Advertisement

Viscoelastic Thin Films

  • Ralf Blossey
Part of the Theoretical and Mathematical Physics book series (TMP)

Abstract

Surprisingly enough, the properties of thin polymer films can be covered by hydrodynamic equations originally devised for classical liquids, provided that surface slip is properly taken into account. This was the key insight of Chap.  4. However, this is of course not entirely correct—put simply, it depends on the chain length of the polymer. If the polymer properties are brought into play, the thin films display viscoelastic behaviour. Chapter 5 introduces the concepts needed to cover this case and explains how the thin film equations are modified in this case. Finally, the chapter addresses microscopic properties of thin films like the slip length and glassy behaviour.

Keywords

Slip Length Viscoelastic Effect Nonlinear Friction Viscoelastic Flow Weak Slip 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Blossey, R., Münch, A., Rauscher, M., Wagner, B.: Slip vs. viscoelasticity in dewetting thin films. Eur. Phys. J. E 20, 267–272 (2006) CrossRefGoogle Scholar
  2. Blossey, R.: Thin film rupture and polymer flow. Phys. Chem. Chem. Phys. 10, 5177–5183 (2008) CrossRefGoogle Scholar
  3. Böhme, G.: Strömungsmechanik nichtnewtonscher Fluide. Teubner Verlag, Stuttgart (2000) zbMATHCrossRefGoogle Scholar
  4. Brochard, F., de Gennes, P.-G.: Shear-dependent slippage at a polymer/solid interface. Langmuir 8, 3033–3037 (1992) CrossRefGoogle Scholar
  5. Byron Bird, R., Armstrong, R.C., Hassager, O.: Dynamics of Polymeric Liquids, Vol. 1: Fluid Mechanics, 2nd edn. Wiley, New York (1987a) Google Scholar
  6. Byron Bird, R., Curtiss, C.F., Armstrong, R.C., Hassager, O.: Dynamics of Polymeric Liquids, Vol. 2: Kinetic Theory, 2nd edn. Wiley, New York (1987b) Google Scholar
  7. Damman, P., Gabriele, S., Coppée, S., Descprez, S., Villers, D., Vilmin, T., Raphaël, E., Hamieh, M., Al Akhrass, S., Reiter, G.: Relaxation of residual stress and reentanglement of polymers in spin-coated films. Phys. Rev. Lett. 99, 036101 (2007) ADSCrossRefGoogle Scholar
  8. de Gennes, P.G.: Glass transition in thin polymer films. Eur. Phys. J. E 2, 201–205 (2000) CrossRefGoogle Scholar
  9. Fakhraai, Z., Forrest, J.A.: Measuring the surface dynamics of glassy polymers. Science 319, 600–604 (2008) CrossRefGoogle Scholar
  10. Gabriele, S., Damman, P., Sclavons, S., Desprez, S., Coppée, S., Reiter, G., Hamieh, M., Al Akhrass, S., Vilmin, T., Raphäel, E.: Viscoelastic dewetting of constrained polymer thin films. J. Polym. Sci. 44, 3022–3030 (2006a) Google Scholar
  11. Gabriele, S., Sclavons, S., Reiter, G., Damman, P.: Disentanglement time of polymers determines the onset of rim instabilities in dewetting. Phys. Rev. Lett. 96, 156105 (2006b) ADSCrossRefGoogle Scholar
  12. Gutfreund, P., Bäumchen, O., van der Grinten, D., Fetzer, R., Maccarini, M., Jacobs, K., Zabel, H., Wolff, M.: Surface correlation affects liquid order and slip in a Newtonian liquid (2011). arXiv:1104.0868
  13. Hamieh, M., Al Akhrass, S., Hamieh, T., Damman, P., Gabriele, S., Vilmin, T., Raphaël, E., Reiter, G.: Influence of substrate properties on the dewetting dynamics of viscoelastic polymer films. J. Adhes. 83, 367–381 (2007) CrossRefGoogle Scholar
  14. Herminghaus, S.: Polymer thin films and surfaces: possible effects of capillary waves. Eur. Phys. J. E 8, 237–243 (2002) CrossRefGoogle Scholar
  15. Herminghaus, S., Jacobs, K., Seemann, R.: Viscoelastic dynamics of polymer thin films. Eur. Phys. J. E 12, 101–110 (2003) CrossRefGoogle Scholar
  16. Kargupta, K., Sharma, A., Khanna, R.: Instability, dynamics and morphology of slipping thin films. Langmuir 20, 244–253 (2004) CrossRefGoogle Scholar
  17. Khayat, R.E.: Transient two-dimensional coating flow of a viscoelastic fluid film on a substrate of arbitrary shape. J. Non-Newton. Fluid Mech. 95, 199–233 (2001) CrossRefGoogle Scholar
  18. Léger, L., Hervet, H., Bureau, L.: Friction mechanisms at polymer-solid interfaces. C. R., Chim. 9, 80–89 (2006) CrossRefGoogle Scholar
  19. Migler, K.B., Hervet, H., Leger, L.: Slip transition of a polymer melt under shear stress. Phys. Rev. Lett. 70, 287–290 (1993) ADSCrossRefGoogle Scholar
  20. Münch, A., Wagner, B., Rauscher, M., Blossey, R.: A thin-film model for corotational Jeffreys fluids under strong slip. Eur. Phys. J. E 20, 365–368 (2006) CrossRefGoogle Scholar
  21. Rauscher, M., Münch, A., Wagner, B., Blossey, R.: A thin-film equation for viscoelastic liquids of Jeffreys type. Eur. Phys. J. E 17, 373–379 (2005) CrossRefGoogle Scholar
  22. Reiter, G.: Dewetting of highly elastic thin polymer films. Phys. Rev. Lett. 87, 186101 (2001) ADSCrossRefGoogle Scholar
  23. Reiter, G., Hamieh, M., Damman, P., Sclavons, S., Gabriele, S., Vilmin, T., Raphaël, E.: Residual stresses in thin polymer films cause rupture and dominate early stages of dewetting. Nat. Mater. 4, 754–758 (2005) ADSCrossRefGoogle Scholar
  24. Reiter, G., Al Akhrass, S., Hamieh, M., Damman, P., Gabriele, S., Vilmin, T., Raphaël, E.: Dewetting as an investigative tool for studying properties of thin polymer films. Eur. Phys. J. Spec. Top. 166, 165–172 (2009) CrossRefGoogle Scholar
  25. Roth, C.B., Dutcher, J.R.: Glass transition and chain mobility in thin polymer films. J. Electroanal. Chem. 584, 13–22 (2005) CrossRefGoogle Scholar
  26. Vilmin, T., Raphaël, E.: Dewetting of thin viscoelastic polymer films on slippery substrates. Europhys. Lett. 72, 781–787 (2005) ADSCrossRefGoogle Scholar
  27. Vilmin, T., Raphaël, E.: Dewetting of thin polymer films. Eur. Phys. J. E 21, 161–174 (2006) CrossRefGoogle Scholar
  28. Vilmin, T., Raphaël, E., Damman, P., Sclavons, S., Gabriele, S., Hamieh, M., Reiter, G.: The role of nonlinear friction in the dewetting of thin polymer films. Europhys. Lett. 73, 906–912 (2006) ADSCrossRefGoogle Scholar
  29. Yang, Z., Fujii, Y., Lee, F.K., Lam, C.-H., Tsui, O.K.C.: Glass transition dynamics and surface layer mobility in unentangled polystyrene films. Science 328, 1676–1679 (2010) ADSCrossRefGoogle Scholar
  30. Zhang, Y.L., Matar, O.K., Craster, R.V.: Surfactant spreading on a thin weakly viscoelastic film. J. Non-Newton. Fluid Mech. 105, 53–78 (2002) zbMATHCrossRefGoogle Scholar
  31. Ziebert, F., Raphaël, E.: Dewetting of thin polymer films: influence of interface evolution. Europhys. Lett. 86, 46001 (2009a) ADSCrossRefGoogle Scholar
  32. Ziebert, F., Raphaël, E.: Dewetting dynamics of stressed viscoelastic thin polymer films. Phys. Rev. E 79, 031605 (2009b) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.CNRS USR 3078Institut de Recherche InterdisciplinaireVilleneuve d’Ascq CedexFrance

Personalised recommendations