Statistical Mechanics of Thin Films

  • Ralf BlosseyEmail author
Part of the Theoretical and Mathematical Physics book series (TMP)


This chapter develops the concepts of statistical mechanics as relevant to studies of thin films. Starting out from the classic Young-Dupré equation, the theory of wetting and dewetting transitions is developed on the basis of effective interface Hamiltonians. Illustrated by specific experimental case studies, the concepts of surface tension, line tension, and in particular the effective interface potential are introduced and explained. The generic wetting and dewetting equilibrium phase diagram is given and equilibria, metastable and unstable thin film states are discussed and their quantitative description derived.


Contact Angle Contact Line Line Tension Disjoin Pressure Excess Free Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bauer, C., Dietrich, S.: Quantitative study of laterally inhomogeneous wetting films. Eur. Phys. J. B 10, 767–779 (1999) ADSCrossRefGoogle Scholar
  2. Bausch, R., Blossey, R.: Critical droplets in first-order wetting transitions. Europhys. Lett. 14, 125–129 (1991) ADSCrossRefGoogle Scholar
  3. Bausch, R., Blossey, R.: Critical droplets at a wall near a first-order wetting transition. Phys. Rev. E 48, 1131–1135 (1993) ADSCrossRefGoogle Scholar
  4. Bausch, R., Blossey, R., Burschka, M.A.: Critical nuclei for wetting and dewetting. J. Phys. A 27, A1405-A1406 (1994) ADSCrossRefGoogle Scholar
  5. Bausch, R., Blossey, R.: Lifetime of undercooled wetting layers. Phys. Rev. E 50, R1759–R1761 (1994) ADSCrossRefGoogle Scholar
  6. Berestycki, H., Lions, P.L., Peletier, L.A.: An O.D.E. approach to the existence of positive solutions for semi-linear problems. Indiana Univ. Math. J. 30, 141–157 (1981) MathSciNetzbMATHCrossRefGoogle Scholar
  7. Blossey, R.: Nucleation at first-order wetting transitions. Int. J. Mod. Phys. B 9, 3489–3525 (1995) ADSCrossRefGoogle Scholar
  8. Blossey, R., Oligschleger, C.: First-order wetting transitions under gravity. J. Colloid Interface Sci. 209, 442–444 (1999) CrossRefGoogle Scholar
  9. Brochard-Wyart, F., Daillant, J.: Drying of solids wetted by thin liquid films. Can. J. Phys. 68, 1084–1088 (1989) ADSGoogle Scholar
  10. Brochard-Wyart, F., di Meglio, J.-M., Quéré, D., de Gennes, P.G.: Spreading of nonvolatile liquids in a continuum picture. Langmuir 91, 335–338 (1991) CrossRefGoogle Scholar
  11. Cahn, J.W.: Critical point wetting. J. Chem. Phys. 66, 3667–3672 (1977) ADSCrossRefGoogle Scholar
  12. Coleman, S.: In: Aspects of Symmetry: The Uses of Instantons. Cambridge University Press, Cambridge (1985) CrossRefGoogle Scholar
  13. de Gennes, P.G.: Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827–863 (1985) ADSCrossRefGoogle Scholar
  14. Dobbs, H.T., Indekeu, J.O.: Line tension at wetting: interface displacement model beyond the squared-gradient approximation. Physica A 201, 457–481 (1993) ADSCrossRefGoogle Scholar
  15. Dobbs, H.: The modified Young’s equation for the contact angle of a small sessile drop from an interface displacement model. Int. J. Mod. Phys. B 13, 3255–3259 (1999a) ADSCrossRefGoogle Scholar
  16. Dobbs, H.: The elasticity of a contact line. Physics A 271, 36–47 (1999b) ADSCrossRefGoogle Scholar
  17. Dzyaloshinskii, I.E., Lifshitz, E.M., Pitaevskii, L.P.: The general theory of van der Waals forces. Adv. Phys. 10, 165–209 (1961) MathSciNetADSCrossRefGoogle Scholar
  18. Evans, R.: The nature of the liquid-vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids. Adv. Phys. 28, 143–200 (1979) ADSCrossRefGoogle Scholar
  19. Foltin, G., Bausch, R., Blossey, R.: Critical holes in undercooled wetting layers. J. Phys. A 30, 2937–2946 (1997) MathSciNetADSzbMATHCrossRefGoogle Scholar
  20. Fradin, C., Braslau, A., Luzet, D., Smilgies, D., Alba, M., Boudet, N., Mecke, K., Daillant, J.: Reduction in the surface energy of liquid interfaces at short length scales. Nature 403, 871–874 (2000) ADSCrossRefGoogle Scholar
  21. Herminghaus, S., Fery, A., Schlagowski, S., Jacobs, K., Seemann, R., Gau, H., Mönch, W., Pompe, T.: Liquid microstructures at solid surfaces. J. Phys., Condens. Matter 11, A57–A74 (1999) CrossRefGoogle Scholar
  22. Herminghaus, S., Brochard, F.: Dewetting through nucleation. C. R. Phys. 7, 1073–1081 (2006). Correction: C. R. Phys. 8, 86 (2007) ADSGoogle Scholar
  23. Israelachvili, J.: Interfacial and Surface Forces, 2nd edn. Academic Press, London (1992) Google Scholar
  24. Joanny, J.F., de Gennes, P.G.: Nucleation under conditions of complete wetting. C. R. Acad. Sci. 303, 337–340 (1984) Google Scholar
  25. Mecke, K.R., Dietrich, S.: Effective Hamiltonian for liquid-vapor interfaces. Phys. Rev. E 59, 6766–6784 (1999) ADSCrossRefGoogle Scholar
  26. Nakanishi, H., Fischer, M.E.: Multicriticality of wetting, prewetting, and surface transitions. Phys. Rev. Lett. 49, 1565–1568 (1982) ADSCrossRefGoogle Scholar
  27. Pompe, T., Herminghaus, S.: Three-phase contact line energetics from nanoscale liquid surface topographies. Phys. Rev. Lett. 85, 1930–1933 (2000) ADSCrossRefGoogle Scholar
  28. Schick, M., Taborek, P.: Anomalous nucleation at first-order wetting transitions. Phys. Rev. B 46, 7312–7314 (1992) ADSCrossRefGoogle Scholar
  29. Seemann, R., Jacobs, K., Blossey, R.: Polystyrene nanodroplets. J. Phys., Condens. Matter 13, 4915–4923 (2001a) ADSCrossRefGoogle Scholar
  30. Vrij, A.: Possible mechanism for the spontaneous rupture of thin, free liquid films. Discuss. Faraday Soc. 42, 23–33 (1966) CrossRefGoogle Scholar
  31. Weijs, J.H., Marchand, A., Andreotti, B., Lohse, D., Snoeijer, J.H.: Origin of line tension for a Lennard-Jones nanodroplet. Phys. Fluids 23, 022001 (2011) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.CNRS USR 3078Institut de Recherche InterdisciplinaireVilleneuve d’Ascq CedexFrance

Personalised recommendations