Skip to main content

Gold

  • Chapter
  • First Online:
  • 12k Accesses

Part of the book series: Environmental Pollution ((EPOL,volume 22))

Abstract

Gold (Au) is a noble, relatively scarce metal, highly valuable for its beauty, resistance to corrosion and as a long-term investment. Demand for it has increased steadily and it has become vital in different technological fields. Gold nanoparticles have also attracted broad interest. Despite being chemically inert towards most naturally occurring substances Au may be subject to biological interactions in soils. The impact of Au concentrations in different environmental compartments is not known with certainty.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ahnlide, I., Bjorkner, B., Bruze, M., & Moller, H. (2000). Exposure to metallic gold in patients with contact allergy to gold sodium thiosulfate. Contact Dermatitis, 43, 344–350.

    Article  CAS  Google Scholar 

  2. Anderson, C. W. N., Brooks, R. R., Stewart, R. B., & Simcock, R. (1998). Harvesting a crop of gold in plants. Nature, 395, 553–554.

    Article  CAS  Google Scholar 

  3. Anderson, C. W. N., Brooks, R. R., Stewart, R. B., & Simcock, R. (1998). Gold uptake by plants. Gold Bulletin, 32, 48–51.

    Article  Google Scholar 

  4. Anderson, C. W. N., Brooks, R. R., Chirucci, A., Lacoste, C. J., Leblans, M., Robinson, B. H., Simcock, R., & Stewart, R. B. (1999). Phytomining for nickel, thallium and gold. Journal of Geochemical Exploration, 67, 407–415.

    Article  CAS  Google Scholar 

  5. Anderson, C., Moreno, F., & Meech, J. (2005). A field demonstration of gold phytoextraction technology. Minerals Engineering, 18, 385–392.

    Article  CAS  Google Scholar 

  6. Arne, D. C., Stott, J. E., & Waldron, H. M. (1999). Biogeochemistry of the Ballarat East goldfield, Victoria, Australia. Journal of Geochemical Exploration, 67, 1–14.

    Article  CAS  Google Scholar 

  7. Aucamp, P., & van Schalkwyk, A. (2003). Trace element pollution of soils by abandoned gold mine tailings, near Potchefstroom, South Africa. Bulletin of Engineering Geology and the Environment, 62, 123–134.

    CAS  Google Scholar 

  8. Babula, P., Adam, V., Opatrilova, R., Zehnalek, J., Havel, L., & Kizek, R. (2008). Uncommon heavy metals, metalloids and their plant toxicity: A review. Environmental Chemistry Letters, 6, 189–213.

    Article  CAS  Google Scholar 

  9. Benning, L. G., & Seward, T. M. (1996). Hydrosulfide complexing of Au(I) in hydrothermal solutions from 150–400°C and 500–1500 bar. Geochimica et Cosmochimica Acta, 60, 1849–1871.

    Article  CAS  Google Scholar 

  10. Berrodier, I., Farges, F., Benedetti, M., Winterer, M., Brown, G. E., Jr., & Deveughèle, M. (2004)). Adsorption mechanisms of trivalent gold on iron- and aluminum-(oxy)hydroxides. Part 1: X-ray absorption and Raman scattering spectroscopic studies of Au(III) adsorbed on ferrihydrite, goethite, and boehmite. Geochimica et Cosmochimica Acta, 68, 3019–3042.

    Article  CAS  Google Scholar 

  11. Boyle, R. W. (1979). The geochemistry of gold and its deposits. Bulletin Geological Survey of Canada, 280. 584 pp.

    Google Scholar 

  12. Butterman, W. C., & Amey, E. B. (2005). Mineral commodity profiles – Gold. U.S. Geological Survey (Open-File Report 02–303).

    Google Scholar 

  13. Cances, B., Benedetti, M., Farges, F., & Brown, G. E. (2007). Adsorption mechanisms of trivalent gold onto iron Oxy-Hydroxides: From the molecular scale to the model. In B. Hedman & P. Painetta (Eds.), X-Ray absorption fine structure-XAFS13. Stanford, California: AIP Conf Proc, 882 (pp. 217–219).

    Google Scholar 

  14. Carrillo-Castaneda, G., Munos, J. J., Peralta-Videa, J. R., Gomez, E., Tiemann, K. J., Duarte-Gardea, M., & Gardea-Torresdey, J. L. (2002). Alfalfa growth promotion by bacteria grown under iron limiting conditions. Advances in Environmental Research, 6, 391–399.

    Article  Google Scholar 

  15. Diegoli, S., Manciulea, A. L., Begum, S., Jones, I. P., Lead, J. R., & Preece, J. A. (2008). Interaction between manufactured gold nanoparticles and naturally occurring organic macromolecules. Science of the Total Environment, 402, 51–61.

    Article  CAS  Google Scholar 

  16. Dunn, C. E. (1995). The field guide to biochemical prospecting. Exploration and Mining Geology, 4, 197–204.

    CAS  Google Scholar 

  17. Ehrlich, A., & Belsito, D. V. (2000). Allergic contact dermatitis to gold. Cutis, 65, 323–326.

    CAS  Google Scholar 

  18. Eisler, R. (2004). Gold concentrations in abiotic materials, plants, and animals: A synoptic review. Environmental Monitoring and Assessment, 90, 73–88.

    Article  CAS  Google Scholar 

  19. Fowler, J. F., Jr. (2001). Gold. American Journal of Contact Dermatitis, 12, 1–2.

    Article  Google Scholar 

  20. Gardea-Torresdey, J. L., Rodriguez, E., Parsons, J. G., Peralta-Videa, J., Meitzner, G., & Cruz-Jimenez, G. (2005). Use of ICP and XAS to determine the enhancement of gold phytoextraction by Chilopsis linearis using thiocyanate as a complexing agent. Analytical and Bioanalytical Chemistry, 382, 347–352.

    Article  CAS  Google Scholar 

  21. George, M. W. (2007). Gold. In U.S. Geological Survey Minerals yearbook (pp. 31.1–31.17). Washington: U.S. Department of the Interior.

    Google Scholar 

  22. George, M. W. (2009). Gold. In U.S. Geological Survey Mineral commodity summaries (pp. 68–69). Washington: U.S. Department of the Interior.

    Google Scholar 

  23. Gilbert, F., Pascal, M. L., & Pichavant, M. (1998). Gold solubility and speciation in hydrothermal solutions: experimental study of the stability of hydrosulfide complex of gold (AuHS) at 350–450°Cand 500 bars. Geochimica et Cosmochimica Acta, 62, 2931–2947.

    Article  Google Scholar 

  24. Gray, D. J., & Lintern, M. J. (1998). Chemistry of gold in soils from the Yilgarn Craton, Western Australia. In R. A. Eggleton (Ed.), The state of the regolith: proceedings of the Second Australian Conference on Landscape Evolution and Mineral Exploration (pp. 209–221). Springwood, N.S.W.: Geological Society of Australia Special Publication 20.

    Google Scholar 

  25. Gray, D. J. (1998). The aqueous chemistry of gold in the weathering environment. Cooperative Research Centre for Landscape Evolution and Mineral Exploration (Open File Report, 38). Wembley West, Australia.

    Google Scholar 

  26. Green, T. (1993). The world of gold. London: Rosendale Press.

    Google Scholar 

  27. Hough, R. M., Noble, R. R. P., Hitchen, G. J., Hart, R., Reddy, S. M., Saunders, M., Clode, P., Vaughan, D., Lowe, J., Gray, D. J., Anand, R. R., Butt, C. R. M., & Verrall, M. (2008). Naturally occurring gold nanoparticles and nanoplates. Geology, 36, 571–574.

    Article  CAS  Google Scholar 

  28. Johnson, C. A., Grimes, D. J., Leinz, R. W., & Rye, R. O. (2008). Cyanide speciation at four gold leach operations undergoing remediation. Environmental Science and Technology, 42, 1038–1044.

    Article  CAS  Google Scholar 

  29. Karthikeyan, S., & Beveridge, T. J. (2002). Pseudomonas aeruginosa biofilms react with and precipitate toxic soluble gold. Environmental Microbiology, 4, 667–675.

    Article  CAS  Google Scholar 

  30. King, R. J. (2002). Arsenopyrite. Geology Today, 18, 72–78.

    Article  Google Scholar 

  31. Korte, F., Spiteller, M., & Coulston, F. (2000). The cyanide leaching gold recovery process is a nonsustainable technology with unacceptable impacts on ecosystems and humans: The disaster in Romania. Ecotoxicology and Environmental Safety, 46, 241–245.

    Article  CAS  Google Scholar 

  32. Lamb, A. E., Anderson, C. W. N., & Haverkamp, R. G. (2001). The extraction of gold from plants and its application to phyto-mining. Chemistry in New Zealand, 65, 31–33.

    CAS  Google Scholar 

  33. Lamb, A. E., Anderson, C. W. N., & Haverkamp, R. G. (2001). The induced accumulation of gold in the plants Brassica juncea, Berkheya coddii and chicory. Chemistry in New Zealand, 65, 34–36.

    CAS  Google Scholar 

  34. Lawrance, L. M., & Griffin, B. J. (1994). Crystal features of supergene gold at Hannan South, Western Australia. Mineralium Deposita, 29, 391–398.

    Article  CAS  Google Scholar 

  35. Lide, D. R. (1999). Handbook of chemistry and physics (80th ed.). New York: CRC Press.

    Google Scholar 

  36. Lintern, M. J., & Butt, C. R. M. (1993). Pedogenic carbonate – An important sampling medium for gold exploration in semi-arid areas. Explor Resources News, 7, 7–11.

    Google Scholar 

  37. Lintern, M. J., Hough, R. M., Ryan, C. G., Watling, J., & Verrall, M. (2009). Ionic gold in calcrete revealed by LA-ICP-MS, SXRF and XANES. Geochimica et Cosmochimica Acta, 73, 1666–1683.

    Article  CAS  Google Scholar 

  38. Lintern, M. J., Hough, R. M., & Ryan, C. G. (2009). Mobile gold in soil. Goldschmidt Conference Abstracts, 2009, A770.

    Google Scholar 

  39. Lottermoser, B. G. (1995). Noble metals in municipal sewage sludges of southeastern Australia. Ambio, 24, 354–357.

    Google Scholar 

  40. Marsden, J., & House, C. I. (2006). The chemistry of gold extraction (2nd ed.). Littleton: Society for Mining, Metallurgy, and Exploration, Inc.

    Google Scholar 

  41. Marshall, A. T., Haverkamp, R. G., Davies, C. E., Parsons, J. G., Gardea-Torresdey, J. L., & van Agterveld, D. (2007). Accumulation of gold nanoparticles in Brassica juncea. International Journal of Phytoremediation, 9, 197–206.

    Article  CAS  Google Scholar 

  42. McHugh, J. B. (1988). Concentration of gold in natural waters. Journal of Geochemical Exploration, 30, 85–94.

    Article  CAS  Google Scholar 

  43. Moore, B. A., Duncan, J. R., & Burgess, J. E. (2008). Fungal bioaccumulation of copper, nickel, gold and platinum. Minerals Engineering, 21, 55–60.

    Article  CAS  Google Scholar 

  44. Mossman, D. J., Reimer, T., & Durstling, H. (1999). Microbial processes in gold migration and deposition: Modern analogues to ancient deposits. Geoscience Canada, 26, 131–140.

    Google Scholar 

  45. Plyusnin, A. M., Porrelnyak, Yu. F., Minonov, A. G., & Zhmodik, S. M. (1981). The behavior of gold in the oxidation of gold-bearing sulfides. Geochemistry International, 18, 116–123.

    Google Scholar 

  46. Pyatt, F. B. (1999). Comparison of foliar and stem bioaccumulation of heavy metals by Corsican pines in the Mount Olympus area of Cyprus. Ecotoxicology and Environmental Safety, 42, 57–161.

    Article  CAS  Google Scholar 

  47. Ran, Y., Fu, J., Rate, A. W., & Gilkes, R. J. (2002). Adsorption of Au(I, III) complexes on Fe, Mn oxides and humic acid. Chemical Geology, 185, 33–49.

    Article  CAS  Google Scholar 

  48. Reith, F., & McPhail, D. C. (2007). Microbial influences on solubilisation and mobility of gold and arsenic in regolith samples from two gold mines in semi-arid and tropical Australia. Geochimica et Cosmochimica Acta, 71, 1183–1196.

    Article  CAS  Google Scholar 

  49. Reith, F., Rogers, S. L., McPhail, D. C., & Webb, D. (2006). Biomineralization of gold: Biofilms on bacterioform gold. Science, 313, 333–336.

    Article  Google Scholar 

  50. Reith, F., McPhail, D. C., & Christy, A. G. (2005). Bacillus cereus, gold and associated elements in soil and other regolith samples from Tomakin Park Gold Mine in south-eastern New South Wales, Australia. Journal of Geochemical Exploration, 85, 81–98.

    Article  CAS  Google Scholar 

  51. Reith, F., Lengke, M. F., Falconer, D., Craw, D., & Southam, G. (2007). The geomicrobiology of gold. ISME Journal, 1, 567–584.

    Article  CAS  Google Scholar 

  52. Renders, P. J., & Seward, T. M. (1989). The stability of hydrosulphido- and sulphido-complexes of Au(I) and Ag(I) at 25°C. Geochimica et Cosmochimica Acta, 53, 245–253.

    Article  CAS  Google Scholar 

  53. Rodriguez, E., Parsons, J. G., Peralta-Videa, J. R., Cruz-Jiménez, G., Romero-González, J., Sánchez-Salcido, B. E., Saupe, G. B., Duarte-Gardea, M., & Gardea-Torresdey, J. L. (2007). Potential of Chilopsis linearis for gold phyto-mining: Using XAS to determine gold reduction and nanoparticle formation within plant tissues. International Journal of Phytoremediation, 9, 133–147.

    Article  CAS  Google Scholar 

  54. Rota, J. C. (1997). Mine geology and process ore control at Newmont Gold Company mines. In D. M. Hausen, W. Petruk, & R. D. Hagni (Eds.), Proceedings of the TMS symposium on global exploitation of heap leachable gold deposits (pp. 3–17). Warrendale: The Minerals, Metals and Materials Society.

    Google Scholar 

  55. Sabti, H., Hossain, M. M., Brooks, R. R., & Stewart, R. B. (2000). The current environmental impact of base-metal mining at the Tui Mine, Te Aroha, New Zealand. Journal of the Royal Society of New Zealand, 30, 197–208.

    Article  Google Scholar 

  56. Samecka-Cymerman, A., & Kempers, A. J. (1998). Bioindication of gold by aquatic bryophytes. Acta Hydrochimica et Hydrobiologica, 26, 90–94.

    Article  CAS  Google Scholar 

  57. Schoonen, M. A. A., Fisher, N. S., & Wente, M. (1992). Gold sorption onto pyrite and goethite: A radiotracer study. Geochimica et Cosmochimica Acta, 56, 1801–1814.

    Article  CAS  Google Scholar 

  58. Seward, T. M. (1991). The hydrothermal geochemistry of gold. In R. P. Foster (Ed.), Gold metallogeny and exploration (pp. 38–62). Glasgow: Blackie and Son Ltd.

    Google Scholar 

  59. Southam, G., & Saunders, J. A. (2005). The geomicrobiology of ore deposits. Economic Geology, 100, 1067–1084.

    Article  CAS  Google Scholar 

  60. Vamnes, J. S., Morken, T., Helland, S., & Gjerdet, N. R. (2000). Dental gold alloys and contact hypersensitivity. Contact Dermatitis, 42, 128–133.

    Article  CAS  Google Scholar 

  61. Vlassopoulos, D., & Wood, S. A. (1990). Gold speciation in natural waters: I. Solubility and hydrolysis reactions of gold in aqueous solution. Geochimica et Cosmochimica Acta, 54, 3–12.

    Article  CAS  Google Scholar 

  62. Vlassopoulos, D., Wood, S. A., & Mucci, A. (1990). Gold speciation in natural waters: II. The importance of organic complexing – Experiments with some simple model ligands. Geochimica et Cosmochimica Acta, 54, 1575–1586.

    Article  CAS  Google Scholar 

  63. Watterson, J. R. (1992). Preliminary evidence for the involvement of budding bacteria in the origin of Alaskan placer gold. Geology, 20, 1147–1151.

    Article  Google Scholar 

  64. Webster, J. G., & Mann, A. W. (1984). The influence of climate, geomorphology and primary geology on the supergene migration of gold and silver. Journal of Geochemical Exploration, 22, 21–42.

    Article  CAS  Google Scholar 

  65. Webster, J. G. (1986). The solubility of gold and silver in the system Au-Ag-S-O2-H2O at 25°C and 1 atm. Geochimica et Cosmochimica Acta, 50, 1837–1845.

    Article  CAS  Google Scholar 

  66. Zagury, G. J., Oudjehani, K., & Deschenes, L. (2004). Characterization and availability of cyanide in solid mine tailings from gold extraction plants. Science of the Total Environment, 320, 211–224.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Clemente .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Clemente, R. (2013). Gold. In: Alloway, B. (eds) Heavy Metals in Soils. Environmental Pollution, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4470-7_20

Download citation

Publish with us

Policies and ethics