Skip to main content

Cobalt and Manganese

  • Chapter
  • First Online:
Heavy Metals in Soils

Part of the book series: Environmental Pollution ((EPOL,volume 22))

Abstract

Cobalt (Co) and manganese (Mn) are closely associated in soils because they have similar chemical properties. The main forms of Mn in soil are the water-soluble and exchangeable forms of Mn(II) and the insoluble Mn oxides, mainly Mn(IV) and to a lesser and more uncertain extent as Mn(III). The concentration of water-soluble plus exchangeable Mn(II) (WS+Exch Mn) is determined by the relative rates of the chemically independent and physically separate reactions, the microbial oxidation of Mn(II) and the chemical reduction of the Mn oxides (by organic matter). The solubility and availability of Co to plants is influenced greatly by the activity of the Mn oxides and the reactions which affect Mn. The Mn oxides also participate in sorption and oxidation reactions which impact on soil health in that the former affects the availability of trace metals and the latter oxidises organic moieties, of which some are phytotoxic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams, S. N., & Honeysett, J. L. (1964). Some effects of waterlogging on the cobalt and copper status of pasture plants in pots. Australian Journal of Agricultural Research, 15, 357–367.

    CAS  Google Scholar 

  2. Adams, S. N., Honeysett, J. L., Tiller, K. G., & Norrish, K. (1969). Factors controlling the increase of cobalt in plants following the addition of a cobalt fertiliser. Australian Journal of Soil Research, 7, 29–42.

    CAS  Google Scholar 

  3. Adams, K. M., Japar, S. M., & Pierson, W. R. (1986). The development of a MnO2-coated, cylindrical denuder for removing NO2 from atmospheric samples. Atmospheric Environment, 20, 1211–1215.

    CAS  Google Scholar 

  4. Alexander, M. (1994). Biodegradation and bioremediation. San Diego: Academic.

    Google Scholar 

  5. Anderson, J. U., & O’Connor, G. A. (1972). Production of permanganate ion by sodium hypochlorite treatment to remove soil organic matter. Proceedings of the Soil Science Society of America, 36, 973–975.

    CAS  Google Scholar 

  6. Arines, J., Vilariño, A., & Sainz, M. (1989). Effect of different inocula of vesicular-arbuscular mycorrhizal fungi on manganese content and concentration in red clover (Trifolium pratense L.) plants. New Phytologist, 112, 215–219.

    Google Scholar 

  7. Bakkaus, E., Collins, R. N., Morel, J.-L., & Gouget, B. (2008). Potential phytoavailability of anthropogenic cobalt in soils as measured by isotope dilution techniques. Science of the Total Environment, 406, 108–115.

    CAS  Google Scholar 

  8. Barrow, N. J. (1998). Effects of time and temperature on the sorption of cadmium, zinc, cobalt, and nickel by soil. Australian Journal of Soil Research, 36, 941–950.

    CAS  Google Scholar 

  9. Beckett, P. H. T. (1989). The use of extractants in studies on trace metals in soils, sewage sludges, and sludge-treated soils. Advances in Soil Sciences, 9, 143–176.

    Google Scholar 

  10. Bethlenfalvay, G. J., & Franson, R. L. (1989). Manganese toxicity alleviated by mycorrhizae in soybean. Journal of Plant Nutrition, 12, 953–970.

    CAS  Google Scholar 

  11. Bonfante, P., & Anca, I. (2009). Plants, mycorrhizal fungi, and bacteria: A network of interactions. Annual Review of Microbiology, 63, 363–383.

    CAS  Google Scholar 

  12. Brennan, R. F. (2001). Residual value of zinc fertiliser for production of wheat. Australian Journal of Experimental Agriculture, 41, 541–547.

    CAS  Google Scholar 

  13. Brennan, R. F. (2006). Long-term residual value of copper fertiliser for production of wheat. Australian Journal of Experimental Agriculture, 46, 77–83.

    CAS  Google Scholar 

  14. Brennan, R. F., Gartrell, J. W., & Adcock, K. G. (2001). Residual value of manganese fertiliser for lupin grain production. Australian Journal of Experimental Agriculture, 41, 1187–1197.

    CAS  Google Scholar 

  15. Bromfield, S. M. (1956). Oxidation of manganese by soil microorganisms. Australian Journal of Biological Sciences, 9, 238–252.

    CAS  Google Scholar 

  16. Bromfield, S. M. (1976). The deposition of manganese oxide by an alga on acid soil. Australian Journal of Soil Research, 14, 95–102.

    CAS  Google Scholar 

  17. Bromfield, S. M. (1978). The oxidation of manganous ions under acidic conditions by an acidiphilous actinomycete from an acid soil. Australian Journal of Soil Research, 16, 91–100.

    CAS  Google Scholar 

  18. Bromfield, S. M., & David, D. J. (1978). Properties of biologically formed manganese oxide in relation to soil manganese. Australian Journal of Soil Research, 16, 79–89.

    CAS  Google Scholar 

  19. Cahyani, V. R., Murase, J., Ishibashi, E., Asakawa, S., & Kimura, M. (2007). Bacterial communities in manganese nodules in rice field subsoils. Soil Science and Plant Nutrition, 53, 575–584.

    CAS  Google Scholar 

  20. Cahyani, V. R., Murase, J., Ishibashi, E., Asakawa, S., & Kimura, M. (2009). Phylogenetic positions of Mn2+-oxidizing bacteria and fungi isolated from Mn nodules in rice field subsoils. Biology and Fertility of Soils, 45, 337–346.

    Google Scholar 

  21. Chen, Z., Kim, K.-W., Zhu, Y.-G., McLaren, R., Liu, F., & He, J.-Z. (2006). Adsorption (AsIII, V) and oxidation (AsIII) by pedogenic Fe-Mn nodules. Geoderma, 136, 566–572.

    CAS  Google Scholar 

  22. Childs, C. W. (1975). Composition of iron-manganese concretions from some New Zealand soils. Geoderma, 13, 141–152.

    CAS  Google Scholar 

  23. Clark, J. S. (1970). Distribution constant for exchange of calcium and manganese in Wyoming bentonite. Canadian Journal of Soil Science, 50, 85–86.

    CAS  Google Scholar 

  24. Clark, R. B., & Zeto, S. K. (2000). Mineral acquisition by arbuscular mycorrhizal plants. Journal of Plant Nutrition, 23, 867–902.

    CAS  Google Scholar 

  25. Conyers, M. K., Uren, N. C., & Helyar, K. R. (1995). Causes of changes in pH in acidic mineral soils. Soil Biology and Biochemistry, 27, 1383–1392.

    CAS  Google Scholar 

  26. Conyers, M. K., Uren, N. C., Helyar, K. R., Poile, G. J., & Cullis, B. R. (1997). Temporal variation in soil acidity. Australian Journal of Soil Research, 35, 1115–1129.

    Google Scholar 

  27. Cornu, S., Montagne, D., & Vasconcelos, P. M. (2009). Dating constituent formation in soils to determine rates of soil processes: A review. Geoderma, 153, 293–303.

    CAS  Google Scholar 

  28. Crowther, D. L., Dillard, J. G., & Murray, J. W. (1983). The mechanism of Co(II) oxidation on synthetic birnessite. Geochimica et Cosmochimica Acta, 47, 1399–1403.

    CAS  Google Scholar 

  29. David, D. J., & Williams, C. H. (1979). Effects of cultivation on the availability of metals accumulated in agricultural and sewage-treated soils. Progress in Water Technology, 11, 257–264.

    CAS  Google Scholar 

  30. De Groot, A. J. (1973). Occurrence and behaviour of heavy metals in river deltas, with special reference to the Rhine and Ems Rivers. In E. D. Goldberg (Ed.), North Sea sciences (pp. 308–325). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  31. Diem, D., & Stumm, W. (1984). Is dissolved Mn2+ being oxidized by O2 in absence of Mn-bacteria or surface catalysts? Geochimica et Cosmochimica Acta, 48, 1571–1573.

    CAS  Google Scholar 

  32. Fallab, S. (1967). Reactions with molecular oxygen. Angewandte Chemie International Edition, 6, 496–507.

    CAS  Google Scholar 

  33. Fatiadi, A. (1986). The oxidation of organic compounds by active manganese dioxide. In W. Mijs & C. R. H. I. de Jonge (Eds.), Organic synthesis by oxidation with metal compounds (pp. 119–241). New York: Plenum Press.

    Google Scholar 

  34. Feng, X. H., Zhai, L. M., Tan, W. F., Liu, F., & He, J. Z. (2007). Adsorption and redox reactions of heavy metals on synthesized Mn oxide minerals. Environmental Pollution, 147, 366–373.

    CAS  Google Scholar 

  35. Fleming, G. A. (1983). Aspects of the soil chemistry of cobalt. In S. S. Augustithis (Ed.), The significance of trace elements in solving petrogenetic problems & controversies (pp. 731–743). Athens: Theophrastus Publications.

    Google Scholar 

  36. Ghiorse, W. C. (1988). The biology of manganese transforming microorganisms in soil. In R. D. Graham, R. J. Hannam, & N. C. Uren (Eds.), Manganese in soils and plants (pp. 75–85). Dordrecht: Kluwer Academic.

    Google Scholar 

  37. Ghiorse, W. C., & Hirsch, P. (1979). An ultrastructural study of iron and manganese deposition associated with extracellular polymers of Pedomicrobium-like bacteria. Archives of Microbiology, 123, 213–226.

    CAS  Google Scholar 

  38. Gilbert, M. (1970). Thermodynamic study of calcium-manganese exchange on Camp-Berteau montmorillonite. Soil Science, 102, 23–25.

    Google Scholar 

  39. Gilkes, R. J., & McKenzie, R. M. (1988). Geochemistry and mineralogy of manganese in soils. In R. D. Graham, R. J. Hannam, & N. C. Uren (Eds.), Manganese in soils and plants (pp. 23–35). Dordrecht: Kluwer Academic.

    Google Scholar 

  40. Goldberg, S. P., Smith, K. A., & Holmes, J. C. (1983). The effects of soil compaction, form of nitrogen fertiliser, and fertiliser placement on the availability of manganese to barley. Journal of the Science of Food and Agriculture, 34, 657–670.

    CAS  Google Scholar 

  41. Goldschmidt, V. M. (1958). Geochemistry. London: Oxford University Press.

    Google Scholar 

  42. Greenberg, W. A., & Wilding, L. P. (1998). Evidence for contemporary and relict redoximorphic features of an alfisol in east-central Texas. In M. C. Rabenhorst, J. Bell, & P. McDaniel (Eds.), Quantifying soil hydromorphology (Soil Science Society of America special publication, Vol. 54, pp. 227–246). Madison: Soil Science Society of America.

    Google Scholar 

  43. Guest, C. A., Schulze, D. G., Thompson, I. A., & Huber, D. M. (2002). Correlating manganese X-ray absorption near-edge structure spectra and extractable soil manganese. Soil Science Society of America Journal, 66, 1172–1181.

    CAS  Google Scholar 

  44. Hannam, R. J., & Okhi, K. (1988). Detection of manganese deficiency and toxicity in plants. In R. D. Graham, R. J. Hannam, & N. C. Uren (Eds.), Manganese in soils and plants (pp. 243–259). Dordrecht: Kluwer Academic.

    Google Scholar 

  45. He, J., Zhang, L., Jin, S., & Zhu, Y. (2008). Bacterial communities inside and surrounding soil iron-manganese nodules. Geomicrobiology Journal, 25, 14–24.

    Google Scholar 

  46. Hopmans, P. (2009). (personal communication).

    Google Scholar 

  47. Hutchinson, T. C., & Whitby, L. M. (1974). Heavy-metal pollution in the Sudbury mining and smelting region of Canada, I. Soil and vegetation contamination by nickel, copper, and other metals. Environmental Conservation, 1, 123–132.

    Google Scholar 

  48. James, B. R., Petura, J. C., Vitale, R. J., & Mussoline, G. R. (1997). Oxidation-reduction chemistry of chromium: Relevance to the regulation and remediation of chromate-contaminated soils. Journal of Soil Contamination, 6, 569–580.

    CAS  Google Scholar 

  49. Jarvis, S. C. (1984). The association of cobalt with easily reducible manganese in some acidic permanent grassland soils. Journal of Soil Science, 35, 431–438.

    CAS  Google Scholar 

  50. Jeffery, J. J. (1982). Factors affecting the uptake of copper by plants. Ph.D. thesis, La Trobe University.

    Google Scholar 

  51. Jeffery, J. J., & Uren, N. C. (1983). Copper and zinc species in the soil solution and the effects of soil pH. Australian Journal of Soil Research, 21, 479–488.

    CAS  Google Scholar 

  52. Jones, L. H. P. (1957). The effect of liming a neutral soil on the cycle of manganese. Plant and Soil, 8, 315–327.

    CAS  Google Scholar 

  53. Jones, L. H. P. (1957). The effect of liming a neutral soil on the uptake of manganese by plants. Plant and Soil, 8, 301–314.

    CAS  Google Scholar 

  54. Jones, L. H. P., & Leeper, G. W. (1951). Available of manganese oxides in neutral and alkaline soils. Plant and Soil, 3, 154–159.

    CAS  Google Scholar 

  55. Jones, L. H. P., & Leeper, G. W. (1951). The availability of various manganese oxides to plants. Plant and Soil, 3, 141–153.

    CAS  Google Scholar 

  56. Kessick, M. A., & Morgan, J. J. (1975). Mechanism of autoxidation of manganese in aqueous solution. Environmental Science and Technology, 9, 157–159.

    CAS  Google Scholar 

  57. Kothari, S. K., Marschner, H., & Römheld, V. (1991). Effect of a vesicular-arbuscular mycorrhizal fungus and rhizosphere micro-organisms on manganese reduction in the rhizosphere and manganese concentration in maize. New Phytologist, 117, 649–655.

    CAS  Google Scholar 

  58. Kožuh, N., Štupar, J., & Gorenc, B. (2000). Reduction and oxidation processes of chromium in soils. Environmental Science and Technology, 34, 112–119.

    Google Scholar 

  59. Krishnamurti, G. S. R., & Naidu, R. (2008). Chemical speciation and bioavailability of trace metals. In A. Violante, P. M. Huang, & G. M. Gadd (Eds.), Biophysico-chemical processes of heavy metals and metalloids in soil environments (pp. 419–466). New York: Wiley.

    Google Scholar 

  60. Lavkulich, L. M., & Wiens, J. H. (1970). Comparison of organic matter destruction by hydrogen peroxide and sodium hypochlorite and its effects on selected mineral constituents. Proceedings of the Soil Science Society of America, 34, 755–758.

    CAS  Google Scholar 

  61. Leeper, G. W. (1934). Relationship of soils to manganese deficiency of plants. Nature, 134, 972–973.

    CAS  Google Scholar 

  62. Leeper, G. W., & Swaby, R. F. (1940). The oxidation of manganous compounds by microorganisms in soil. Soil Science, 49, 163–170.

    CAS  Google Scholar 

  63. Leff, J. W., & Fierer, N. (2008). Volatile organic compound (VOC) emissions from soil and litter samples. Soil Biology and Biochemistry, 40, 1629–1636.

    CAS  Google Scholar 

  64. Lehmann, R. G., Cheng, H. H., & Harsh, J. B. (1987). Oxidation of phenolics by soil iron and manganese oxides. Soil Science Society of America Journal, 51, 351–356.

    Google Scholar 

  65. Levinson, A. A. (1974). Introduction to exploration geochemistry. Calgary: Applied Publishing.

    Google Scholar 

  66. Li, H., Lee, L. S., Schulze, D. G., & Guest, C. A. (2003). Role of soil manganese in the oxidation of aromatic amines. Environmental Science and Technology, 37, 2686–2693.

    CAS  Google Scholar 

  67. Li, H.-F., Grey, C., Micó, C., Zhao, F.-J., & McGrath, S. P. (2009). Phytotoxicity and bioavailability of cobalt to plants in a range of soils. Chemosphere, 75, 979–986.

    CAS  Google Scholar 

  68. Li, Z., McLaren, R. G., & Metherell, A. K. (2001). Cobalt and manganese relationships in New Zealand soils. New Zealand Journal of Agricultural Research, 44, 191–200.

    CAS  Google Scholar 

  69. Li, Z., McLaren, R. G., & Metherell, A. K. (2001). Fractionation of cobalt and manganese in New Zealand soils. Australian Journal of Soil Research, 39, 951–967.

    CAS  Google Scholar 

  70. Li, Z., McLaren, R. G., & Metherell, A. K. (2004). The availability of native and applied soil cobalt to ryegrass in relation to soil cobalt and manganese status and other soil properties. New Zealand Journal of Agricultural Research, 44, 191–200.

    Google Scholar 

  71. Liu, F., Combo, C., Adamo, P., He, J. Z., & Violante, A. (2002). Trace elements in manganese-iron nodules from a Chinese alfisol. Soil Science Society of America Journal, 66, 661–670.

    CAS  Google Scholar 

  72. Longnecker, N. E., Marcar, N. E., & Graham, R. D. (1991). Increased manganese content of barley seeds can increase grain yield in manganese-deficient conditions. Australian Journal of Agricultural Research, 42, 1065–1074.

    CAS  Google Scholar 

  73. Lovley, D. R. (1994). Microbial reduction of iron, manganese, and other metals. Advances in Agronomy, 54, 175–231.

    Google Scholar 

  74. Luther, G. W., III. (2005). Manganese(II) oxidation and Mn(IV) reduction in the environment – Two one-electron transfer steps versus a single two-electron step. Geomicrobiology Journal, 22, 195–203.

    CAS  Google Scholar 

  75. Ma, Y., & Uren, N. C. (1995). Application of a new fractionation scheme for heavy metals in soils. Communications in Soil Science and Plant Analysis, 26, 3291–3303.

    CAS  Google Scholar 

  76. Majcher, E. H., Chorover, J., Bollag, J.-M., & Huang, P. M. (2000). Evolution of CO2 during birnessite-induced oxidation of 14C-labeled catechol. Soil Science Society of America Journal, 64, 157–163.

    CAS  Google Scholar 

  77. Makino, T., Takahashi, Y., & Sakurai, Y. (1997). The influence of air-drying treatment on chemical forms of Mn, Co, Zn and Cu in soils. Japanese Journal of Soil Science and Plant Nutrition, 68, 409–416.

    CAS  Google Scholar 

  78. Makino, T., Hasegawa, S., Sakurai, Y., Ohno, S., Utagawa, H., Maejima, Y., & Momohara, K. (2000). Influence of soil-drying under field conditions on exchangeable manganese, cobalt, and copper contents. Soil Science and Plant Nutrition, 46, 581–590.

    CAS  Google Scholar 

  79. Manceau, A., Tommaseo, C., Rihs, S., Geoffroy, N., Chateigner, D., Schlegel, M., Tisserand, D., Marcus, M. A., Tamura, N., & Chen, Z.-S. (2005). Natural speciation of Mn, Ni, and Zn at the micrometer scale in a clayey paddy soil using X-ray fluorescence, absorption and diffraction. Geochimica et Cosmochimica Acta, 69, 4007–4034.

    CAS  Google Scholar 

  80. McBride, M. B. (1982). Electron spin resonance investigation of Mn2+ complexation in natural and synthetic organics. Soil Science Society of America Journal, 46, 1137–1143.

    CAS  Google Scholar 

  81. McBride, M. B. (1987). Adsorption and oxidation of phenolic compounds by iron and manganese oxides. Soil Science Society of America Journal, 51, 1466–1472.

    CAS  Google Scholar 

  82. McBride, M. B. (1989). Reactions controlling heavy metal solubility in soils. Advances in Soil Sciences, 10, 1–56.

    CAS  Google Scholar 

  83. McBride, M. B. (1994). Environmental chemistry of soils. New York: Oxford University Press.

    Google Scholar 

  84. McBride, M. B. (2007). Attenuation of metal toxicity in soils by biological processes. In R. Hamon, M. McLaughlin, & E. Lombi (Eds.), Natural attenuation of trace element availability in soils (pp. 113–136). Boca Raton: CRC Press.

    Google Scholar 

  85. McBride, M. B., & Martinez, C. E. (2000). Copper phytotoxicity in a contaminated soil: Remediation tests with adsorptive materials. Environmental Science and Technology, 34, 4386–4391.

    CAS  Google Scholar 

  86. McKenzie, R. M. (1970). The reaction of cobalt with manganese dioxide minerals. Australian Journal of Soil Research, 8, 97–106.

    CAS  Google Scholar 

  87. McKenzie, R. M. (1971). The synthesis of birnessite, cryptomelane, and some other oxides and hydroxides of manganese. Mineralogical Magazine, 38, 493–502.

    CAS  Google Scholar 

  88. McKenzie, R. M. (1975). An electron microprobe study of the relationships between heavy metals and manganese and iron in soils and ocean floor nodules. Australian Journal of Soil Research, 13, 177–188.

    CAS  Google Scholar 

  89. McKenzie, R. M. (1978). The effect of two manganese dioxides on the uptake of lead, cobalt, nickel, copper and zinc by subterranean clover. Australian Journal of Soil Research, 16, 209–214.

    CAS  Google Scholar 

  90. McKenzie, R. M. (1980). The adsorption of lead and other heavy metals on oxides of manganese and iron. Australian Journal of Soil Research, 18, 61–73.

    CAS  Google Scholar 

  91. McKenzie, R. M. (1989). Manganese oxides and hydroxides. In J. B. Dixon & S. B. Weed (Eds.), Minerals in soil environments (2nd ed., pp. 439–465). Madison: Soil Science Society of America.

    Google Scholar 

  92. McLaren, R. G., Lawson, D. M., Swift, R. S., & Purves, D. (1985). The effects of cobalt additions on soil and herbage concentrations in some S. E. Scotland pastures. Journal of Agricultural Science Cambridge, 105, 347–363.

    CAS  Google Scholar 

  93. McLaren, R. G., Lawson, D. M., & Swift, R. S. (1987). The availability to pasture plants of native and applied soil cobalt in relation to extractable soil cobalt and other soil properties. Journal of the Science of Food and Agriculture, 39, 101–112.

    CAS  Google Scholar 

  94. Mench, M., Vangronsveld, J., Lepp, N., Ruttens, A., Bleeker, P., & Geebelen, G. (2007). Use of soil amendments to attenuate trace element exposure: Sustainability, side effects, and failures. In R. Hamon, R. M. McLaughlin, & E. Lombi (Eds.), Natural attenuation of trace element availability in soils (pp. 197–228). Boca Raton: CRC Press.

    Google Scholar 

  95. Meng, Y.-T., Zheng, Y.-M., Zhang, L.-M., & He, J.-Z. (2009). Biogenic Mn oxides for effective adsorption of Cd from aquatic environment. Environmental Pollution, 157, 2577–2583.

    CAS  Google Scholar 

  96. Micó, C., Li, H.-F., Zhao, F.-J., & McGrath, S. P. (2008). Use of Co speciation and soil properties to explain variation in Co toxicity to root growth of barley (Hordeum vulgare L.) in different soils. Environmental Pollution, 156, 883–890.

    Google Scholar 

  97. Miller, W. P., Martens, D. C., & Zelazny, L. W. (1986). Effect of sequence in extraction of trace metals from soils. Soil Science Society of America Journal, 50, 598–601.

    Google Scholar 

  98. Mitchell, R. L. (1964). Trace elements in soils. In F. E. Bear (Ed.), Chemistry of the soil (2nd ed., pp. 320–368). New York: Reinhold.

    Google Scholar 

  99. Miyata, N., Tani, Y., Sakata, M., & Iwahori, K. (2007). Microbial manganese oxide formation and interaction with toxic metal ions. Journal of Bioscience and Bioengineering, 104, 1–8.

    CAS  Google Scholar 

  100. Morgan, J. J. (2005). Kinetics of reaction between O2 and Mn(II) species in aqueous solutions. Geochimica et Cosmochimica Acta, 69, 35–48.

    CAS  Google Scholar 

  101. Murray, J. W., Dillard, J. G., Giovanoli, R., Moers, H., & Stumm, W. (1985). Oxidation of Mn(II): Initial mineralogy, oxidation state an ageing. Geochimica et Cosmochimica Acta, 49, 463–470.

    CAS  Google Scholar 

  102. Murray, K. J., Webb, S. M., Gargar, J. R., & Tebo, B. M. (2007). Indirect oxidation of Co(II) in the presence of the marine Mn(II)-oxidizing bacterium Bacillus sp. Strain SG-1. Applied and Environmental Microbiology, 73, 6905–6909.

    CAS  Google Scholar 

  103. Nealson, K. H., & Saffarini, D. (1994). Iron and manganese in anaerobic respiration: Environmental significance, physiology, and regulation. Annual Review of Microbiology, 48, 311–333.

    CAS  Google Scholar 

  104. Negra, C., Ross, D. S., & Lanzirotti, A. (2005). Oxidizing behaviour of soil manganese: Interactions among abundance, oxidation state, and pH. Proceedings of the Soil Science Society of America, 69, 87–95.

    CAS  Google Scholar 

  105. Negra, C., Ross, D. S., & Lanzirotti, A. (2005). Soil manganese oxides and trace metals: Competitive sorption and micro-focused synchroton X-ray fluorescence mapping. Proceedings of the Soil Science Society of America, 69, 353–361.

    CAS  Google Scholar 

  106. Nicholson, R. L., & Wood, K. V. (2001). Phytoalexins and secondary products, where are they and how can we measure them? Physiological and Molecular Plant Pathology, 59, 63–69.

    CAS  Google Scholar 

  107. Nogueira, M. A., Magalhaes, G. C., & Cardoso, E. J. B. N. (2004). Manganese toxicity in mycorrhizal and phosphorus-fertilized soybeans. Journal of Plant Nutrition, 27, 141–156.

    CAS  Google Scholar 

  108. Norrish, K. (1978). Geochemistry and mineralogy of trace elements. In D. J. D. Nicholas & A. R. Egan (Eds.), Trace elements in soil-plant-animal systems (pp. 55–81). New York: Academic.

    Google Scholar 

  109. Palumbo, B., Bellanca, A., Neri, R., & Roe, M. J. (2001). Trace metal partitioning in Fe-Mn nodules from Sicilian soils. Chemical Geology, 173, 257–269.

    CAS  Google Scholar 

  110. Park, K. H., Moody, K., Kim, S. C., & Kim, K. U. (1992). Alleopathic activity and determination of allelochemicals from Sunflower (Helianthus annnuus L.) root exudates. II. Elucidation of allelochemicals from sunflower exudates. Korean Journal of Weed Science, 12, 173–182.

    Google Scholar 

  111. Parsons, R. F., & Uren, N. C. (2007). The relationship between lime chlorosis, trace elements and Mundulla Yellows. Australasian Plant Pathalogy, 36, 415–418.

    CAS  Google Scholar 

  112. Passioura, J. B., & Leeper, G. W. (1963). Available manganese and the X hypothesis. Agrochimica, 8, 81–90.

    CAS  Google Scholar 

  113. Passioura, J. B., & Leeper, G. W. (1963). Soil compaction and manganese deficiency. Nature, 200, 29–30.

    CAS  Google Scholar 

  114. Perkins, G.R., & Uren, N. C. (1977). The effect of cultivation, phosphorus application and liming on heavy metal uptake from sewage amended soil. (From unpublished thesis).

    Google Scholar 

  115. Peverill, K. P., & Judson, G. J. (1999). Cobalt. In K. I. Peverill, L. A. Sparrow, & D. J. Reuter (Eds.), Soil analysis: An interpretation manual (pp. 319–323). Collingwood: CSIRO.

    Google Scholar 

  116. Pilon-Smits, E. A. H., Quinn, C. F., Tapken, W., Malagoli, M., & Schiavon, M. (2009). Physiological functions of beneficial elements. Current Opinion in Plant Biology, 12, 267–274.

    CAS  Google Scholar 

  117. Pinkerton, B. W., & Brown, K. W. (1985). Plant accumulation and soil sorption of cobalt from cobalt-amended soils. Agronomy Journal, 77, 634–638.

    CAS  Google Scholar 

  118. Reisenauer, H. M. (1988). Determination of plant-available soil manganese. In R. D. Graham, R. J. Hannam, & N. C. Uren (Eds.), Manganese in soils and plants (pp. 87–98). Dordrecht: Kluwer Academic.

    Google Scholar 

  119. Reuter, D. J., Alston, A. M., & McFarlane, J. D. (1988). Occurrence and correction of manganese deficiency in plants. In R. D. Graham, R. J. Hannam, & N. C. Uren (Eds.), Manganese in soils and plants (pp. 205–224). Dordrecht: Kluwer Academic.

    Google Scholar 

  120. Ross, D. S., & Bartlett, R. J. (1981). Evidence for nonmicrobial oxidation of manganese in soil. Soil Science, 132, 153–160.

    CAS  Google Scholar 

  121. Ross, D. S., Hales, H. C., Shea-McCarthy, G. C., & Lanzirotto, A. (2001). Sensitivity of soil manganese oxides: Drying and storage cause reduction. Soil Science Society of America Journal, 65, 736–743.

    CAS  Google Scholar 

  122. Ross, D. S., Hales, H. C., Shea-McCarthy, G. C., & Lanzirotto, A. (2001). Sensitivity of soil manganese oxides: XANES spectroscopy may cause reduction. Soil Science Society of America Journal, 65, 744–752.

    CAS  Google Scholar 

  123. Samuel, G., & Piper, C. S. (1928). Grey speck (manganese deficiency) disease of oats. Journal of Agriculture South Australia, 31(696–705), 789–799.

    Google Scholar 

  124. Sanders, J. R. (1982). The effect of pH upon the copper and cupric ion concentrations in soil solutions. Journal of Soil Science, 33, 679–689.

    CAS  Google Scholar 

  125. Sanders, J. R. (1983). The effect of pH on the total and free ionic concentrations of manganese, zinc and cobalt in soil solutions. Journal of Soil Science, 34, 315–323.

    CAS  Google Scholar 

  126. Sasaki, K., Matsuda, M., Urata, T., Hirajima, T., & Konno, H. (2008). Sorption of Co2+ ions on the biogenic Mn oxide produced by a Mn-oxidizing fungus, Paraconiothyrium sp. WL-2. Materials Transactions, 49, 605–611.

    CAS  Google Scholar 

  127. Schlitchting, E., & Sparrow, L. A. (1988). Distribution and amelioration of manganese toxic soils. In R. D. Graham, R. J. Hannam, & N. C. Uren (Eds.), Manganese in soils and plants (pp. 277–292). Dordrecht: Kluwer Academic.

    Google Scholar 

  128. Shaw, L. J., Beaton, Y., Glover, L. A., Killham, K., & Meharg, A. A. (1999). Re-inoculation of autoclaved soil as a non-sterile treatment for xenobiotic sorption and biodegradation studies. Applied Soil Ecology, 11, 217–226.

    Google Scholar 

  129. Sherrell, C. G. (1990). Effect of cobalt application on the cobalt status of pastures. 2. Pastures without previous cobalt application. New Zealand Journal of Agricultural Research, 33, 305–311.

    CAS  Google Scholar 

  130. Sherrell, C. G., Percival, N. S., & Gee, T. M. (1990). Effect of cobalt application on the cobalt status of pastures. 1. Pastures with history of regular cobalt application. New Zealand Journal of Agricultural Research, 33, 295–304.

    CAS  Google Scholar 

  131. Shindo, H. (1990). Catalytic synthesis of humic acids from phenolic compounds by Mn(IV) oxide (birnessite). Soil Science and Plant Nutrition, 36, 679–682.

    CAS  Google Scholar 

  132. Siqueira, J. O., Nair, M. G., Hammerschmidt, R., & Safir, G. R. (1991). Significance of phenolic compounds in plant-soil-microbial systems. Critical Reviews in Plant Sciences, 10, 63–121.

    CAS  Google Scholar 

  133. Sparrow, L. A., & Uren, N. C. (1987). Oxidation and reduction of Mn in acidic soils: Effect of temperature and soil pH. Soil Biology and Biochemistry, 19, 143–148.

    CAS  Google Scholar 

  134. Sparrow, L. A., & Uren, N. C. (1987). The role of manganese toxicity in crop yellowing on seasonally waterlogged and strongly acidic soils in north-eastern Victoria. Australian Journal of Experimental Agriculture, 27, 303–307.

    CAS  Google Scholar 

  135. Sposito, G. (1989). The chemistry of soils. New York: Oxford University Press.

    Google Scholar 

  136. Sutton, A. N., Blake, S., Wilson, C. J. N., & Charlier, B. L. A. (2000). Late Quaternary evolution of a hyperactive rhyolite magmatic system: Taupo volcanic centre, New Zealand. Journal of the Geological Society, 157, 537–552.

    CAS  Google Scholar 

  137. Taylor, R. M., & McKenzie, R. M. (1966). The association of trace elements with manganese in Australian soils. Australian Journal of Soil Research, 4, 29–39.

    CAS  Google Scholar 

  138. Taylor, N. H., & Pohlen, I. J. (1962). Soil survey method: A New Zealand handbook for the field study of soils (New Zealand Soil Bureau bulletin, Vol. 25). Wellington: New Zealand Department of Scientific and Industrial Research.

    Google Scholar 

  139. Tebo, B. M., & He, L. M. (1998). Microbially mediated oxidative precipitation reactions. In D. L. Sparks & T. J. Grundl (Eds.), Mineral-water interface reactions: Kinetics and mechanisms (pp. 393–414). Washington, DC: American Chemical Society.

    Google Scholar 

  140. Tebo, B. M., Bargar, J. R., Clement, B. G., Dick, G. J., Murray, K. J., Parker, D., Verity, R., & Webb, S. M. (2004). Biogenic manganese oxides: Properties and mechanisms of formation. Annual Review of Earth and Planetary Sciences, 32, 287–328.

    CAS  Google Scholar 

  141. Tebo, B. M., Johnson, H. A., McCarthy, J. K., & Templeton, A. S. (2005). Geomicrobiology of manganese(II) oxidation. Trends in Microbiology, 13, 421–428.

    CAS  Google Scholar 

  142. Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51, 844–851.

    CAS  Google Scholar 

  143. Thompson, I. A., Huber, D. M., Guest, C. A., & Schulze, D. G. (2005). Fungal manganese oxidation in a reduced soil. Environmental Microbiology, 7, 1480–1487.

    CAS  Google Scholar 

  144. Tiller, K. G. (1963). Weathering and soil formation on dolerite in Tasmania with particular reference to several trace elements. Australian Journal of Soil Research, 1, 74–90.

    Google Scholar 

  145. Tiller, K. G. (1983). Micronutrients. In Soils: An Australian viewpoint (pp. 365–387). Melbourne/London: Division of Soils, CSIRO/Academic.

    Google Scholar 

  146. Tokashiki, Y., Dixon, J. B., & Golden, D. C. (1986). Manganese oxide analysis in soils by combined X-ray diffraction and selective dissolution methods. Soil Science Society of America Journal, 50, 1079–1084.

    CAS  Google Scholar 

  147. Tokashiki, Y., Hentona, T., Shimo, M., & Arachchi, L. P. V. (2003). Improvement of the successive selective dissolution procedures for the separation of birnessite, lithiophorite, and goethite in soil manganese nodules. Soil Science Society of America Journal, 67, 837–843.

    CAS  Google Scholar 

  148. Tommerup, I. C., & Kidby, D. K. (1980). Production of aseptic spores of vesicular-arbuscular endophytes and their viability after chemical and physical stress. Applied and Environmental Microbiology, 39, 1111–1119.

    CAS  Google Scholar 

  149. Toner, B., & Sposito, G. (2005). Reductive dissolution of biogenic manganese oxides in the presence of a hydrated biofilm. Geomicrobiology Journal, 22, 171–180.

    CAS  Google Scholar 

  150. Toner, B., Fakra, S., Villalobos, M., Warwick, T., & Sposito, G. (2005). Spatially resolved characterization of biogenic manganese oxide production within a bacterial film. Applied and Environmental Microbiology, 71, 1300–1310.

    CAS  Google Scholar 

  151. Tongtavee, N., Shiowatana, J., McLaren, R. G., & Buanuam, J. (2005). Evaluation of distribution and chemical associations between cobalt and manganese in soils by continuous-flow sequential extraction. Communications in Soil Science and Plant Analysis, 36, 2839–2845.

    CAS  Google Scholar 

  152. Trocmé, S., Barbier, G., & Chabannes, J. (1950). Recherches sur la chlorose, par carence de manganèse, des cultures irriguées a l’eau d’égout. Annales Agronomiques, 1, 663–685.

    Google Scholar 

  153. Underwood, E. J., & Suttle, N. F. (1999). The mineral nutrition of livestock. Wallingford: CABI.

    Google Scholar 

  154. Uren, N. C. (1980). Zinc-induced manganese deficiency. National Soils Conference, Sydney. (Unpublished).

    Google Scholar 

  155. Uren, N. C. (1989). Rhizosphere reactions of aluminium and manganese. Journal of Plant Nutrition, 12, 173–185.

    CAS  Google Scholar 

  156. Uren, N. C. (1990). The effect of sulphur dioxide on extractable manganese in soils. Communications in Soil Science and Plant Analysis, 21, 429–438.

    CAS  Google Scholar 

  157. Uren, N. C. (1990). The movement and distribution of manganese added to soil. Australian Journal of Soil Research, 28, 677–683.

    CAS  Google Scholar 

  158. Uren, N. C. (1999). Manganese. In K. I. Peverill, L. A. Sparrow, & D. J. Reuter (Eds.), Soil analysis: An interpretation manual (pp. 287–294). Collingwood: CSIRO.

    Google Scholar 

  159. Uren, N. C. (2007). Types, amounts, and possible functions of compounds released into the rhizosphere by soil-grown plants. In R. Pinton, R. Varanini, & P. Nannipieri (Eds.), The rhizosphere: Biochemistry and organic substances at the soil-plant interface (2nd ed., pp. 1–21). Boca Raton: CRC Press.

    Google Scholar 

  160. Uren, N. C., & Edwards, L. B. (1977). The effect of soil pH and zinc contamination on the availability of manganese to oats. (Unpublished).

    Google Scholar 

  161. Uren, N. C., & Leeper, G. W. (1978). Microbial oxidation of divalent manganese. Soil Biology and Biochemistry, 10, 85–87.

    CAS  Google Scholar 

  162. Uren, N. C., & Reisenauer, H. M. (1988). The role of root exudates in nutrient acquisition. Advanced Plant Nutrition, 3, 79–114.

    Google Scholar 

  163. Uren, N. C., Asher, C. J., & Longnecker, N. E. (1988). Techniques for research on manganese in soil-plant systems. In R. D. Graham, R. J. Hannam, & N. C. Uren (Eds.), Manganese in soils and plants (pp. 309–328). Dordrecht: Kluwer Academic.

    Google Scholar 

  164. Villalobos, M., Toner, B., Bargar, J., & Sposito, G. (2003). Characterization of the manganese oxide produced by Pseudomonas putida strain MnB1. Geochimica et Cosmochimica Acta, 67, 2649–2662.

    CAS  Google Scholar 

  165. Villalobos, M., Bargar, J., & Sposito, G. (2005). Trace metal retention on biogenic manganese oxide nanoparticles. Elements, 1, 223–226.

    CAS  Google Scholar 

  166. Wadsley, A. D., & Walkley, A. (1951). The structure and reactivity of the oxides of manganese. Reviews of Pure and Applied Chemistry, 1, 203–213.

    CAS  Google Scholar 

  167. Waksman, S. A. (1938). Humus (2nd ed.). London: Baillière, Tyndall and Cox.

    Google Scholar 

  168. Walsh, T, Ryan, P., & Fleming, G. A. (1956). Cobalt deficiency in relation to weathering processes in soils. Transactions of the 6th international congress of soil science Paris, Commissions I & II, pp. 771–779.

    Google Scholar 

  169. Walter, K. H. (1988). Manganese fertilizers. In R. D. Graham, R. J. Hannam, & N. C. Uren (Eds.), Manganese in soils and plants (pp. 225–241). Dordrecht: Kluwer Academic.

    Google Scholar 

  170. Wang, W., Shao, Z., Liu, Y., & Wang, G. (2009). Removal of multi-heavy metals using biogenic manganese oxides generated by a deep-sea sedimentary bacterium – Brachybacterium sp. strain Mn32. Microbiology, 155, 1989–1996.

    CAS  Google Scholar 

  171. Wendling, L. A., Kirby, K. J., & McLaughlin, M. J. (2008). A novel technique to determine cobalt exchangeability in soils using isotope dilution. Environmental Science and Technology, 42, 140–146.

    CAS  Google Scholar 

  172. Wendling, L. A., Ma, Y., Kirby, K. J., & McLaughlin, M. J. (2009). A predictive model of the effects of aging on cobalt fate and behavior in soil. Environmental Science and Technology, 43, 135–141.

    CAS  Google Scholar 

  173. Whelan, G., Sims, R. C., & Murarka, I. P. (1995). Interactions between manganese oxides and multiple-ringed aromatic compounds. In P. M. Huang, J. Berthelin, J.-M. Bollag, W. B. McGill, & A. L. Page (Eds.), Environmental impact of soil component interactions: Natural and anthropogenic organics (pp. 345–362). Boca Raton: CRC Lewis Publishers.

    Google Scholar 

  174. Wilson, D. E. (1980). Surface and complexation effects on the rate of Mn(II) oxidation in natural waters. Geochimica et Cosmochimica Acta, 44, 1311–1317.

    CAS  Google Scholar 

  175. Xu, L., Xu, C., Zhao, M., Qiu, Y., & Sheng, G. D. (2008). Oxidative removal of aqueous steroid estrogens by manganese oxides. Water Research, 42, 5038–5044.

    CAS  Google Scholar 

  176. Zhang, L.-M., Liu, F., Tan, W.-F., Feng, X.-H., Zhu, Y.-G., & He, J. (2008). Microbial DNA extraction and analyses of soil iron-manganese nodules. Soil Biology and Biochemistry, 40, 1364–1369.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas C. Uren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Uren, N.C. (2013). Cobalt and Manganese. In: Alloway, B. (eds) Heavy Metals in Soils. Environmental Pollution, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4470-7_12

Download citation

Publish with us

Policies and ethics