Skip to main content

Mercury

  • Chapter
  • First Online:
Heavy Metals in Soils

Part of the book series: Environmental Pollution ((EPOL,volume 22))

Abstract

In spite of its low abundance in the Earth’s crust, mercury (Hg) has aroused substantial attention, first because of its numerous applications and more recently because of its toxicity. The extensive use of Hg has resulted in significant contamination of soils locally and regionally and sometimes to human and animal exposure at toxic levels. Human use of Hg started already in antiquity and reached a maximum around 1975. Since then the major applications have been strongly reduced in many countries. All chemical forms of Hg are toxic to humans and animals, methyl Hg in particular. In soils Hg may originate from Hg minerals, diffuse air pollution, and local pollution sources such as chlor-alkali factories and the use of sewage sludge and organic Hg compounds in agriculture. Elemental Hg from the atmosphere mainly due to previous human emissions is a dominant source of soil pollution worldwide. In soils, Hg occurs as various forms of Hg(II), generally strongly bound to organic matter and sulphides. The Hg content is generally higher in organic-rich soils than in mineral soils. Root uptake of Hg in plants is generally low, and Hg in above-ground plant material is mostly derived from atmospheric deposition. Under reducing conditions in soils methyl Hg may be formed and subsequently transported to lakes and rivers and accumulated in aquatic food chains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aastrup, M., Johnson, J., Bringmark, E., Bringmark, L., & Iverfeldt, Å. (1991). Occurrence and transport of mercury within a small catchment area. Water, Air, and Soil Pollution, 56, 155–167.

    Article  CAS  Google Scholar 

  2. Adriano, D. C. (1986). Trace elements in the terrestrial environment. New York: Springer. Chap 9.

    Google Scholar 

  3. Andersson, A. (1967). Kvicksilvret i marken. Grundförbättring, 20(3–4), 95–105 (In Swedish, English summary).

    CAS  Google Scholar 

  4. Andersson, A. (1970). NĂ¥got om kvicksilvrets geokemi. Grundförbättring, 23(5), 31–40 (In Swedish, English summary).

    CAS  Google Scholar 

  5. Andersson, A. (1979). Mercury in soils. In J. O. Nriagu (Ed.), The biogeochemistry of mercury in the environment (pp. 79–106). Amsterdam: Elsevier.

    Google Scholar 

  6. Andren, A. W., & Nriagu, J. O. (1979). In J. O. Nriagu (Ed.), The biogeochemistry of mercury in the environment (pp. 1–21). Amsterdam: Elsevier.

    Google Scholar 

  7. Archer, F. C., & Hodgson, I. H. (1987). Total and extractable trace-element content of soils in England and Wales. Journal of Soil Science, 38, 421–431.

    Article  CAS  Google Scholar 

  8. Beauford, W., Barber, J., & Barringer, A. R. (1977). Uptake and distribution of mercury within higher-plants. Physiologia Plantarum, 39, 261–265.

    Article  CAS  Google Scholar 

  9. Berg, T., Aspmo, K., & Steinnes, E. (2008). Transport of Hg from atmospheric mercury depletion events to the mainland of Norway and its possible influence on Hg deposition. Geophysical Research Letters, 35, L09812.

    Article  Google Scholar 

  10. Bindler, R. (2003). Estimating the natural background atmospheric deposition rate of mercury utilizing ombrotrophic bogs in southern Sweden. Environmental Science and Technology, 37, 40–46.

    Article  CAS  Google Scholar 

  11. Bringmark, L., Bringmark, E., & Samuelsson, B. (1998). Effects on mor layer respiration by small experimental additions of mercury and lead. Science of the Total Environment, 213, 115–119.

    Article  CAS  Google Scholar 

  12. Brosset, C. (1981). The mercury cycle. Water, Air, and Soil Pollution, 16, 253–255.

    Article  CAS  Google Scholar 

  13. Brosset, C. (1987). The behaviour of mercury in the physical environment. Water, Air, and Soil Pollution, 34, 145–166.

    Article  CAS  Google Scholar 

  14. Cappon, C. J. (1984). Content and chemical form of mercury and selenium in soil, sludge, and fertilizer materials. Water, Air, and Soil Pollution, 22, 95–104.

    Article  CAS  Google Scholar 

  15. Cohen, M. J., Lamsal, S., Osborne, T. C., Bonzongo, J. C. J., Newman, S., & Reddy, K. R. (2009). Soil total mercury concentrations across the Greater Everglades. Soil Science Society of America Journal, 73, 675–685.

    Article  CAS  Google Scholar 

  16. Connor, J. J., & Shacklette, H. T. (1975). Background geochemistry of some rocks, soils, plants, and vegetables in the conterminous United States (U.S. Geological Survey Professional Paper 574-F).

    Google Scholar 

  17. Davies, B. E. (1975). Mercury content of soils in western Britain with special reference to contamination from base metal mining. Geoderma, 16, 183–192.

    Article  Google Scholar 

  18. Dock, L., & Vather, M. (2000). Metal toxicology. In B. Ballantyne, T. Mars, & T. Syversen (Eds.), General and applied toxicology (pp. 2049–2078). London: Macmillan.

    Google Scholar 

  19. Dudas, M. J., & Pawluk, S. (1976). The nature of mercury in chernozemic and luvisolic soils in Alberta. Canadian Journal of Soil Science, 56, 413–423.

    Article  CAS  Google Scholar 

  20. Ericksen, J. A., Gustin, M. S., Schorran, D. E., Johnson, D. W., Lindberg, S. E., & Coleman, J. S. (2003). Accumulation of atmospheric mercury in forest foliage. Atmospheric Environment, 37, 1613–1622.

    Article  CAS  Google Scholar 

  21. Ferera, R., Masetti, B. E., Edner, H., Ragnarson, P., Svanberg, S., & Wallinder, E. (1991). Mercury in abiotic and biotic compartments of an area affected by a geological anomaly (Mt Amiata, Italy). Water, Air, and Soil Pollution, 56, 219–233.

    Article  Google Scholar 

  22. Frank, R., Ishida, K., & Suda, P. (1971). Metals in agricultural soils of Ontario. Canadian Journal of Soil Science, 59, 181–196.

    Google Scholar 

  23. Frear, D. E. H., & Dills, L. E. (1973). Mechanism of the insecticidal action of mercury and mercury salts. Journal of Economic Entomology, 60, 970–974.

    Google Scholar 

  24. Gilmour, J. T., & Miller, M. S. (1973). Fate of a mercuric-mercurous chloride fungicide added to turfgrass. Journal of Environmental Quality, 2, 145–148.

    Article  CAS  Google Scholar 

  25. Glooschenko, W. A., & Capoblanko, J. A. (1982). Trace element content of northern Ontario peat. Environmental Science and Technology, 16, 187–188.

    Article  CAS  Google Scholar 

  26. Godbold, D. L., & HĂ¼ttermann, A. (1988). Inhibition of photosynthesis and transpiration in relation to mercury-induced root damage in spruce seedlings. Physiologia Plantarum, 74, 270–275.

    Article  CAS  Google Scholar 

  27. Gowen, J. A., Wiersma, G. B., & Tai, H. (1976). Mercury and 2,4-D levels in wheat and soil from 16 states, 1969. Pesticides Monitoring Journal, 10, 111–113.

    CAS  Google Scholar 

  28. Gracey, H. I., & Stuart, J. W. B. (1974). Distribution of mercury in Saskatchewan soils and crops. Canadian Journal of Soil Science, 54, 105–108.

    Article  CAS  Google Scholar 

  29. Graydon, J. A., St. Louis, V. L., Hintelmann, H., Lindberg, S. E., Sandilands, K. A., Rudd, J. W. M., Kelly, C. A., Tate, M. T., Krabbenhoft, D. P., & Lehnherr, I. (2009). Investigation of uptake and retention of atmospheric Hg(II) by boreal forest plants using stable Hg isotopes. Environmental Science and Technology, 43, 4960–4966.

    Article  CAS  Google Scholar 

  30. Greger, M., Wang, Y., & NeuschĂ¼tz, C. (2005). Absence of Hg transpiration by shoots after Hg uptake in roots of six terrestrial plant species. Environmental Pollution, 134, 201–208.

    Article  CAS  Google Scholar 

  31. Grigal, D. F. (2003). Mercury sequestration in forests and peatlands: A review. Journal of Environmental Quality, 32, 393–405.

    CAS  Google Scholar 

  32. HĂ¥kanson, L., Nilsson, A., & Andersson, T. (1990). Mercury in the Swedish mor layer – Linkages to mercury deposition and sources of emission. Water, Air, and Soil Pollution, 50, 311–329.

    Article  Google Scholar 

  33. Hogg, T. J., Stewart, J. W. B., & Bettany, J. R. (1978). Influence of the chemical form of mercury on its adsorption and ability to leach through soils. Journal of Environmental Quality, 7, 440–445.

    Article  CAS  Google Scholar 

  34. Hylander, L. D., & Meili, M. (2003). 500 years of mercury production: global annual inventory by region until 2000 and associated emissions. Science of the Total Environment, 304, 13–27.

    Article  CAS  Google Scholar 

  35. Inoue, K., & Aomine, S. (1969). Retention of mercury by soil colloids. Soil Science and Plant Nutrition, 15, 86–91.

    Article  CAS  Google Scholar 

  36. Iverfeldt, A., & Lindquist, O. (1986). Atmospheric oxidation of elemental mercury by ozone in the aqueous phase. Atmospheric Environment, 20(8), 1567–1573.

    Article  CAS  Google Scholar 

  37. Jasinski, S. M. (1994). The materials flow of mercury in the United States (U.S. Bureau of Mines Information Circular 9412). Washington, DC.

    Google Scholar 

  38. Jensen, A., & Jensen, A. (1991). Historical deposition rates of mercury in Scandinavia estimated by dating and measurement of mercury in cores of peat bogs. Water, Air, and Soil Pollution, 56, 769–777.

    Article  CAS  Google Scholar 

  39. Jensen, J., & Jepsen, S. E. (2005). The production, use and quality of sewage sludge in Denmark. Waste Management, 25, 239–247.

    Article  CAS  Google Scholar 

  40. Jensen, S., & Jernelöv, A. (1969). Biological methylation of mercury in aquatic organisms. Nature, 223, 753–754.

    Article  CAS  Google Scholar 

  41. Johansson, K., Lindqvist O., & Timm, B. (1988). Kvicksilvers förekomst och omsättning i miljön (National Swedish Environment Protection Board, Report 3470).

    Google Scholar 

  42. Johansson, K., Aastrup, M., Andersson, A., Bringmark, L., & Iverfeldt, Å. (1991). Mercury in Swedish forest soil and waters – Assessment of critical load. Water, Air, and Soil Pollution, 56, 267–281.

    Article  CAS  Google Scholar 

  43. John, M. K., van Laerhoven, C. J., Osborne, V. E., & Cotic, I. (1975). Mercury in soils of British-Columbia, a mercuriferous region. Water, Air, and Soil Pollution, 5, 213–220.

    Article  CAS  Google Scholar 

  44. Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soils and plants (3rd ed., p. 413). Boca Raton: CRC Press.

    Google Scholar 

  45. Klein, D. H. (1972). Mercury and other metals in urban soils. Environmental Science and Technology, 6, 560–562.

    Article  CAS  Google Scholar 

  46. Kocman, D., Horvat, M., & Kotnik, J. (2004). Mercury fractionation in contaminated soils from the Idrija mercury mine region. Journal of Environmental Monitoring, 6, 696–703.

    Article  CAS  Google Scholar 

  47. Landa, E. (1978). The retention of metallic mercury vapor by soils. Geochimica et Cosmochimica Acta, 42, 1407–1411.

    Article  CAS  Google Scholar 

  48. LĂ¥g, J., & Steinnes, E. (1978). Regional distribution of mercury in humus layers of Norwegian soils. Acta Agriculturae Scandinavica, 28, 393–396.

    Article  Google Scholar 

  49. LĂ¥g, J., & Steinnes, E. (1978). Contents of some trace elements in barley and wheat grown in Norway. Scientific Reports of the Agricultural University of Norway, 57(10), 1–11 pp.

    Google Scholar 

  50. Lindberg, S. E., Jackson, D. R., Huckabee, J. R., Janzen, S. A., Levin, M. J., & Lund, J. R. (1979). Atmospheric emission and plant uptake of mercury from agricultural soils near the Almaden mercury mine. Journal of Environmental Quality, 8, 572–578.

    Article  CAS  Google Scholar 

  51. Lindberg, S. E., Brooks, S., Lin, C. J., Scott, K. J., Landis, M. S., Stevens, R. K., Goodsite, M., & Richter, A. (2002). Dynamic oxidation of gaseous mercury in the Arctic troposphere at polar sunrise. Environmental Science and Technology, 36, 1245–1256.

    Article  CAS  Google Scholar 

  52. Lindqvist, O., Jernelöv, A., Johansson, K., & Rodhe, H. (1984). Mercury in the Swedish environment (National Swedish Environment Protection Board, Report SNV PM 1816, p. 6).

    Google Scholar 

  53. Lindqvist, O., Johansson, K., Aastrup, M., Andersson, A., Bringmark, L., Hovsenius, G., HĂ¥kanson, L., Iverfeldt, Ă…., Meili, M., & Timm, B. (1991). Mercury in the Swedish environment – Recent research on causes, consequences and corrective methods. Water, Air, and Soil Pollution, 55, 73–100.

    Article  Google Scholar 

  54. Lodenius, M., Seppänen, A., & Autio, S. (1987). Leaching of mercury from peat soil. Chemosphere, 16, 1215–1220.

    Article  CAS  Google Scholar 

  55. Lomonte, C., Fritsche, J., Bramanti, E., Doronila, A., Gregory, D., Baker, A. J. M., & Kolev, S. D. (2010). Assessment of the pollution potential of mercury contaminated biosolids. Environmental Chemistry, 7, 146–152.

    Article  CAS  Google Scholar 

  56. Mason, R. P., Fitzgerald, W. F., & Morel, F. M. M. (1994). The biogeochemical cycling of mercury: Anthropogenic influences. Geochimica et Cosmochimica Acta, 58, 3191–3198.

    Article  CAS  Google Scholar 

  57. Matheson, D. H. (1979). Mercury in the atmosphere and in precipitation. In J. O. Nriagu (Ed.), Biogeochemistry of mercury in the environment (pp. 113–129). Amsterdam: Elsevier. Chap 5.

    Google Scholar 

  58. Matilainen, T., Verta, M., Korhonen, H., Uusi_Rauva, A., & Niemi, M. (2001). Behavior of mercury in soil profiles: Impact of increased precipitation, acidity, and fertilization on mercury methylation. Water, Air, and Soil Pollution, 125, 105–119.

    Article  CAS  Google Scholar 

  59. McKeague, J. A., & Kloosterman, B. (1974). Mercury in horizons of some soil profiles in Canada. Canadian Journal of Soil Science, 54, 503–507.

    Article  CAS  Google Scholar 

  60. McNeal, J. M., & Rose, A. W. (1974). The geochemistry of mercury in sedimentary rocks and soils in Pennsylvania. Geochimica et Cosmochimica Acta, 38, 1759–1784.

    Article  CAS  Google Scholar 

  61. Meili, M. (1991). Fluxes, pools, and turnover of mercury in Swedish forest lakes. Water, Air, and Soil Pollution, 56, 719–727.

    Article  CAS  Google Scholar 

  62. Millhollen, A. G., Gustin, M. S., & Obrist, D. (2006). Foliar mercury accumulation and exchange for three tree species. Environmental Science and Technology, 40, 6001–6006.

    Article  CAS  Google Scholar 

  63. Mills, J. G., & Zwarich, M. A. (1975). Heavy metal content of agricultural soils in Manitoba. Canadian Journal of Soil Science, 55, 295–300.

    Article  CAS  Google Scholar 

  64. Morishita, T., Kishino, K., & Idaka, S. (1982). Mercury contamination of soils, rice plants, and human hair in the vicinity of a mercury mine in Mie prefecture, Japan. Soil Science and Plant Nutrition, 28, 523–534.

    Article  CAS  Google Scholar 

  65. Munthe, J., & Hultberg, H. (2004). Mercury and methylmercury in runoff from a forested catchment – Concentrations, fluxes, and their response to manipulations. Water, Air, & Soil Pollution: Focus, 4, 607–618.

    Article  CAS  Google Scholar 

  66. Nater, E. A., & Grigal, D. F. (1992). Regional trends in mercury distribution across the Great Lakes states, north central USA. Nature, 358, 139–141.

    Article  CAS  Google Scholar 

  67. Nicholson, F., Rollet, A., & Chambers, B. (2010). The defra agricultural soil heavy metal inventory for 2008. Meden Vale: ADAS.

    Google Scholar 

  68. Nriagu, J. O. (1979). Production and uses of mercury. In J. O. Nriagu (Ed.), The biogeochemistry of mercury in the environment (pp. 23–40). Amsterdam: Elsevier. Chap 2.

    Google Scholar 

  69. Pacyna, E. G., Pacyna, J. M., Steenhuisen, F., & Wilson, S. (2006). Global anthropogenic mercury emission inventory for 2000. Atmospheric Environment, 40, 4048–4063.

    Article  CAS  Google Scholar 

  70. Padhi, P. N., Padhi, P., & Panigrahy, A. K. (2004). Assessment of deposition of MEMC (seed dressing fungicide) in exposed rice grain through study of seedling growth parameters. Journal of Environmental Biology, 25, 279–285.

    CAS  Google Scholar 

  71. Pfeiffer, W. C., Malm, O., Souza, C. M. M., Delacerda, L. D., Silveira, E. G., & Bastos, W. R. (1991). Mercury in the Madeira river ecosystem, Rondonia, Brazil. Forest Ecology and Management, 38, 239–245.

    Article  Google Scholar 

  72. Porvari, P., Verta, M., Munthe, J., & Haapanen, M. (2003). Forestry practices increase mercury and methyl mercury output from boreal forest catchments. Environmental Science and Technology, 37, 2389–2393.

    Article  CAS  Google Scholar 

  73. Qian, J., Skyllberg, U., Frech, W., Bleam, W. F., Bloom, P. R., & Petit, P. E. (2002). Bonding of methyl mercury to reduced sulfur groups in soil and stream organic water as determined by X-ray absorption spectroscopy and binding affinity studies. Geochimica et Cosmochimica Acta, 66, 3873–3885.

    Article  CAS  Google Scholar 

  74. Randall, P., Hedrick, E., Grimmet, P., Engle, M., & Ilyushchenko, M. (2004). Observations and analysis of mercury in topsoil within a 100 m radius of a chlor-alkali plant in northern Kazakhstan using EPA method 7473. In International conference on mercury as a global pollutant (Vol. 1, pp. 207–211). Ljubljana.

    Google Scholar 

  75. Rodriguez, J. A., Nanos, N., Grau, J. M., Gil, L., & Lopez-arias, M. (2008). Multiscale analysis of heavy metal contents in Spanish agricultural topsoils. Chemosphere, 70, 1085–1096.

    Article  CAS  Google Scholar 

  76. Rogers, R. D. (1977). Abiological methylation of mercury in soil. Journal of Environmental Quality, 6, 463–467.

    Article  CAS  Google Scholar 

  77. Rogers, R. D., & McFarlane, J. C. (1979). Factors influencing the volatilization of mercury from soil. Journal of Environmental Quality, 8, 255–260.

    Article  CAS  Google Scholar 

  78. Schroeder, W. H., Anlauf, K. G., Barrie, L. A., Lu, J. Y., Steffen, A., Schneeberger, D. R., & Berg, T. (1998). Arctic springtime depletion of mercury. Nature, 394, 331–332.

    Article  CAS  Google Scholar 

  79. Schuster, E. (1991). The behavior of mercury in the soil with special emphasis on complexation and adsorption processes – A review of the literature. Water, Air, and Soil Pollution, 56, 667–680.

    Article  CAS  Google Scholar 

  80. Schwesig, D., & Matzner, E. (2000). Pools and fluxes of mercury and methylmercury in two forested catchments in Germany. Science of the Total Environment, 260, 213–223.

    Article  CAS  Google Scholar 

  81. Sell, J. L., Deitz, F. D., & Buchanan, M. L. (1975). Concentration of mercury in animal products and soils of North Dakota. Archives of Environmental Contamination and Toxicology, 3, 278–288.

    Article  CAS  Google Scholar 

  82. Shacklette, H. T., Boerngen, J. G., & Turner, R. L. (1971). Mercury in the environment – Surficial materials of the conterminous United States (U.S. Geological Survey circular 644, p. 644). Washington, DC.

    Google Scholar 

  83. Skyllberg, U., Qian, J., Frech, W., Xia, K., & Bleam, W. F. (2003). Distribution of mercury, methyl mercury and organic sulfur species in soil, soil solution and stream of a boreal forest catchment. Biogeochemistry, 64, 53–76.

    Article  CAS  Google Scholar 

  84. Skyllberg, U., Bloom, P. R., Qian, J., Lin, C. M., & Bleam, W. F. (2006). Complexation of mercury(II) in soil organic matter: EXAFS evidence for linear two-coordination with reduced sulfur groups. Environmental Science and Technology, 40, 4174–4180.

    Article  CAS  Google Scholar 

  85. Skyllberg, U., Westin, M. B., Meili, M., & Björn, E. (2009). Elevated concentrations of methyl mercury in streams after forest clear-cut: A consequence of mobilization from soil or new methylation? Environmental Science and Technology, 43, 8535–8541.

    Article  CAS  Google Scholar 

  86. Steinnes, E. (1995). Mercury. In B. J. Alloway (Ed.), Heavy metals in soils (2nd ed., pp. 245–259). New York: Wiley.

    Chapter  Google Scholar 

  87. Steinnes, E., & Andersson, E. M. (1991). Atmospheric deposition of mercury in Norway: Temporal and spatial trends. Water, Air, and Soil Pollution, 56, 391–404.

    Article  CAS  Google Scholar 

  88. Steinnes, E., Hvatum, O. Ă˜., Bølviken, B., & Varskog, P. (2005). Atmospheric supply of trace elements studied by peat samples from ombrotrophic bogs. Journal of Environmental Quality, 34, 192–197.

    Article  CAS  Google Scholar 

  89. Steinnes, E., & Sjøbakk, T. E. (2005). Order-of-magnitude increase of Hg in Norwegian peat profiles since the onset of industrial activity in Europe. Environmental Pollution, 137, 365–370.

    Article  CAS  Google Scholar 

  90. Tack, F. M. G., Vanhaesebroeck, T., Verloo, M. G., Van Rompey, K., & Van Ranst, E. (2005). Mercury baseline levels in Flemish soils (Belgium). Environmental Pollution, 134, 173–179.

    Article  CAS  Google Scholar 

  91. Ure, A., & Berrow, M. L. (1982). The elemental composition of soils. In H. J. M. Bowen (Ed.), Environmental chemistry (Vol. 2, pp. 94–204). London: Royal Society of Chemistry.

    Chapter  Google Scholar 

  92. Varshal, G. M., Koshcheva, I. Y., Khushvakhtova, S. D., Velyukhanova, T. K., Tatsii, V. N., Danilova, V. N., Tyutunnik, D. N., Chkhtetiya, D. N., & Galuzinskaya, A. K. (1999). Complex formation of mercury with humic acids: An important stage of the biospheric mercury cycle. Geochemistry International, 37, 229–234.

    Google Scholar 

  93. Wedepohl, K. H. (1995). The composition of the continental crust. Geochimica et Cosmochimica Acta, 59, 1217–1232.

    Article  CAS  Google Scholar 

  94. Wängberg, I., Munthe, J., Berg, T., Ebinghaus, R., Kock, H. H., Temme, C., Bieber, I., Spain, T. G., & Stolk, A. (2007). Trends in air concentration and deposition of mercury in the coastal environment of the north sea area. Atmospheric Environment, 41, 2612–2619.

    Article  Google Scholar 

  95. Whitby, L. M., Gaynor, J., & MacLean, A. J. (1978). Metals in soils of some agricultural watersheds in Ontario. Canadian Journal of Soil Science, 58, 325–330.

    Article  CAS  Google Scholar 

  96. Wimmer, J. (1974). Researches on the movement and leaching of mercury in soil. Bodenkultur, 25, 369–379 (In German, English summary).

    CAS  Google Scholar 

  97. Wimmer, J., & Haunold, E. (1973). Untersuchungen Ă¼ber den Quecksilbergehalt österreichischer Böden mit hilfe der Neutronenaktivierungsanalyse. Bodenkultur, 24(1), 25–30 (In German, English summary).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiliv Steinnes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Steinnes, E. (2013). Mercury. In: Alloway, B. (eds) Heavy Metals in Soils. Environmental Pollution, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4470-7_15

Download citation

Publish with us

Policies and ethics