Skip to main content

Uranium

  • Chapter
  • First Online:
Book cover Heavy Metals in Soils

Part of the book series: Environmental Pollution ((EPOL,volume 22))

Abstract

Uranium (U) is a naturally radioactive element and one of its radioisotopes (235U) is the basis for nuclear fission reactions in electricity generation and nuclear weapons. Uranium has both chemotoxic and radiotoxic properties and is a potential hazard to ecosystems and human health. Concentrations in rocks vary with relatively high concentrations occuring in black shales, coal, phosphorites, certain sandstones and some limestone formations and in the soils derived from them. Groundwaters associated with U-rich rocks can contain elevated concentrations of U. Soil contamination can arise from phosphate fertilisers, U mining, nuclear waste processing, nuclear explosions, coal combustion, disposal of coal ash and civil and military uses of depleted uranium (DU). Unlike iron and manganese which also have cations with more than one valency state, the highest valency U(VI) is most mobile and plant-available. High carbonate concentrations can produce soluble complexes, but reducing conditions cause the formation of insoluble ions, and U is strongly adsorbed in soils and sediments rich in iron oxides and organic matter. Plant availability is generally higher in acid conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bleise, A., Danesi, P. R., & Burkart, W. (2003). Properties, use and health effects of depleted uranium (DU): A general overview. Journal of Environmental Radioactivity, 64, 93–112.

    Article  CAS  Google Scholar 

  2. Burger, M. (2008). The risks of depleted uranium contamination post-conflict: UNEP assessments, uranium weapons disarmament forum. www.unidir.org/pdf/articles/pdf-art2760.pdf

  3. Canadian Council of Ministers of the Environment. (2007). Canadian soil quality guidelines for uranium: Environmental and human health (PN1371). Ottawa: Canadian Council of Ministers of the Environment.

    Google Scholar 

  4. Carvalho, F. P., & Oliveira, J. M. (2010). Uranium isotopes in Balkan’s environment and foods following the use of depleted uranium in the war. Environment International. doi:10.1016/jenvint.2010.02.003.

  5. Chang, P., Kim, K.-W., Yoshida, S., & Kim, S.-Y. (2005). Uranium accumulation of crops enhanced by citric acid. Environmental Geochemistry and Health, 27, 529–538.

    Article  CAS  Google Scholar 

  6. Cleveland, C. J. (2008). Depleted uranium. In C. J. Clveland (Ed.), Encyclopedia of Earth. Washington, DC: Environmental Coalition, National Council for Science and the Environment. http://www.eoearth.org/articel/Depleted_uranium. (Original information from Argonne National Laboratory.)

  7. Ebbs, S. D., Brady, D. J., & Kochian, L. V. (1998). Role of uranium speciation in the uptake and translocation of uranium by plants. Journal of Experimental Botany, 49(324), 1183–1190.

    CAS  Google Scholar 

  8. Edwards, R., Lepp, N. W., & Jones, K. C. (1995). Other less abundant elements of potential environmental significance. In B. J. Alloway (Ed.), Heavy metals in soils (2nd ed., pp. 306–352). Glasgow: Blackie Academic and Professional (Chapter 14).

    Chapter  Google Scholar 

  9. Environment Agency (UK). (2011). Using RCLEA- the radioactively contaminated land exposure assessment methodology. www.environment-agency.gov.uk/…/CLR13_Summary_Guide_2011.pdf

  10. Gabbard, A. (2008). Coal combustion: Nuclear resource or danger. Oak Ridge National Laboratory Review, 26(3 & 4), 1–8.

    Google Scholar 

  11. Jha, V. N., Giri, S., Paul, S., Sethy, A. K., Singh, G., & Tripathi, R. M. (2007, June 5–7). Radionuclide uptake by native vegetation growing around upcoming U-mining projects at Banduhurang, Jharkhand. Paper at 15th National Symposium on Environment, Bharathiar University, Coimbatore. www.ismenvis.nic.in

  12. Kabata-Pendias, A. (2001). Trace elements in soils and plants (3rd ed.). Boca Raton: CRC Press.

    Google Scholar 

  13. Kabata-Pendias, A., & Mukherjee, A. B. (2007). Trace elements from soil to human. Berlin/Heidelberg: Springer.

    Book  Google Scholar 

  14. Kurttio, P., Harmoinen, A., Saha, H., Salonen, L., Karpas, Z., Komulainen, H., & Auvinen, A. (2006). Kidney toxicity of ingested uranium from drinking water. American Journal of Kidney Diseases, 47(6), 972–982.

    Article  CAS  Google Scholar 

  15. McBride, J. P., Moore, R. E., Witherspoon, J. P., & Blanco, R. E. (1978, December 8). Radiological impact of airborne effluents of coal and nuclear plants. Science (pp. 1045–1050).

    Google Scholar 

  16. Pulford, I. (2010). Gold and uranium. In P. Hooda (Ed.), Trace elements in soils (pp. 551–565). Chichester: Wiley (Chapter 23).

    Chapter  Google Scholar 

  17. Rothbaum, H. P., McGaveston, D. A., Wall, T., Johnston, A. E., & Mattingly, G. E. G. (1979). Uranium accumulation in soils from long-continued applications of superphosphate. Journal of Soil Science, 30, 147–153.

    Article  CAS  Google Scholar 

  18. SCHER (Scientific Committee on Health and Environmental Risks). (2010, May 18). Opinion on the environmental and health risks posed by depleted uranium. ec.europa.eu/health/ph_risk/…/04_scher/scher_opinions_en.htm

  19. Shahandeh, H., & Hossner, L. (2002). Role of soil properties in phytoaccumulation of uranium. Water, Air, and Soil Pollution, 141, 165–180.

    Article  CAS  Google Scholar 

  20. Sheppard, S. C., & Evenden, W. G. (1987, March 31). Review of effects of soil on radionuclide uptake by plants. Research report prepared for the Atomic Energy Control Board, Ottawa, Canada. INFO-0230.

    Google Scholar 

  21. Sheppard, S. C., Sheppard, M. I., Gallerand, M.-O., & Sannipelli, B. (2005). Derivation of ecotoxicity thresholds for uranium. Journal of Environmental Radioactivity, 79, 55–83.

    Article  Google Scholar 

  22. Smedley, P. L., Smith, B., Abesser, C., & Lapworth, D. (2006). Uranium occurrence and behaviour in British groundwater (Commissioned Report CR/06/050N). Keyworth: British Geological Survey.

    Google Scholar 

  23. SOFIA (South Florida Information Access). (2009). Fertilizer-derived uranium and sulphur in rangeland soil and runoff. http://sofia.usgs.gov/publications/papers/urnaium_and_sulfur/uranium.html

  24. Sparton. (2010). Developing uranium production from radioactive waste. http://spartonres.ca/uraniumsecondary.htm

  25. Sridhar-Babu, M. N., Somashekar, R. K., Kumar, S. A., Shivanna, K., Krishnamurthy, V., & Eappen, K. P. (2008). Concentration of uranium levels in groundwater. International Journal of Environmental Science and Technology, 5(2), 263–266.

    Google Scholar 

  26. Suzuki, Y., Kelly, S. D., Kemner, K. M., & Banfield, J. F. (2002). Nanometre-size products of uranium bioreduction. Nature, 419, 134.

    Article  CAS  Google Scholar 

  27. US Environmental Protection Agency & US Department of Energy. (1999). Understanding variation in partition coefficient, Kd, values. In Review of geochemistry and available Kd values for cadmium, cesium, chromium, lead, plutonium, radon, strontium, thorium, tritium (3H) and uranium (Vol. 2). Washington, DC: USEPA & USDoE.

    Google Scholar 

  28. US Geological Survey. (1997). Radioactive elements in coal and fly ash: Abundance, forms and environmental significance (Fact Sheet FS-163-97). http://pubs.usgs.gov/fs/1997/fs163-97/FS-163-97.html

  29. Vandenhove, H., Van Hees, M., Wnnijn, J., Wouters, K., & Wang, L. (2007). Can we predict uranium bioavailability based on soil parameters? Part2: Soil solution uranium concentration is not a good bioavailability index. Environmental Pollution, 145, 577–586.

    Article  CAS  Google Scholar 

  30. Wikipedia. (2011a). Uranium http://en.wikipedia.org/wiki/Uranium

  31. Wikipedia. (2011b). Uranium ore. http://en.wikipedia.org/wiki/Uranium_ore

  32. World Health Organisation. (2004). Uranium in drinking-water: Background document for development of WHO guidelines for drinking-water quality. (WHO/SDE/WSH/03.04/118). www.who.int/water_sanitation_health/dwq/chemicals/en/uranium.pdf

  33. World Nuclear Association. (2011a). World uranium mining. http://www.world-nuclear.org/info/inf23.html

  34. World Nuclear Association. (2011b). Thorium. www.world-nuclear.org/info/inf62.html

  35. Zielinski, R. A., Simmons, K. R., & Orem, W. H. (2000). Use of 234U and 238U isotopes to identify fertilizer-derived uranium in the Florida Everglades. Applied Geochemistry, 15, 369–383.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian J. Alloway .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Alloway, B.J. (2013). Uranium. In: Alloway, B. (eds) Heavy Metals in Soils. Environmental Pollution, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4470-7_26

Download citation

Publish with us

Policies and ethics