Skip to main content

Plant Response to Mineral Ion Availability: Transcriptome Responses to Sulfate, Selenium and Iron

  • Conference paper
  • First Online:
Sulfur Metabolism in Plants

Abstract

The response of plants to sulfate starvation has been described at the level of agronomy, physiology, biochemistry, metabolomics and transcriptomics. The aim of these studies was the description of regulatory and control processes governing plant response to sulfate nutrient stress. However, these results are impaired by pleiotropic responses seemingly overlapping with the response to other mineral nutrient ion starvations or effects of soil borne ions taken up by the plant. This paper suggests making use of these often overlapping responses to various ions in order to distinguish between specific and pleiotropic effects. Here we compare sulfate starvation, iron depletion, and selenium exposure at the transcriptome level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aller AJ, Bernal JL, del Nozal MJ, Deban L (1990) Effects of selected trace elements on plant growth. J Sci Food Agric 51:447–479

    Article  Google Scholar 

  • Amtmann A, Armengaud P (2009) Effects of N, P, K and S on metabolism: new knowledge gained from multi-level analysis. Curr Opin Plant Biol 12:275–283

    Article  PubMed  CAS  Google Scholar 

  • Amtmann A, Blatt MR (2009) Regulation of macronutrient transport. New Phytol 181:35–52

    Article  PubMed  CAS  Google Scholar 

  • Astolfi S, Zuchi S, Hubberten HM, Pinton R, Hoefgen R (2010) Supply of sulphur to S-deficient young barley seedlings restores their capability to cope with iron shortage. J Exp Bot 61:799–806

    Article  PubMed  CAS  Google Scholar 

  • Awazuhara M, Fujiwara T, Hayashi H, Watanabe-Takahashi A, Takahashi H, Saito K (2005) The function of SULTR2;1 sulfate transporter during seed development in Arabidopsis thaliana. Physiol Plant 125:95–105

    Article  CAS  Google Scholar 

  • Buchanan B, Gruissem W, Jones RL (2007) Biochemistry & molecular biology of plants. Wiley, New York

    Google Scholar 

  • Buckhout TJ, Yang TJ, Schmidt W (2009) Early iron-deficiency-induced transcriptional changes in Arabidopsis roots as revealed by microarray analyses. BMC Genomics 10:147

    Article  PubMed  Google Scholar 

  • Cassin G, Mari S, Curie C, Briat JF, Czernic P (2009) Increased sensitivity to iron deficiency in Arabidopsis thaliana overaccumulating nicotianamine. J Exp Bot 60:1249–1259

    Article  PubMed  CAS  Google Scholar 

  • Currie HA, Perry CC (2007) Silica in plants: biological, biochemical and chemical studies. Ann Bot 100:1383–1389

    Article  PubMed  CAS  Google Scholar 

  • Dinneny JR, Long TA, Wang JY, Jung JW, Mace D, Pointer S, Barron C, Brady SM, Schiefelbein J, Benfey PN (2008) Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science 320:942–945

    Article  PubMed  CAS  Google Scholar 

  • Falkenberg B, Witt I, Zanor MI, Steinhauser D, Mueller-Roeber B, Hesse H, Hoefgen R (2008) Transcription factors relevant to auxin signalling coordinate broad-spectrum metabolic shifts including sulphur metabolism. J Exp Bot 59:2831–2846

    Article  PubMed  CAS  Google Scholar 

  • Gojon A, Nacry P, Davidian JC (2009) Root uptake regulation: a central process for NPS homeostasis in plants. Curr Opin Plant Biol 12:328–338

    Article  PubMed  CAS  Google Scholar 

  • Haensch R, Mendel RR (2009) Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr Opin Plant Biol 12:259–266

    Article  CAS  Google Scholar 

  • Hesse H, Hoefgen R (2003) Molecular aspects of methionine biosynthesis. Trends Plant Sci 8:259–262

    Article  PubMed  CAS  Google Scholar 

  • Hesse H, Hoefgen R (2008) Sulfur and cysteine metabolism. In: Jez J (ed) Sulfur; a missing link between soils, crops, and nutrition. American Society of Agronomy, Madison, pp 83–104

    Google Scholar 

  • Hirai MY, Fujiwara T, Awazuhara M, Kimura T, Masaaki N, Saito K (2003) Global expression profiling of sulfur-starved Arabidopsis by DNA macroarray reveals the role of O-acetyl-L-serine as a general regulator of gene expression in response to sulfur nutrition. Plant J 33:651–663

    Article  PubMed  CAS  Google Scholar 

  • Hoefgen R, Hesse H (2007) Sulfur in plants as part of a metabolic network. In: Hawkesford MJ, de Kok LJ (eds) Sulfur in plants: an ecological perspective. Springer, Dordrecht, pp 107–142

    Chapter  Google Scholar 

  • Hoefgen R, Hesse H (2008) Sulfur and cysteine metabolism. In: Jez J (ed) Sulfur: a missing link between soils, crops and nutrition. American Society of Agronomy, Madison, pp 83–104

    Google Scholar 

  • Howarth JR, Barraclough PB, Hawkesford MJ (2005) A highly specific sulfate-deficiency induced gene (sdi1) from wheat. In: Saito K, De Kok LJ, Stulen I, Hawkesford MJ, Schnug E, Sirko A, Rennenberg H (eds) Sulfur transport and assimilation in plants in the post genomic era. Backhuys Publishers, Leiden, pp 161–164

    Google Scholar 

  • Howarth JR, Parmar S, Barraclough PB, Hawkesford MJ (2009) A sulphur deficiency-induced gene, sdi1, involved in the utilization of stored sulphate pools under sulphur-limiting conditions has potential as a diagnostic indicator of sulphur nutritional status. Plant Biotechnol J 7:200–209

    Article  PubMed  CAS  Google Scholar 

  • Hu Z, Richter H, Sparovek G, Schnug E (2004) Physiological and biochemical effects of rare earth elements on plants and their agricultural significance: a review. J Plant Nutr 27:183–220

    Article  CAS  Google Scholar 

  • Jeong J, Guerinot ML (2009) Homing in on iron homeostasis in plants. Trends Plant Sci 14:280–285

    Article  PubMed  CAS  Google Scholar 

  • Kasajima I, Ohkama-Ohtsu N, Ide Y, Hayashi H, Yoneyama T, Suzuki Y, Naito S, Fujiwara T (2007) The BIG gene is involved in regulation of sulfur deficiency-responsive genes in Arabidopsis thaliana. Physiol Plant 129:351–363

    Article  CAS  Google Scholar 

  • Kawashima CG, Yoshimoto N, Maruyama-Nakashita A, Tsuchiya YN, Saito K, Takahashi H, Dalmay T (2009) Sulfur starvation induces the expression of microRNA-395 and one of its target genes but in different cell types. Plant J 57:313–321

    Article  PubMed  CAS  Google Scholar 

  • Klatte M, Schuler M, Wirtz M, Fink-Straube C, Hell R, Bauer P (2009) The analysis of Arabidopsis nicotianamine synthase mutants reveals functions for nicotianamine in seed iron loading and iron deficiency responses. Plant Physiol 150:257–271

    Article  PubMed  CAS  Google Scholar 

  • Kopriva S, Rennenberg H (2004) Control of sulphate assimilation and glutathione synthesis: interaction with N and C metabolism. J Exp Bot 55:1831–1842

    Article  PubMed  CAS  Google Scholar 

  • Lewandowska M, Wawrzynska A, Moniuszko G, Lukomska J, Zientara K, Piecho M, Hodurek P, Zhukov I, Liszewska F, Nikiforova V, Sirko A (2010) A contribution to identification of novel regulators of plant response to sulfur deficiency: characteristics of a tobacco gene UP9C, its protein product and the effects of UP9C silencing. Mol Plant 3:347–360

    Article  PubMed  CAS  Google Scholar 

  • Ma L, Sun N, Liu X, Jiao Y, Zhao H, Deng XW (2005) Organ-specific expression of Arabidopsis genome during development. Plant Physiol 138:80–91

    Article  PubMed  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London/San Diego

    Google Scholar 

  • Maruyama-Nakashita A, Inoue E, Watanabe-Takahashi A, Yamaya T, Takahashi H (2003) Transcriptome profiling of sulphur-responsive genes in Arabidopsis reveals global effects of sulfur nutrition on multiple metabolic pathways. Plant Physiol 132:597–605

    Article  PubMed  CAS  Google Scholar 

  • Maruyama-Nakashita A, Nakamura Y, Watanabe-Takahashi A, Yamaya T, Takahashi H (2004a) Induction of SULTR1;1 sulfate transporter in Arabidopsis roots involves protein phosphorylation/dephosphorylation circuit for transcriptional regulation. Plant Cell Physiol 45:340–345

    Article  PubMed  CAS  Google Scholar 

  • Maruyama-Nakashita A, Nakamura Y, Yamaya T, Takahashi H (2004b) A novel regulatory pathway of sulfate uptake in Arabidopsis roots: implication of CRE1/WOL/AHK4-mediated cytokinin-dependent regulation. Plant J 38:779–789

    Article  PubMed  CAS  Google Scholar 

  • Maruyama-Nakashita A, Nakamura Y, Yamaya T, Takahashi H (2004c) Regulation of high-affinity sulphate transporters in plants: towards systematic analysis of sulphur signalling and regulation. J Exp Bot 55:1843–1849

    Article  PubMed  CAS  Google Scholar 

  • Maruyama-Nakashita A, Nakamura Y, Watanabe-Takahashi A, Inoue E, Yamaya T, Takahashi H (2005) Identification of a novel cis-acting element conferring sulfur deficiency response in Arabidopsis roots. Plant J 42:305–314

    Article  PubMed  CAS  Google Scholar 

  • Maruyama-Nakashita A, Nakamura Y, Tohge T, Saito K, Takahashi H (2006) Arabidopsis SLIM1 is a central transcriptional regulator of plant sulfur response and metabolism. Plant Cell 18:3235–3251

    Article  PubMed  CAS  Google Scholar 

  • Nikiforova V, Freitag J, Kempa S, Adamik M, Hesse H, Hoefgen R (2003) Transcriptome analysis of sulfur depletion in Arabidopsis thaliana: interlacing of biosynthetic pathways provides response specificity. Plant J 33:633–650

    Article  PubMed  CAS  Google Scholar 

  • Nikiforova VJ, Gakière B, Kempa S, Adamik M, Willmitzer L, Hesse H, Hoefgen R (2004) Towards dissecting nutrient metabolism in plants: a systems biology case study on sulphur metabolism. J Exp Bot 55:1861–1870

    Article  PubMed  CAS  Google Scholar 

  • Pilon M, Cohu CM, Ravet K, Abdel-Ghany SE, Gaymard F (2009) Essential transition metal homeostasis in plants. Curr Opin Plant Biol 12:347–357

    Article  PubMed  CAS  Google Scholar 

  • Pilon-Smits EA, Quinn CF, Tapken W, Malagoli M, Schiavon M (2009) Physiological functions of beneficial elements. Curr Opin Plant Biol 12:267–274

    Article  PubMed  CAS  Google Scholar 

  • Puig S, Andres-Colas N, Garcia-Molina A, Penarrubia L (2007) Copper and iron homeostasis in Arabidopsis: responses to metal deficiencies, interactions and biotechnological applications. Plant Cell Environ 3:271–290

    Article  Google Scholar 

  • Schwarz G, Mendel RR, Ribbe MW (2009) Molybdenum cofactors, enzymes and pathways. Nature 460:839–847

    Article  PubMed  CAS  Google Scholar 

  • Shinmachi F, Buchner P, Stroud JL, Parmar S, Zhao FJ, McGrath SP, Hawkesford MJ (2010) Influence of sulfur deficiency on the expression of specific sulfate transporters and the distribution of sulfur, selenium, and molybdenum in wheat. Plant Physiol 153:327–336

    Article  PubMed  CAS  Google Scholar 

  • Sors TG, Ellis DR, Salt DE (2005) Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynth Res 86:373–389

    Article  PubMed  CAS  Google Scholar 

  • Staiger D (2002) Chemical strategies for iron acquisition in plants. Angew Chem Int Ed Engl 41:2259–2264

    Article  PubMed  CAS  Google Scholar 

  • Van Hoewyk D, Takahashi H, Inoue E, Hess A, Tamaoki M, Pilon-Smits EA (2008) Transcriptome analyses give insights into selenium-stress responses and selenium tolerance mechanisms in Arabidopsis. Physiol Plant 132:236–253

    PubMed  Google Scholar 

  • Von Liebig J (1840) Die organische Chemie in ihrer Anwendung auf Agrikultur und Physiologie. Vieweg, Braunschweig

    Google Scholar 

  • Watanabe M, Hubberten H-M, Saito K, Hoefgen R (2010) General regulatory patterns of plant mineral nutrient depletion as revealed by serat quadruple mutants disturbed in cysteine synthesis. Mol Plant 3:438–466

    Article  PubMed  CAS  Google Scholar 

  • Zhao FJ, McGrath SP, Meharg AA (2010) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol 61:535–559

    Article  PubMed  CAS  Google Scholar 

  • Zhu YG, Pilon-Smits EA, Zhao FJ, Williams PN, Meharg AA (2009) Selenium in higher plants: understanding mechanisms for biofortification and phytoremediation. Trends Plant Sci 14:436–442

    Article  PubMed  CAS  Google Scholar 

  • Zuchi S, Cesco S, Varanini Z, Pinton R, Astolfi S (2009) Sulfur deprivation limits Fe-deficiency responses in tomato plants. Planta 230:85–94

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Hoefgen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Watanabe, M., Hubberten, HM., Hoefgen, R. (2012). Plant Response to Mineral Ion Availability: Transcriptome Responses to Sulfate, Selenium and Iron. In: De Kok, L., et al. Sulfur Metabolism in Plants. Proceedings of the International Plant Sulfur Workshop, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4450-9_17

Download citation

Publish with us

Policies and ethics