Morgan, A. J., & Bundy, J. G. (2009). Validation of metabolomics for toxic mechanism of action screening with the earthworm Lumbricus rubellus. Metabolomics, 5, 72–83.

    CAS  Google Scholar 

  55. Gupta, V. V. S. R., & Yeates, G. W. (1997). Soil microfauna as bioindicators of soil health. In C. E. Pankhurst, B. M. Doube, & V. V. S. R. Gupta (Eds.), Biological indicators of soil health (pp. 201–233). Wallingford: CAB International.

    Google Scholar 

  56. Haas, C. N., Cidambi, K., Kersten, S., & Wright, K. (1996). Quantitative description of mixture toxicity: Effect of level of response on interactions. Environmental Toxicology and Chemistry, 15, 1429–1437.

    CAS  Google Scholar 

  57. Hågvar, S., & Abrahamsen, G. (1990). Microarthropoda and enchytraeidae (Oligichaeta) in naturally lead-contaminated soil: A gradient study. Environmental Entomology, 19, 1263–1277.

    Google Scholar 

  58. Haimi, J., & Siira-Pietkäinen, A. (1996). Decomposer animal communities in forest soil along heavy metal pollution gradient. Fresenius’ Journal of Analytical Chemistry, 354, 672–675.

    CAS  Google Scholar 

  59. Hamer, D. H. (1986). Metallothionein. Annual Review of Biochemistry, 55, 913–951.

    CAS  Google Scholar 

  60. Hensbergen, P. J., van Velzen, M. J. M., Nugroho, R. A., Donker, M. H., & van Straalen, N. M. (2000). Metallothionein-bound cadmium in the gut of the insect Orchesella cincta (Collembola) in relation to dietary cadmium exposure. Comparative Biochemistry and Physiology. C, 125, 17–24.

    CAS  Google Scholar 

  61. Hoang, T. C., & Rand, G. M. (2009). Exposure routes of copper. Short term effects on survival, weight and uptake in Florida apple snails (Pomacea paludosa). Chemosphere, 76, 407–414.

    CAS  Google Scholar 

  62. Hobbelen, P. H. F., van den Brink, P. J., Hobbelen, J. F., & van Gestel, C. A. M. (2006). Effects of heavy metals on the structure and functioning of detritivore communities in a contaminated floodplain area. Soil Biology and Biochemistry, 38, 1596–1607.

    CAS  Google Scholar 

  63. Hodgson, E., & Levi, P. E. (1994). Introduction to biochemical toxicology. Norwalk: Appleton and Lange.

    Google Scholar 

  64. Hodson, M. E., Vijver, M. G., & Peijnenburg, W. J. G. M. (2010). Bioavailability in soils. In F. A. Swartjes (Ed.), Dealing with contaminated sites. From theory towards practical application (pp. 721–746). Dordrecht: Springer.

    Google Scholar 

  65. Hoffman, A. A., & Parsons, P. A. (1993). Evolutionary genetics and environmental stress. Oxford: Oxford University Press.

    Google Scholar 

  66. Homa, J., Sturzenbaum, S. R., Morgan, A. J., & Plytycz, B. (2007). Disrupted homeostatis in coelomocytes of Eisenia fetida and Allolobophora chlorotica exposed dermally to heavy metals. European Journal of Soil Biology, 43, S273–S280.

    CAS  Google Scholar 

  67. Hopkin, S. P. (1989). Ecophysiology of metals in terrestrial invertebrates. Barking/Essex: Elsevier Applied Science.

    Google Scholar 

  68. Hopkin, S. P. (1990). Critical concentrations, pathways of detoxification and cellular ecotoxicology of metals in terrestrial arthropods. Functional Ecology, 4, 321–327.

    Google Scholar 

  69. Hopkin, S. P., & Martin, M. H. (1982). The distribution of zinc, cadmium, lead and copper within the hepatopancreas of a woodlouse. Tissue and Cell, 14, 703–715.

    CAS  Google Scholar 

  70. Hughes, M. N., & Poole, R. K. (1989). Metals and micro-organisms. London: Chapman and Hall.

    Google Scholar 

  71. ISO. (1993). 11268–1 Soil quality – Effects of pollutants on earthworms (Eisenia fetida) – Part 1: Determination of acute toxicity using artificial soil substrate. Geneva: ISO.

    Google Scholar 

  72. ISO. (1997). Soil quality – biological methods – Determination of nitrogen mineralisation and nitrification in soils and the influence of chemicals on these processes. Geneva: ISO.

    Google Scholar 

  73. ISO. (1998). 11268–2 Soil quality – Effects of pollutants on earthworms (Eisenia fetida) – Part 2: Determination of effects on reproduction. Geneva: ISO.

    Google Scholar 

  74. ISO. (1998). 11348–3 Water quality – Determination of the inhibitory effect of water samples on the light emission of Vibrio fischeri (Luminescent bacteria test) – Part 3: Method using freeze-dried bacteria. Geneva: ISO.

    Google Scholar 

  75. ISO. (1999). 11267 Soil quality – Inhibition of reproduction of Collembola (Folsomia candida) by soil pollutants. Geneva: ISO.

    Google Scholar 

  76. Janssens, T. K. S., Marien, J., Cenijn, P., Legler, J., van Straalen, N. M., & Roelofs, D. (2007). Recombinational micro-evolution of functionally different metallothionein promoter alleles from Orchesell cincta. BMC Evolutionary Biology, 7, 88.

    Google Scholar 

  77. Jonker, M. J., Peskiewicz, A. M., Ivorra, N., & Kammenga, J. E. (2004). Toxicity of binary mixtures of cadmium-copper and carbendazim-copper to the nematode Caenorhabditis elegans. Environmental Toxicology and Chemistry, 23, 1529–1537.

    CAS  Google Scholar 

  78. Jonker, M. J., Svendsen, C., Bedaux, J. J. M., Bongers, M., & Kammenga, J. E. (2005). Significance testing of synergistic / antagonistic, dose level-dependent, or dose ratio-dependent effects in mixture dose–response analysis. Environmental Toxicology and Chemistry, 24, 2701–2713.

    CAS  Google Scholar 

  79. Kahru, A., Ivask, A., Kasemets, K., Pollumaa, L., Kurvet, I., Francois, M., & Dubourguier, H. C. (2005). Biotests and biosensors in ecotoxicological risk assessment of field soils polluted with zinc, lead and cadmium. Environmental Toxicology and Chemistry, 24, 2973–2982.

    CAS  Google Scholar 

  80. Knigge, T., & Kohler, H. R. (2000). Lead impact on nutrition, energy reserves, respiration and stress protein (hsp 70) level in Porcellio scaber (Isopoda) populations differently preconditioned in their habitats. Environmental Pollution, 108, 209–217.

    CAS  Google Scholar 

  81. Köhler, H.-R. (2002). Localisation of metals in cells of saprophagous soil arthropods (Isopoda, Diplopod, Collembola). Microscopy Research and Technique, 56, 393–401.

    Google Scholar 

  82. Kondo, M., Imagawa, M., Maruyama, K., Okada, Y., Tsunasawa, S., & Nishihara, T. (1990). Biochemical and immunochemical characterisation of Caenorhabditis-elegans metallothioneins I and II induced by cadmium. Biomedical and Environmental Sciences, 3, 315–325.

    CAS  Google Scholar 

  83. Korthals, G. W., Bongers, M., Fokkema, A., Dueck, T. A., & Lexmond, T. M. (2000). Joint toxicity of copper and zinc to a terrestrial nematode community in an acid sandy soil. Ecotoxicology, 9, 219–228.

    CAS  Google Scholar 

  84. Krebs, C. J. (2008). Ecology: The experimental analysis of distribution and abundance. Upper Saddle River: Pearson Education.

    Google Scholar 

  85. Kuperman, R., & Carreiro, M. M. (1997). Soil-heavy metal concentrations, microbial biomass and enzyme activities in a contaminated grassland ecosystem. Soil Biology and Biochemistry, 29, 179–190.

    CAS  Google Scholar 

  86. Langdon, C. J., Hodson, M. E., Arnold, R. E., & Black, S. (2005). Survival and behaviour of three species of earthworm in lead treated soils using the OECD acute earthworm toxicity test. Environmental Pollution, 138, 368–375.

    CAS  Google Scholar 

  87. Langdon, C. J., Morgan, A. J., Charnock, J. M., Semple, K. T., & Lowe, C. N. (2009). As-resistance in laboratory-reared F1, F2 and F3 generation offspring of the earthworm Lumbricus rubellus inhabiting an As-contaminated mine site. Environmental Pollution, 157, 3114–3119.

    CAS  Google Scholar 

  88. Leon, C.D., & van Gestel, C.A.M. (1994). Selection of a set of laboratory ecotoxicity tests for the effects assessment of chemicals in terrestrial ecosystems. Discussion paper (Report no. D94004), Department of Ecology and Ecotoxicology, Vrije University, Amsterdam, NL.

    Google Scholar 

  89. Liao, V. H. C., & Freedman, J. H. (1998). The cadmium-regulated genes from the nematode Caenorhabditis elegans – Identification and cloning of new cadmium-responsive genes by differential display. Journal of Biological Chemistry, 273, 31962–31970.

    CAS  Google Scholar 

  90. Lin, C. Y., Viant, M. R., & Tjeerdema, R. S. (2006). Metabolomics: Methodologies and applications in the environmental sciences. Journal of Pesticide Science, 31, 245–251.

    CAS  Google Scholar 

  91. Lock, K., & Janssen, C. R. (2002). Mixture toxicity of zinc, cadmium, copper and lead to the potworm Enchytraeus albidus. Ecotoxicology and Environmental Safety, 52, 1–7.

    CAS  Google Scholar 

  92. Lock, K., Janssens, F., & Janssens, C. R. (2003). Effects of metal contamination on the activity and diversity of springtails in an ancient Pb-Zn mining area at Plombieres, Belgium. European Journal of Soil Biology, 39, 25–29.

    CAS  Google Scholar 

  93. McCarty, L. S., & Borgert, C. J. (2006). Review of the toxicity of chemical mixtures: Theory, policy and regulatory practice. Regulatory Toxicology and Pharmacology, 4, 119–143.

    Google Scholar 

  94. McGrath, S. P. (1994). Effects of heavy metals from sewage sludge on soil microbes in agricultural ecosystems. In S. M. Ross (Ed.), Toxic metals in soil-plant systems (pp. 247–274). Chichester: Wiley.

    Google Scholar 

  95. Migliorini, M., Pignio, G., Bianchi, N., Bernini, F., & Leonzio, C. (2004). The effects of heavy metal contamination on the soil arthropod community of a shooting range. Environmental Pollution, 129, 331–340.

    CAS  Google Scholar 

  96. Morgan, J. E., & Morgan, A. J. (1998). The distribution and intracellular compartmentation of metals in the endogeic earthworm Aporrectodea caliginosa sampled from an unpolluted and a metal-contaminated site. Environmental Pollution, 99, 167–175.

    CAS  Google Scholar 

  97. Morgan, A. J., & Morris, B. (1982). The accumulation and intracellular compartmentation of cadmium, lead, zinc, and calcium in two earthworms species (Dendrobaena rubida and Lumbricus rubellus) living in highly contaminated soil. Histochemistry, 75, 269–287.

    CAS  Google Scholar 

  98. Morgan, A. J., Morgan, J. E., Turner, M., Winters, C., & Yarwood, A. (1993). Heavy metal relationships in earthworms. In R. Dalinger & P. S. Rainbow (Eds.), Ecotoxicology of metals in invertebrates (pp. 333–358). Boca Raton: Lewis Publishers.

    Google Scholar 

  99. Morgan, A. J., Kille, P., & Stürzenbaum, S. R. (2007). Microevolution and ecotoxicology of metals in invertebrates. Environmental Science and Technology, 41, 1085–1096.

    CAS  Google Scholar 

  100. Murray, P., Ge, Y., & Hendershot, W. H. (2000). Evaluating three trace metal contaminated sites: A field and laboratory investigation. Environmental Pollution, 107, 127–135.

    CAS  Google Scholar 

  101. Nahmani, J. Y., Hodson, M. E., & Black, S. (2007). A review of studies performed to assess metal uptake by earthworms. Environmental Pollution, 145, 402–424.

    CAS  Google Scholar 

  102. Nahmani, J. Y., Hodson, M. E., & Black, S. (2007). Effects of metals on life cycle parameters of the earthworm Eisenia fetida exposed to field-contaminated, metal-polluted soils. Environmental Pollution, 149, 44–58. doi:10.1016/j.envpol.2006.12.018.

    CAS  Google Scholar 

  103. Nahmani, J., & Lavelle, P. (2002). Effects of heavy metal pollution on soil macrofauna in a grassland of Northern France. European Journal of Soil Biology, 38, 297–300.

    CAS  Google Scholar 

  104. Nahmani, J., Lavelle, P., Lapied, E., & van Oort, F. (2003). Effects of heavy metal soil pollution on earthworm communities in the north of France. Pedobiologia, 47, 663–669.

    CAS  Google Scholar 

  105. Nesatyy, V. J., & Suter, M. J. F. (2007). Proteomics for the analysis of environmental stress responses in organisms. Environmental Science and Technology, 41, 6891–6900.

    CAS  Google Scholar 

  106. OECD. (1984). Guidelines for the testing of chemicals. No. 207 Earthworm acute toxicity tests. Paris: OECD. Adopted 4 April 1984.

    Google Scholar 

  107. OECD. (2000a). Guidelines for the testing of chemicals No. 217. Soil micro-organisms, carbon transformation test. Paris: OECD. Adopted 21 Jan 2000.

    Google Scholar 

  108. OECD. (2000b). Guidelines for the testing of chemicals No. 216. Soil micro-organisms, nitrogen transformation test. Paris: OECD. Adopted 21 Jan 2000

    Google Scholar 

  109. OECD. (2004). Guidelines for the testing of chemicals. No. 222. Earthworm reproduction test (Eisenia fetida / andrei). Paris: OECD. Adopted 13 April 2004

    Google Scholar 

  110. Oliveira, A., & Pampulha, M. E. (2006). Effects of long-term heavy metal contamination on soil microbial characteristics. Journal of Bioscience and Bioengineering, 102, 157–161.

    CAS  Google Scholar 

  111. Olson, B. H., & Thornton, I. (1982). The resistance patterns to metals of bacterial-populations in contaminated land. Journal of Soil Science, 33, 271–277.

    CAS  Google Scholar 

  112. Owen, J., Hedley, B. A., Svendsen, C., Wren, J., Jonker, M. J., Hankard, P. K., Lister, L. J., Sturzenbaum, S. R., Morgan, A. J., Spurgeon, D. J., Blaxter, M. L., & Kille, P. (2008). Transcriptome profiling of developmental and xenobiotic responses in a keystone soil animal, the oligochate annelid Lumbricus rubellus. BMC Genomics, 9, 266.

    Google Scholar 

  113. Pedersen, M. B., Axelsen, J. A., Strandberg, B., Jensen, J., & Attrill, M. J. (1999). The impact of a copper gradient on a microarthropod field community. Ecotoxicology, 8, 467–483.

    CAS  Google Scholar 

  114. Piotrowska-Seget, Z., Cycoń, M., & Kozdrój, J. (2005). Metal-tolerant bacteria occurring in heavily polluted soil and mine spoil. Applied Soil Ecology, 28, 237–246.

    Google Scholar 

  115. Pizl, V., & Josens, G. (1995). Earthworm communities along a gradient of urbanization. Environmental Pollution, 90, 7–14.

    CAS  Google Scholar 

  116. Posthuma, L., & van Straalen, N. M. (1993). Heavy-metal adaptation in terrestrial invertebrates: A review of occurrence, genetics, physiology and ecological consequences. Comparative Biochemistry and Physiology, 106C, 11–38.

    CAS  Google Scholar 

  117. Posthuma, L., Hogervorst, R. F., & van Straalen, N. M. (1992). Adaptation to soil pollution by cadmium excretion in natural populations of Orchesella cincta (L) (Collembola). Archives of Environmental Contamination and Toxicology, 22, 146–156.

    CAS  Google Scholar 

  118. Posthuma, L., Hogervorst, R. F., Joosse, E. N. G., & van Straalen, N. M. (1993). Genetic variation and covariation for characteristics associated with cadmium tolerance in natural populations of the springtail Orchesella cincta (L). Evolution, 47, 619–613.

    Google Scholar 

  119. Posthuma, L., Verweij, R. A., Widianarko, B., & Zonneveld, C. (1993). Life-history patterns in metal-adapted Collembola. Oikos, 67, 235–249.

    Google Scholar 

  120. Prentø, P. (1979). Metals and phosphate in the chloragosomes of Lumbricus terrestris and their possible physiological significance. Cell Tissue Research, 196, 123–134.

    Google Scholar 

  121. Reinecke, S. A., Prisloo, M. W., & Reinecke, A. J. (1999). Resistance of Eisenia fetida to cadmium after long term exposure. Ecotoxicology and Environmental Safety, 42, 75–80.

    CAS  Google Scholar 

  122. Roane, T. M. (1999). Lead resistance in two bacterial isolates from heavy metal-contaminated soils. Microbial Ecology, 37, 218–224.

    CAS  Google Scholar 

  123. Roast, S., Ashton, D., Leverett, D., Whitehouse, P., & Benstead, R. (2008). Guidance on the use of bioassays in ecological risk assessment. Environment Agency Science (Report No. SC070009/SR2c), Bristol UK.

    Google Scholar 

  124. Rożen, A. (2006). Effect of cadmium on life-history parameters in Dendrobaena octaedra (Lumbricidae: Oligochaeta) populations originating from forests differently polluted with heavy metals. Soil Biology and Biochemistry, 38, 489–503.

    Google Scholar 

  125. Russell, D. J., & Alberti, G. (1998). Effects of long-term, geogenic heavy metal contamination on soil organic matter and microarthropod communities, in particular Collembola. Applied Soil Ecology, 9, 483–488.

    Google Scholar 

  126. Scott-Fordsmand, J. J., Krogh, P. H., & Weeks, J. M. (2000). Responses of Folsomia fimetaria (Collemola: Isotomidae) to copper under different soil copper contamination histories in relation to risk assessment. Environmental Toxicology and Chemistry, 19, 1297–1303.

    CAS  Google Scholar 

  127. Scott-Fordsmand, J. J., Weeks, J. M., & Hopkin, S. P. (2000). Importance of contamination history for understanding toxicity of copper to earthworm Eisenia fetida (Oligochaeta: Annelida) using neutral red retention bioassay. Environmental Toxicology and Chemistry, 19, 1774–1780.

    CAS  Google Scholar 

  128. Shen, L. L., Xiao, J., Ye, H. Y., & Wang, D. Y. (2009). Toxicity evaluation in nematode Caenorhabditis elegans after chronic metal exposure. Environmental Toxicology and Pharmacology, 28, 125–132.

    CAS  Google Scholar 

  129. Simini, M., Wentsel, R. S., Checkai, R. T., Philips, C. T., Chester, N. A., Major, M. A., & Amos, J. C. (1995). Evaluation of soil toxicity at Joliet army ammunition plant. Environmental Toxicology and Chemistry, 14, 623–630.

    CAS  Google Scholar 

  130. Smit, C. E., & van Gestel, C. A. M. (1996). Comparison of the toxicity of zinc for the springtail Folsomia candida on artificially contaminated and polluted field sites. Applied Soil Ecology, 3, 127–136.

    Google Scholar 

  131. Smit, C. E., & van Gestel, C. A. M. (1996). Erratum to Comparison of the toxicity of zinc for the springtail Folsomia candida on artificially contaminated and polluted field sites. Applied Soil Ecology, 4, 93–94.

    Google Scholar 

  132. Spurgeon, D. J., & Hopkin, S. P. (1995). Extrapolation of the laboratory based OECD earthworm toxicity test to metal-contaminated field sites. Ecotoxicology, 4, 190–205.

    CAS  Google Scholar 

  133. Spurgeon, D. J., & Hopkin, S. P. (1996). The effects of metal contamination on earthworm populations around a smelting works – quantifying species effects. Applied Soil Ecology, 4, 147–160.

    Google Scholar 

  134. Spurgeon, D. J., & Hopkin, S. P. (1999). Seasonal variation in the abundance, biomass and biodiversity of earthworms in soils contaminated with metal emissions from a primary smelting works. Journal of Applied Ecology, 36, 173–183.

    CAS  Google Scholar 

  135. Spurgeon, D. J., & Hopkin, S. P. (1999). Tolerance to zinc in populations of the earthworm Lumbricus rubellus from uncontaminated and metal-contaminated ecosystems. Archives of Environmental Contamination and Toxicology, 37, 332–337.

    CAS  Google Scholar 

  136. Spurgeon, D. J., & Hopkin, S. P. (2000). The development of genetically inherited resistance to zinc in laboratory selected generations of the earthworm Eisenia fetida. Environmental Pollution, 109, 193–201.

    CAS  Google Scholar 

  137. Spurgeon, D. J., & Weeks, J. M. (1998). Evaluation of factors influencing results from laboratory toxicity tests with earthworms. In S. C. Sheppard, J. D. Bembridge, M. Holmstrup, & L. Posthuma (Eds.), Advances in earthworm ecotoxicology (pp. 15e–25). Pensacola: SETAC Technical Publications Series.

    Google Scholar 

  138. Spurgeon, D. J., Hopkin, S. P., & Jones, D. T. (1994). Effects of cadmium, copper, lead and zinc on growth, reproduction and survival of the earthworm Eisenia fetida: Assessing the environmental impact of point source metal contamination in terrestrial ecosystems. Environmental Pollution, 84, 123–130.

    CAS  Google Scholar 

  139. Spurgeon, D. J., Svendsen, C., Rimmer, V. R., Hopkin, S. P., & Weeks, J. M. (2000). Relative sensitivity of life-cycle and biomarker responses in four earthworm species exposed to zinc. Environmental Toxicology and Chemistry, 19, 1800–1808.

    CAS  Google Scholar 

  140. Spurgeon, D. J., Sturzenbaum, S. R., Svendsen, C., Hankard, P. K., Morgan, A. J., Weeks, J. M., & Kille, P. (2004). Toxicological, cellular and gene expression responses in earthworms exposed to copper and cadmium. Comparative Biochemistry and Physiology. C, 138, 11–21.

    Google Scholar 

  141. Strojan, C. L. (1978). Forest leaf litter decomposition in the vicinity of a zinc smelter. Oecologia, 32, 203–212.

    Google Scholar 

  142. Strojan, C. L. (1978). The impact of zinc smelter emissions on forest litter arthropods. Oikos, 31, 41–46.

    Google Scholar 

  143. Stürzenbaum, S. R. (2009). Earthworm and nematode metallothioneins. In A. Siegel, H. Sigel, & R. K. O. Sigel (Eds.), Metal ions in life sciences 5: Metallothioneins and related chelators (pp. 183–197). Cambridge: RSC Publishing.

    Google Scholar 

  144. Stürzenbaum, S. R., Winters, C., Galay, M., Morgan, A. J., & Kille, P. (2001). Metal ion trafficking in earthworms – Identification of a cadmium-specific metallothionein. Journal of Biological Chemistry, 276, 34013–34018.

    Google Scholar 

  145. Stürzenbaum, S. R., Georgiev, O., Morgan, A. J., & Kille, P. (2004). Cadmium detoxification in earthworms: From genes to cells. Environmental Science and Technology, 23, 6283–6289.

    Google Scholar 

  146. Svendsen, C., Hankard, P. L., Lister, L. J., Fishwick, S. L. K., Jonker, M. J., & Spurgeon, D. J. (2007). Effect of temperature and season on reproduction, neutral red retention and metallothionein responses of earthworms exposed to metals in field soils. Environmental Pollution, 147, 83–93.

    CAS  Google Scholar 

  147. Swain, S. C., Keusekotten, K., Baumeister, R., & Stürzenbaum, S. R. (2004). C elegans metallothioneins: New insights into the phenotypic effects of cadmium toxicosis. Journal of Molecular Biology, 341, 951–959.

    CAS  Google Scholar 

  148. Timmermans, M. J. T. N., Ellers, J., Roelofs, D., & van Straalen, N. M. (2005). Metallothionein mRNA expression and cadmium tolerance in metal-stressed and reference populations of the springtail Orchesella cinta. Ecotoxicology, 14, 727–739.

    CAS  Google Scholar 

  149. Townsend, C. R., Begon, M., & Harper, J. L. (2008). Essentials of ecology. Oxford: Blackwell Publishing.

    Google Scholar 

  150. Tranvik, L., Bengtsson, G., & Rundgren, S. (1993). Relative abundance and resistance traits of two Collembola species under metal stress. Journal of Applied Ecology, 30, 43–52.

    Google Scholar 

  151. Tyler, G., Balsberg Påhlsson, A.-M., Bengtsson, G., Bååth, E., & Tranvik, L. (1989). Heavy-metal ecology of terrestrial plants, micro-organisms and invertebrates. Water, Air, and Soil Pollution, 47, 198–215.

    Google Scholar 

  152. Van Gestel, C. A. M. (1998). Evaluation of the developmental status of ecotoxicity tests on soil fauna. In H. Løkke & C. A. M. van Gestel (Eds.), Handbook of soil invertebrate toxicity tests (pp. 57–67). Chichester: Wiley.

    Google Scholar 

  153. Van Gestel, C. A. M., & Hensbergen, P. J. (1997). Interaction of Cd and Zn toxicity for Folsomia candida Willem (Collembola: Isotomidae) in relation to bioavailability in soil. Environmental Toxicology and Chemistry, 16, 1177–1186.

    Google Scholar 

  154. Van Gestel, C. A. M., Koolhaas, J. E., Hamers, T., van Hoppe, M., van Roovert, M., Korsman, C., & Reinecke, S. A. (2009). Effects of metal pollution on earthworm communities in a contaminated floodplain area: Linking biomarker, community and functional responses. Environmental Pollution, 157, 895–903.

    Google Scholar 

  155. Vanhala, P. T., & Ahtiainen, J. H. (1994). Soil respiration, ATP content, and Photobacterium toxicity test as indicators of metal pollution in soil. Environmental Toxicology and Water Quality, 9, 115–121.

    CAS  Google Scholar 

  156. Vásquez-Murrieta, M. S., Migueles-Garduño, I., Franco-Hernádez, O., Govaerts, B., & Dendooven, L. (2006). C and N mineralisation and microbial biomass in heavy-metal contaminated soil. European Journal of Soil Biology, 42, 89–98.

    Google Scholar 

  157. Vijver, M. G., van Gestel, C. A. M., van Straalen, N. M., Lanno, R. P., & Peijnenburg, W. J. G. M. (2006). Biological significance of metals partitioned to subcellular fractions within earthworms (Aporrectodea caliginosa). Environmental Toxicology and Chemistry, 25, 807–814.

    CAS  Google Scholar 

  158. Vijver, M. G., Koster, M., & Peijnenburg, W. J. G. M. (2007). Impact of pH on Cu accumulation kinetics in earthworm cytosol. Environmental Science and Technology, 41, 2255–2260.

    CAS  Google Scholar 

  159. Walker, C. H., Hopkin, S. P., Sibly, R. M., & Peakall, D. B. (2006). Principles of ecotoxicology. Boca Raton: Taylor and Francis.

    Google Scholar 

  160. Wallace, W. G., Lopez, G. R., & Levinton, J. S. (1998). Cadmium resistance in an Oligocahete and its effect on cadmium trophic transfer to an omnivorous shrimp. Marine Ecology Progress Series, 172, 225–2237.

    CAS  Google Scholar 

  161. Weeks, J. M., Sorokin, N., Johnson, I. J., Whitehouse, P., Ashton, D, Spurgeon, D., Hankard, P., & Svendsen, C. (2004). Biological test methods for assessing contaminated land. Bristol, Environment Agency Science Group (Report P5-069/TR1). pp. 106.

    Google Scholar 

  162. Žnidaršič, N., Tušek - Žnidaršič, M., Falnoga, I., Šcančar, J., & Štrus, J. (2005). Metallothionein-like proteins and zinc-copper interaction in the hindgut of Porcellio scaber (Crustacea: Isopoda) exposed to zinc. Biological Trace Element Research, 106, 253–264.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark E. Hodson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hodson, M.E. (2013). Effects of Heavy Metals and Metalloids on Soil Organisms. In: Alloway, B. (eds) Heavy Metals in Soils. Environmental Pollution, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4470-7_5

Download citation

Publish with us

Policies and ethics