Skip to main content

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 32))

  • 2154 Accesses

Abstract

ChapterĀ 3 describes active load-pull techniques, their design issues, and important related characteristics. The descriptions involve two aspects: the theoretical postulations of various active load-pull methods; and, then their respective designs and features, and associated practical issues normally encountered in their practical realizations. General problems encountered in active harmonic load-pull systems and their appropriate solutions are also presented in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.-E. Muller, B. Gyselinckx, Comparison of active versus passive on-wafer load-pull characterization of microwave and MM-wave power devices, in IEEE MTT-S International Microwave Symposium Digest (June 1994), pp.Ā 1077ā€“1080

    Google ScholarĀ 

  2. Maury Microwave Corporation, Pulsed-bias pulsed-RF harmonic load-pull for gallium nitride (GaN) and wide band gap (WBG), Application Note: 5A-043, Nov. 2009

    Google ScholarĀ 

  3. C. Roff, J. Benedikt, P.J. Tasker, Design approach for realization of very high efficiency power amplifiers, in IEEE MTT-S International Microwave Symposium Digest (June 2007), pp. 143ā€“146

    Google ScholarĀ 

  4. G.P. Bava, U. Pisani, V. Pozzolo, Active load technique for load-pull characterization at microwave frequencies. IEE Electron. Lett. 18(4), 178ā€“180 (1982)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  5. Y. Takayama, A new load pull characterization method for microwave power transistors, in IEEE/MTT-S International Microwave Symposium, New Jersey, USA (June 1976), pp. 218ā€“220

    ChapterĀ  Google ScholarĀ 

  6. V. Teppati, A. Ferrero, U. Pisani, Recent advances in real-time load-pull systems. IEEE Trans. Instrum. Meas. 57, 11 (2008)

    ArticleĀ  Google ScholarĀ 

  7. M. Spirito, L.C.N. de Vreede, M. de Kok, M. Pelk, D. Hartskeerl, H.F.F. Jos, J.E. Mueller, J. Burghartz, A novel active harmonic load-pull setup for on-wafer device characterization, in IEEE/MTT-S International Microwave Symposium (June 1994), pp. 1217ā€“1220

    Google ScholarĀ 

  8. J. Benedikt, R. Gaddi, P.J. Tasker, M. Goss, M. Zadeh, High power time domain measurement system with active harmonic load-pull for high efficiency base station amplifier design, in IEEE/MTT-S International Microwave Symposium. Boston, USA (2000), pp. 1459ā€“1462

    Google ScholarĀ 

  9. D.D. Poulin, J.R. Mahon, J.-P. Lanterri, A high power on-wafer pulsed active load-pull system. IEEE Trans. Microw. Theory Tech. 40(12), 2412ā€“2417 (1992)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  10. G.D. Vendelin, A.M. Pavio, U.L. Rohde, Microwave Circuit Design Using Linear and Nonlinear Techniques (Wiley, New York, 1990), p. 400

    Google ScholarĀ 

  11. V. Camarchia, V. Teppati, S. Corbellini, M. Pirola, Microwave measurements part IIā€”non-linear measurements. IEEE Instrum. Meas. Mag. 10, 34ā€“39 (2007)

    ArticleĀ  Google ScholarĀ 

  12. Y.Y. Woo, Y. Yang, B. Kim, Analysis and experiments for high efficiency class-F and inverse class-F power amplifiers. IEEE Trans. Microw. Theory Tech. 54(5), 2006 (1969ā€“1974)

    Google ScholarĀ 

  13. P. Colantonio, F. Giannini, R. Giofre, E. Limiti, A. Serino, M. Peroni, P. Romanini, C. Proietti, A C-band high efficiency second harmonic tuned power amplifier in GaN technology. IEEE Trans. Microw. Theory Tech. 54(6), 2713ā€“2722 (2006)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  14. M. Helaoui, F.M. Ghannouchi, Optimizing losses in distributed multi-harmonic matching networks applied to the design of an RF GaN power amplifier with higher than 80Ā % power-added efficiency. IEEE Trans. Microw. Theory Tech. 57(2), 314ā€“322 (2009)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  15. F.M. Ghannouchi, M.S. Hashmi, Experimental investigation of the uncontrolled higher harmonic impedances effect on the performance of high-power microwave devices. Microw. Opt. Technol. Lett. 52(11), 2480ā€“2482 (2010)

    ArticleĀ  Google ScholarĀ 

  16. A. Ferrero, Active load or source impedance synthesis apparatus for measurement test set of microwave components and systems, U.S. Patent 6 509 743, Jan. 21, 2003

    Google ScholarĀ 

  17. V. Teppati, A. Ferrero, A new class of non-uniform, broadband, nonsymmetrical rectangular coaxial-to-microstrip directional couplers for high power applications. IEEE Microw. Wirel. Compon. Lett. 13(4), 152ā€“154 (2003)

    ArticleĀ  Google ScholarĀ 

  18. S. Dudkiewics, R. Meierer, Cascading tuners for high-VSWR and harmonic load-pull, Maury Microwave Corporation, Application Note: 5C-081, Jan 2009

    Google ScholarĀ 

  19. D.M. Pozar, Microwave Engineering, 3rd edn. (Wiley, New York, 2005). ISBN 0-471-17096-8

    Google ScholarĀ 

  20. P. Bouysse, J.M. Nebus, J.M. Coupat, J.P. Villotte, A novel, accurate load-pull setup allowing the characterisation of highly mismatched power transistors. IEEE Trans. Microw. Theory Tech. 42(2), 327ā€“332 (1994)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  21. J. Verspecht, F. Verbeyst, M.V. Bossche, Network analysis beyond S-parameters: characterizing and modeling component behavior under modulated large-signal operating conditions, in 56th ARFTG Conference Digest (Nov. 2000), pp. 1ā€“4

    ChapterĀ  Google ScholarĀ 

  22. J. Verspecht, Large-signal network analysis. IEEE Microw. Mag. 6(4), 82ā€“92 (2005)

    ArticleĀ  Google ScholarĀ 

  23. K. Rawat, F.M. Ghannouchi, A design methodology for miniaturized power dividers using periodically loaded slow wave structure with dual-band applications. IEEE Trans. Microw. Theory Tech. 57(12), 3380ā€“3388 (2009)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  24. F. Blache, J.M. Nebus, P. Bouysse, J.-P. Villotte, A novel computerized multiharmonic active load-pull system for the optimization of high efficiency operating classes in power transistors, in IEEE/MTT-S International Microwave Symposium, USA (1995), pp. 1037ā€“1040

    Google ScholarĀ 

  25. J.-M. Nebus, P. Bouysse, J.-P. Villotte, J. Obregon, Improvement of active load-pull technique for the optimization of high power communication SSPAs. Int. J. Microw. Millimeter-wave Computer-Aided Eng. 5(3), 149ā€“160 (1995)

    ArticleĀ  Google ScholarĀ 

  26. J.-M. Nebus, P. Bouysse, J.M. Coupat, J.-P. Villotte, An active load-pull setup for the large signal characterization of highly mismatched microwave power transistors, in IEEE Instrumentation and Measurement Technology Conference, Irvine, USA (1993), pp. 2ā€“5

    Google ScholarĀ 

  27. F.V. Raay, G. Kompa, Waveform measurementsā€”the load-pull concept, in 55th ARFTG Conference, Boston, USA (2000), pp. 1ā€“8

    ChapterĀ  Google ScholarĀ 

  28. R.S. Saini, S. Woodington, J. Lees, J. Benedikt, P.J. Tasker, An intelligence driven active load-pull system, in 75th ARFTG Microwave Measurement Conference, Anaheim, USA (2010), pp. 1ā€“4

    ChapterĀ  Google ScholarĀ 

  29. S.C. Chapra, Numerical Methods for Engineers, 6th edn. (McGraw Hill, New York, 2009)

    Google ScholarĀ 

  30. D.J. Williams, P.J. Tasker, An automated active source and load pull measurement system, in Proceedings of 6th IEEE High Frequency Postgraduate Colloquium, Cardiff, UK (2001), pp. 7ā€“12

    ChapterĀ  Google ScholarĀ 

  31. J. Verspecht, D.E. Root, Poly-harmonic distortion modeling. IEEE Microw. Mag. 7(3), 44ā€“57 (2006)

    ArticleĀ  Google ScholarĀ 

  32. J. Horn, D. Gunyan, L. Betts, J. Verspecht, D.E. Root, Measurement-based large-signal simulation of active components from automated nonlinear vector network analyzer data via X-parameters, in IEEE International Conference on Microwaves, Communications, Antenna and Electronic Systems (May 2008), pp. 1ā€“6

    ChapterĀ  Google ScholarĀ 

  33. S. Woodington, T. Williams, H. Qi, D. Williams, L. Pattison, A. Patterson, J. Lees, J. Benedikt, P.J. Tasker, A novel measurement based method enabling rapid extraction of a RF waveform look-up table based behavioral model, in IEEE/MTT-S International Microwave Symposium, Boston, USA (June 2008), pp. 1453ā€“1456

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad S. Hashmi .

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ghannouchi, F.M., Hashmi, M.S. (2013). Active Load-Pull Systems. In: Load-Pull Techniques with Applications to Power Amplifier Design. Springer Series in Advanced Microelectronics, vol 32. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4461-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-4461-5_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-4460-8

  • Online ISBN: 978-94-007-4461-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics