Skip to main content

Copper

  • Chapter
  • First Online:

Part of the book series: Environmental Pollution ((EPOL,volume 22))

Abstract

Background copper (Cu) concentrations in soil depend on geology and typically vary between 2 and 50 mg Cu kg−1. The widespread use of Cu has resulted in significant anthropogenic inputs to topsoils through atmospheric deposition and agricultural practices (fertilisers, pesticides, sewage sludge etc.). Copper mainly occurs in its divalent state (Cu2+) and has high affinity for binding to organic matter. Sorption processes control the solubility of Cu under most environmental conditions, but Cu precipitates can form in alkaline soils. The solid-liquid partitioning of Cu in soil is largely controlled by the soil pH and organic matter content, with higher solubility at low pH and low organic matter content. Except for acidic soils, most (>90%) of the dissolved Cu in soil is complexed with dissolved organic matter. Copper is an important essential element for all living organisms and deficiency in plants and ruminants occur in soils with low available Cu. Copper concentrations in plant shoots typically range between 4 and 15 mg Cu kg−1 dry matter (DM) and are well regulated over a wide soil Cu concentration range. Elevated soil Cu concentrations cause toxic effects in all terrestrial organisms (plants, invertebrates and micro-organisms). The toxicity of Cu largely depends on soil properties, which control the bioavailability of Cu in soil through their effect on precipitation, sorption and complexation processes. Predicted no effect concentrations (PNECs), protecting 95% of all species or microbial processes, vary between approximately 10 and 200 mg Cu kg−1 soil and increase with increasing cation exchange capacity, clay and organic matter content.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Amery, F., Degryse, F., Cheyns, K., De Troyer, I., Mertens, J., Merckx, R., & Smolders, E. (2008). The UV-absorbance of dissolved organic matter predicts the fivefold variation in its affinity for mobilizing Cu in an agricultural soil horizon. European Journal of Soil Science, 59(6), 1087–1095.

    Article  CAS  Google Scholar 

  2. Ashworth, D. J., & Alloway, B. J. (2007). Complexation of copper by sewage sludge-derived dissolved organic matter: Effects on soil sorption behaviour and plant uptake. Water, Air, and Soil Pollution, 182(1–4), 187–196.

    Article  CAS  Google Scholar 

  3. Brandt, K. K., Frandsen, R. J. N., Holm, P. E., & Nybroe, O. (2010). Development of pollution-induced community tolerance is linked to structural and functional resilience of a soil bacterial community following a five-year field exposure to copper. Soil Biology and Biochemistry, 42(5), 748–757.

    Article  CAS  Google Scholar 

  4. Bravin, M. N., Marti, A. L., Clairotte, M., & Hinsinger, P. (2009). Rhizosphere alkalisation – A major driver of copper bioavailability over a broad pH range in an acidic, copper-contaminated soil. Plant and Soil, 318(1–2), 257–268.

    Article  CAS  Google Scholar 

  5. Brennan, R. F., Gartrell, J. W., & Robson, A. D. (1980). Reactions of copper with soil affecting its availability to plants.1. Effect of soil type and time. Australian Journal of Soil Research, 18(4), 447–459.

    Article  CAS  Google Scholar 

  6. Brennan, R. F., Robson, A. D., & Gartrell, J. W. (1983). Reactions of copper with soil affecting its availability to plants.2. Effect of soil-pH, soil sterilization and organic-matter on the availability of applied copper. Australian Journal of Soil Research, 21(2), 155–163.

    Article  CAS  Google Scholar 

  7. Brennan, R. F., Gartrell, J. W., & Robson, A. D. (1984). Reactions of copper with soil affecting its availability to plants.3. Effect of incubation-temperature. Australian Journal of Soil Research, 22(2), 165–172.

    Article  CAS  Google Scholar 

  8. Brennan, R. F., Gartrell, J. W., & Robson, A. D. (1986). The decline in the availability to plants of applied copper fertilizer. Australian Journal of Soil Research, 37(2), 107–113.

    CAS  Google Scholar 

  9. Broos, K., Warne, M. S. J., Heemsbergen, D. A., Stevens, D., Barnes, M. B., Correll, R. L., et al. (2007). Soil factors controlling the toxicity of copper and zinc to microbial processes in Australian soils. Environmental Toxicology and Chemistry, 26(4), 583–590.

    Article  CAS  Google Scholar 

  10. Buekers, J., Van Laer, L., Amery, F., Van Buggenhout, S., Maes, A., & Smolders, E. (2007). Role of soil constituents in fixation of soluble Zn, Cu, Ni and Cd added to soils. European Journal of Soil Science, 58(6), 1514–1524.

    Article  CAS  Google Scholar 

  11. Buekers, J., Degryse, F., Maes, A., & Smolders, E. (2008). Modelling the effects of ageing on Cd, Zn, Ni and Cu solubility in soils using an assemblage model. European Journal of Soil Science, 59(6), 1160–1170.

    Article  CAS  Google Scholar 

  12. Bunzl, K., Schmidt, W., & Sansoni, B. (1976). Kinetics of ion-exchange in soil organic-matter. 4. Adsorption and desorption of Pb2+, Cu2+, Cd2+, Zn2+ and Ca2+ by peat. Journal of Soil Science, 27(1), 32–41.

    Article  CAS  Google Scholar 

  13. Cavallaro, N., & McBride, M. B. (1978). Copper and cadmium adsorption characteristics of selected acid and calcareous soils. Soil Science Society of America Journal, 42(4), 550–556.

    Article  CAS  Google Scholar 

  14. Chen, J. S., Wei, F. S., Zheng, C. J., Wu, Y. Y., & Adriano, D. C. (1991). Background concentrations of elements in soils of China. Water, Air, and Soil Pollution, 57–8, 699–712.

    Article  Google Scholar 

  15. Cox, F. R. (1992). Residual value of copper fertilization. Communications in Soil Science and Plant Analysis, 23(1–2), 101–112.

    Article  CAS  Google Scholar 

  16. Criel, P., Lock, K., Van Eeckhout, H., Oorts, K., Smolders, E., & Janssen, C. R. (2008). Influence of soil properties on copper toxicity for two soil invertebrates. Environmental Toxicology and Chemistry, 27(8), 1748–1755.

    Article  CAS  Google Scholar 

  17. Davis, R. D., & Beckett, P. H. T. (1978). Upper critical levels of toxic elements in plants.2. Critical levels of copper in young barley, wheat, rape, lettuce and ryegrass, and of nickel and zinc in young barley and ryegrass. New Phytologist, 80(1), 23–32.

    Article  CAS  Google Scholar 

  18. Degryse, F., Verma, V. K., & Smolders, E. (2008). Mobilization of Cu and Zn by root exudates of dicotyledonous plants in resin-buffered solutions and in soil. Plant and Soil, 306(1–2), 69–84.

    Article  CAS  Google Scholar 

  19. Degryse, F., Smolders, E., & Parker, D. R. (2009). Partitioning of metals (Cd, Co, Cu, Ni, Pb, Zn) in soils: Concepts, methodologies, prediction and applications – A review. European Journal of Soil Science, 60(4), 590–612.

    Article  CAS  Google Scholar 

  20. Dierkes, C., & Geiger, W. F. (1999). Pollution retention capabilities of roadside soils. Water Science and Technology, 39(2), 201–208.

    Article  CAS  Google Scholar 

  21. Du Laing, G., Vanthuyne, D. R. J., Vandecasteele, B., Tack, F. M. G., & Verloo, M. G. (2007). Influence of hydrological regime on pore water metal concentrations in a contaminated sediment-derived soil. Environmental Pollution, 147(3), 615–625.

    Article  Google Scholar 

  22. Dudka, S., Poncehernandez, R., & Hutchinson, T. C. (1995). Current level of total element concentrations in the surface-layer of Sudbury’s soils. Science of the Total Environment, 162(2–3), 161–171.

    Article  Google Scholar 

  23. Elberling, B., Breuning-Madsen, H., Hinge, H., & Asmund, G. (2010). Heavy metals in 3300-year-old agricultural soils used to assess present soil contamination. European Journal of Soil Science, 61(1), 74–83.

    Article  CAS  Google Scholar 

  24. Epstein, L., & Bassein, S. (2001). Pesticide applications of copper on perennial crops in California, 1993 to 1998. Journal of Environmental Quality, 30(5), 1844–1847.

    Article  CAS  Google Scholar 

  25. EU. (1986). Council directive 86/278/EEC of 12 June 1986 on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture.

    Google Scholar 

  26. EU. (2008). European Union risk assessment report. Voluntary risk assessment of copper, copper II sulphate pentahydrate, copper(I)oxide, copper(II)oxide, dicopper chloride trihydroxide. http://echa.europa.eu/chem_data/transit_measures/vrar_en.asp

  27. European copper institute. (2010). http://www.eurocopper.org/copper/copper-information.html

  28. Fait, G., Broos, K., Zrna, S., Lombi, E., & Hamon, R. (2006). Tolerance of nitrifying bacteria to copper and nickel. Environmental Toxicology and Chemistry, 25(8), 2000–2005.

    Article  CAS  Google Scholar 

  29. Garcia, R., Maiz, I., & Millan, E. (1996). Heavy metal contamination analysis of roadsoils and grasses from Gipuzkoa (Spain). Environmental Technology, 17(7), 763–770.

    Article  CAS  Google Scholar 

  30. Han, F. X., & Banin, A. (1999). Long-term transformation and redistribution of potentially toxic heavy metals in arid-zone soils: II. Incubation at the field capacity moisture content. Water, Air, and Soil Pollution, 114(3–4), 221–250.

    Article  CAS  Google Scholar 

  31. Hasan, A. R., Hu, L. G., Solo-Gabriele, H. M., Fieber, L., Cai, Y., & Townsend, T. G. (2010). Field-scale leaching of arsenic, chromium and copper from weathered treated wood. Environmental Pollution, 158(5), 1479–1486.

    Article  CAS  Google Scholar 

  32. Heemsbergen, D. A., Warne, M. S. J., Broos, K., Bell, M., Nash, D., McLaughlin, M., et al. (2009). Application of phytotoxicity data to a new Australian soil quality guideline framework for biosolids. Science of the Total Environment, 407(8), 2546–2556.

    Article  CAS  Google Scholar 

  33. Heemsbergen, D. A., McLaughlin, M. J., Whatmuff, M., Warne, M. S., Broos, K., Bell, M., et al. (2010). Bioavailability of zinc and copper in biosolids compared to their soluble salts. Environmental Pollution, 158(5), 1907–1915.

    Article  CAS  Google Scholar 

  34. Hogg, D. S., McLaren, R. G., & Swift, R. S. (1993). Desorption of copper from some New-Zealand soils. Soil Science Society of America Journal, 57(2), 361–366.

    Article  CAS  Google Scholar 

  35. Holmgren, G. G. S., Meyer, M. W., Chaney, R. L., & Daniels, R. B. (1993). Cadmium, lead, zinc, copper, and nickel in agricultural soils of the United-States-of-America. Journal of Environmental Quality, 22(2), 335–348.

    Article  CAS  Google Scholar 

  36. Hong, S. M., Candelone, J. P., Soutif, M., & Boutron, C. F. (1996). A reconstruction of changes in copper production and copper emissions to the atmosphere during the past 7000 years. Science of the Total Environment, 188(2–3), 183–193.

    Article  CAS  Google Scholar 

  37. Kabata-Pendias, A. (2001). Trace elements in soils and plants (3rd ed.). New York: CRC Press.

    Google Scholar 

  38. Komarek, M., Cadkova, E., Chrastny, V., Bordas, F., & Bollinger, J. C. (2010). Contamination of vineyard soils with fungicides: A review of environmental and toxicological aspects. Environment International, 36(1), 138–151.

    Article  CAS  Google Scholar 

  39. Kopittke, P. M., & Menzies, N. W. (2006). Effect of Cu toxicity on growth of cowpea (Vigna unguiculata). Plant and Soil, 279(1–2), 287–296.

    Article  CAS  Google Scholar 

  40. Li, B., Ma, Y. B., McLaughlin, M. J., Kirby, J. K., Cozens, G., & Liu, J. F. (2010). Influences of soil properties and leaching on copper toxicity to barley root elongation. Environmental Toxicology and Chemistry, 29(4), 835–842.

    Article  CAS  Google Scholar 

  41. Li, X. F., Sun, J. W., Huang, Y. Z., Ma, Y. B., & Zhu, Y. G. (2010). Copper toxicity thresholds in Chinese soils based on substrate-induced nitrification assay. Environmental Toxicology and Chemistry, 29(2), 294–300.

    Article  CAS  Google Scholar 

  42. Lide, D. R. (Ed.). (2009). CRC handbook of chemistry and physics. 89th Edition (CD-ROM version). Boca Raton, FL: CRC Press/Taylor and Francis.

    Google Scholar 

  43. Lofts, S., Spurgeon, D. J., Svendsen, C., & Tipping, E. (2004). Deriving soil critical limits for Cu, Zn, Cd, and Ph: A method based on free ion concentrations. Environmental Science and Technology, 38(13), 3623–3631.

    Article  CAS  Google Scholar 

  44. Lombi, E., Hamon, R. E., McGrath, S. P., & McLaughlin, M. J. (2003). Lability of Cd, Cu, and Zn in polluted soils treated with lime, beringite, and red mud and identification of a non-labile colloidal fraction of metals using isotopic techniques. Environmental Science and Technology, 37(5), 979–984.

    Article  CAS  Google Scholar 

  45. Loredo, J., Alvarez, R., Ordonez, A., & Bros, T. (2008). Mineralogy and geochemistry of the Texeo Cu-Co mine site (NW Spain): Screening tools for environmental assessment. Environmental Geology, 55(6), 1299–1310.

    Article  CAS  Google Scholar 

  46. Ma, Y. B., Lombi, E., Nolan, A. L., & McLaughlin, M. J. (2006). Short-term natural attenuation of copper in soils: Effects of time, temperature, and soil characteristics. Environmental Toxicology and Chemistry, 25(3), 652–658.

    Article  CAS  Google Scholar 

  47. Ma, Y. B., Lombi, E., Oliver, I. W., Nolan, A. L., & McLaughlin, M. J. (2006). Long-term aging of copper added to soils. Environmental Science and Technology, 40(20), 6310–6317.

    Article  CAS  Google Scholar 

  48. Macnicol, R. D., & Beckett, P. H. T. (1985). Critical tissue concentrations of potentially toxic elements. Plant and Soil, 85(1), 107–129.

    Article  CAS  Google Scholar 

  49. Marino, F., Ligero, A., & Cosin, D. J. D. (1992). Heavy-metals and earthworms on the border of a road next to Santiago (Galicia, Northwest of Spain) – Initial results. Soil Biology and Biochemistry, 24(12), 1705–1709.

    Article  CAS  Google Scholar 

  50. Marschner, H. (1995). Mineral nutrition of higher plants (2nd ed.). London: Academic.

    Google Scholar 

  51. McLaren, R. G., & Crawford, D. V. (1973). Studies on soil copper.1. Fractionation of copper in soils. Journal of Soil Science, 24(2), 172–181.

    Article  CAS  Google Scholar 

  52. Mench, M., & Bes, C. (2009). Assessment of ecotoxicity of topsoils from a wood treatment site. Pedosphere, 19(2), 143–155.

    Article  CAS  Google Scholar 

  53. Menzies, N. W., Donn, M. J., & Kopittke, P. M. (2007). Evaluation of extractants for estimation of the phytoavailable trace metals in soils. Environmental Pollution, 145(1), 121–130.

    Article  CAS  Google Scholar 

  54. Mertens, J., Wakelin, S. A., Broos, K., McLaughlin, M. J., & Smolders, E. (2010). Extent of copper tolerance and consequences for functional stability of the ammonia-oxidizing community in long-term copper-contaminated soils. Environmental Toxicology and Chemistry, 29(1), 27–37.

    Article  CAS  Google Scholar 

  55. Michaud, A. M., Bravin, M. N., Galleguillos, M., & Hinsinger, P. (2007). Copper uptake and phytotoxicity as assessed in situ for durum wheat (Triticum turgidum durum L.) cultivated in Cu-contaminated, former vineyard soils. Plant and Soil, 298(1–2), 99–111.

    Article  CAS  Google Scholar 

  56. Nagajyoti, P. C., Lee, K. D., & Sreekanth, T. V. M. (2010). Heavy metals, occurrence and toxicity for plants: A review. Environmental Chemistry Letters, 8(3), 199–216.

    Article  CAS  Google Scholar 

  57. Nicholson, F. A., Smith, S. R., Alloway, B. J., Carlton-Smith, C., & Chambers, B. J. (2003). An inventory of heavy metals inputs to agricultural soils in England and Wales. Science of the Total Environment, 311(1–3), 205–219.

    Article  CAS  Google Scholar 

  58. Nolan, A. L., Ma, Y. B., Lombi, E., & McLaughlin, M. J. (2004). Measurement of labile Cu in soil using stable isotope dilution and isotope ratio analysis by ICP-MS. Analytical and Bioanalytical Chemistry, 380(5–6), 789–797.

    Article  CAS  Google Scholar 

  59. Nriagu, J. O. (1989). A global assessment of natural sources of atmospheric trace-metals. Nature, 338(6210), 47–49.

    Article  CAS  Google Scholar 

  60. Nriagu, J. O. (1996). A history of global metal pollution. Science, 272(5259), 223–224.

    Article  CAS  Google Scholar 

  61. Nriagu, J. O., & Pacyna, J. M. (1988). Quantitative assessment of worldwide contamination of air, water and soils by trace-metals. Nature, 333(6169), 134–139.

    Article  CAS  Google Scholar 

  62. Oliver, I. W., Merrington, G., & McLaughlin, M. J. (2004). Australian biosolids: Characterization and determination of available copper. Environmental Chemistry, 1(2), 116–124.

    Article  CAS  Google Scholar 

  63. Oliver, I. W., Hass, A., Merrington, G., Fine, P., & McLaughlin, M. J. (2005). Copper availability in seven Israeli soils incubated with and without biosolids. Journal of Environmental Quality, 34(2), 508–513.

    Article  CAS  Google Scholar 

  64. Oorts, K., Bronckaers, H., & Smolders, E. (2006). Discrepancy of the microbial response to elevated copper between freshly spiked and long-term contaminated soils. Environmental Toxicology and Chemistry, 25(3), 845–853.

    Article  CAS  Google Scholar 

  65. Oorts, K., Ghesquiere, U., Swinnen, K., & Smolders, E. (2006). Soil properties affecting the toxicity of CuCl2 and NiCl2 for soil microbial processes in freshly spiked soils. Environmental Toxicology and Chemistry, 25(3), 836–844.

    Article  CAS  Google Scholar 

  66. Padmanabham, M. (1983). Adsorption-desorption behavior of copper(II) at the goethite-solution interface. Australian Journal of Soil Research, 21(3), 309–320.

    Article  CAS  Google Scholar 

  67. Payne, G. G., Martens, D. C., Winarko, C., & Perera, N. F. (1988). Form and availability of copper and zinc following long-term copper-sulfate and zinc-sulfate applications. Journal of Environmental Quality, 17(4), 707–711.

    Article  CAS  Google Scholar 

  68. Pedersen, M. B., & van Gestel, C. A. M. (2001). Toxicity of copper to the collembolan Folsomia fimetaria in relation to the age of soil contamination. Ecotoxicology and Environmental Safety, 49(1), 54–59.

    Article  Google Scholar 

  69. Pedersen, M. B., Kjaer, C., & Elmegaard, N. (2000). Toxicity and bioaccumulation of copper to black bindweed (Fallopia convolvulus) in relation to bioavailability and the age of soil contamination. Archives of Environmental Contamination and Toxicology, 39(4), 431–439.

    Article  CAS  Google Scholar 

  70. Ponizovsky, A. A., Thakali, S., Allen, H. E., Di Toro, D. M., & Ackerman, A. J. (2006). Effect of soil properties on copper release in soil solutions at low moisture content. Environmental Toxicology and Chemistry, 25(3), 671–682.

    Article  CAS  Google Scholar 

  71. Provoost, J., Cornelis, C., & Swartjes, F. (2006). Comparison of soil clean-up standards for trace elements between countries: Why do they differ? Journal of Soil Sediments, 6(3), 173–181.

    Article  CAS  Google Scholar 

  72. Pulford, I. D., & Watson, C. (2003). Phytoremediation of heavy metal-contaminated land by trees – A review. Environment International, 29(4), 529–540.

    Article  CAS  Google Scholar 

  73. Reimann, C., & Garrett, R. G. (2005). Geochemical background – Concept and reality. Science of the Total Environment, 350(1–3), 12–27.

    Article  CAS  Google Scholar 

  74. Romkens, P., Bouwman, L. A., & Boon, G. T. (1999). Effect of plant growth on copper solubility and speciation in soil solution samples. Environmental Pollution, 106(3), 315–321.

    Article  CAS  Google Scholar 

  75. Rooney, C. P., Zhao, F. J., & McGrath, S. P. (2006). Soil factors controlling the expression of copper toxicity to plants in a wide range of European soils. Environmental Toxicology and Chemistry, 25(3), 726–732.

    Article  CAS  Google Scholar 

  76. Sadhra, S. S., Wheatley, A. D., & Cross, H. J. (2007). Dietary exposure to copper in the European Union and its assessment for EU regulatory risk assessment. Science of the Total Environment, 374(2–3), 223–234.

    Article  CAS  Google Scholar 

  77. Salminen, R. (Ed.). (2005). Geochemical atlas of Europe. Part 1: Background information, methodology and maps. Espoo: Geological Survey of Finland.

    Google Scholar 

  78. Sauve, S., McBride, M. B., Norvell, W. A., & Hendershot, W. H. (1997). Copper solubility and speciation of in situ contaminated soils: Effects of copper level, pH and organic matter. Water, Air, and Soil Pollution, 100(1–2), 133–149.

    Article  CAS  Google Scholar 

  79. Sauve, S., Hendershot, W., & Allen, H. E. (2000). Solid-solution partitioning of metals in contaminated soils: Dependence on pH, total metal burden, and organic matter. Environmental Science and Technology, 34(7), 1125–1131.

    Article  CAS  Google Scholar 

  80. Scott-Fordsmand, J. J., Krogh, P. H., & Weeks, J. M. (2000). Responses of Folsomia fimetaria (Collembola: Isotomidae) to copper under different soil copper contamination histories in relation to risk assessment. Environmental Toxicology and Chemistry, 19(5), 1297–1303.

    CAS  Google Scholar 

  81. Scott-Fordsmand, J. J., Weeks, J. M., & Hopkin, S. P. (2000). Importance of contamination history for understanding toxicity of copper to earthworm Eisenia fetica (Oligochaeta: Annelida), using neutral-red retention assay. Environmental Toxicology and Chemistry, 19(7), 1774–1780.

    CAS  Google Scholar 

  82. Sheldon, A. R., & Menzies, N. W. (2005). The effect of copper toxicity on the growth and root morphology of Rhodes grass (Chloris gayana Knuth.) in resin buffered solution culture. Plant and Soil, 278(1–2), 341–349.

    Article  CAS  Google Scholar 

  83. Shorrocks, V. M., & Alloway, B. J. (1985). Copper in plant, animal and human nutrition. (Copper Develop. Assoc., Report TN 35), Orchard House, Potters Bar, Herts.

    Google Scholar 

  84. Smolders, E., Oorts, K., Lombi, E., Schoeters, I., Ma, Y., Zrna, S., & McLaughlin, M. J. (2012). The availability of copper in soils historically amended with sewage sludge, manure and compost. Journal of Environmental Quality, 41(2), 506–514.

    Google Scholar 

  85. Smolders, E., Oorts, K., van Sprang, P., Schoeters, I., Janssen, C. R., McGrath, S. P., et al. (2009). Toxicity of trace metals in soil as affected by soil type and aging after contamination: Using calibrated bioavailability models to set ecological soil standards. Environmental Toxicology and Chemistry, 28(8), 1633–1642.

    Article  CAS  Google Scholar 

  86. Stuckey, J. W., Neaman, A., Ravella, R., Komarneni, S., & Martinez, C. E. (2008). Highly charged swelling mica reduces free and extractable Cu levels in Cu-contaminated soils. Environmental Science and Technology, 42(24), 9197–9202.

    Article  CAS  Google Scholar 

  87. Suttle, N. F. (1991). The interactions between copper, molybdenum, and sulfur in ruminant nutrition. Annual Review of Nutrition, 11, 121–140.

    Article  CAS  Google Scholar 

  88. Thakali, S., Allen, H. E., Di Toro, D. M., Ponizovsky, A. A., Rooney, C. P., Zhao, F. J., et al. (2006). A terrestrial biotic ligand model.1. Development and application to Cu and Ni toxicities to barley root elongation in soils. Environmental Science and Technology, 40(22), 7085–7093.

    Article  CAS  Google Scholar 

  89. Thakali, S., Allen, H. E., Di Toro, D. M., Ponizovsky, A. A., Rooney, C. P., Zhao, F. J., et al. (2006). Terrestrial biotic ligand model. 2. Application to Ni and Cu toxicities to plants, invertebrates, and microbes in soil. Environmental Science and Technology, 40(22), 7094–7100.

    Article  CAS  Google Scholar 

  90. U.S. environmental protection agency (2007). Ecological soil screening levels for copper. Interim Final. OSWER Directive 9285.7-68. Washington, DC: USEPA.

    Google Scholar 

  91. Valladares, G. S., de Camargo, O. A., de Carvalho, J. R. P., & Silva, A. M. C. (2009). Assessment of heavy metals in soils of a vineyard region with the use of principal component analysis. Scientia Agricola, 66(3), 361–367.

    Article  CAS  Google Scholar 

  92. Vega, F. A., Covelo, E. F., & Andrade, M. L. (2009). The role of cation exchange in the sorption of cadmium, copper and lead by soils saturated with magnesium. Journal of Hazardous Materials, 171(1–3), 262–267.

    Article  CAS  Google Scholar 

  93. Warne, M. S. J., Heemsbergen, D., Stevens, D., McLaughlin, M., Cozens, G., Whatmuff, M., et al. (2008). Modeling the toxicity of copper and zinc salts to wheat in 14 soils. Environmental Toxicology and Chemistry, 27(4), 786–792.

    Article  Google Scholar 

  94. Weber, F. A., Voegelin, A., & Kretzschmar, R. (2009). Multi-metal contaminant dynamics in temporarily flooded soil under sulfate limitation. Geochimica et Cosmochimica Acta, 73(19), 5513–5527.

    Article  CAS  Google Scholar 

  95. Williams, J. G., & McLaren, R. G. (1982). Effects of dry and moist incubation of soils on the extractability of native and applied soil copper. Plant and Soil, 64(2), 215–224.

    Article  CAS  Google Scholar 

  96. World Health Organization. (1996). Trace elements in human nutrition and health. Geneva: WHO.

    Google Scholar 

  97. Wu, J., Laird, D. A., & Thompson, M. L. (1999). Sorption and desorption of copper on soil clay components. Journal of Environmental Quality, 28(1), 334–338.

    Article  CAS  Google Scholar 

  98. Zhao, F. J., Rooney, C. P., Zhang, H., & McGrath, S. P. (2006). Comparison of soil solution speciation and diffusive gradients in thin-films measurement as an indicator of copper bioavailability to plants. Environmental Toxicology and Chemistry, 25(3), 733–742.

    Article  CAS  Google Scholar 

  99. Zhao, F. J., McGrath, S. P., & Merrington, G. (2007). Estimates of ambient background concentrations of trace metals in soils for risk assessment. Environmental Pollution, 148(1), 221–229.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koen Oorts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Oorts, K. (2013). Copper. In: Alloway, B. (eds) Heavy Metals in Soils. Environmental Pollution, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4470-7_13

Download citation

Publish with us

Policies and ethics