Skip to main content

On Modal Logics Defining Jaśkowski’s D2-Consequence

  • Chapter
  • First Online:

Part of the book series: Logic, Epistemology, and the Unity of Science ((LEUS,volume 26))

Abstract

Jaśkowski’s logic D 2 (as a set of formulae) was formulated with the help of the modal logic S5 (see Jaśkowski, Stud Soc Sci Torun I(5):57–77, 1948; Stud Soc Sci Torun I(8):171–172, 1949). In Furmanowski (Stud Log 34:39–43, 1975), Perzanowski (Rep Math Log 5:63–72, 1975), Nasieniewski and Pietruszczak (Bull Sect Logic 37(3–4):197–210, 2008) it was shown that to define D 2 one can use normal and regular logics weaker than S5. In his paper Jaśkowski used a deducibility relation which we will denote by⊢ D 2 and which fulfilled the following condition: A 1,,A n ⊢; D 2 B iff \(\ulcorner \lozenge {A}_{1}^{\bullet }\rightarrow (\ldots \rightarrow (\lozenge {A}_{n}^{\bullet }\rightarrow \lozenge {B}^{\bullet })\ldots \,)\urcorner \in \mathbf{S5}\), where (−) is a translation of discussive formulae into the modal language. We indicate the weakest normal and the weakest regular modal logic which define D 2 -consequence.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    For n = 0 we inquire whether the sentence \(\mathfrak{Q}\) is valid in the discussive logic, i.e. whether the modal sentence \(\lozenge {\mathfrak{Q}}^{\bullet }\) is valid in S5.

  2. 2.

    Notice that for n = 1 and any m > 0 a sentence \(\ulcorner ({\mathfrak{p}}_{1} \wedge \cdots \wedge {\mathfrak{p}}_{m}){\rightarrow }^{\mathrm{d}}\mathfrak{Q}\urcorner \) has a form (a)d as well as a form (b)d, for \({\mathfrak{P}}_{1} := \ulcorner {\mathfrak{p}}_{1} \wedge \cdots \wedge {\mathfrak{p}}_{m}\urcorner \). Thus, it can be treated as expressing the external point of view where only one participant is considered.

  3. 3.

    In Appendix we recall some chosen basic facts and notions concerning modal logic.

  4. 4.

    If the classical conjunction were considered, one would have to add the following condition: (A ∧ B) ∙  =  ⌜ A  ∙  ∧ B  ∙  ⌝ .

  5. 5.

    In da Costa and Doria (1995) a similar relation was used, yet not for Ford, but for a modal language enriched with some discussive connectives. However, in this modal language the discussive conjunction was defined as follows: ⌜ (A ∧ ​d B) ↔ ( ◊ A ∧ B) ⌝ . But, as it was proved in Ciuciura (2005), for a new transformation  −  ∗  such that (A ∧ ​d B) ∗  =  ⌜ ◊ A  ∗  ∧ B  ∗  ⌝ , we obtain another discussive logic D 2  ∗  which differs from D 2 .

  6. 6.

    So notice that for the logic D 2 we have an analogous fact to Fact 9.A.1.

  7. 7.

    As it is well known, in all regular logics (and so in normal ones) the formula ⌜ ◊ ⊤ ⌝ is equivalent to the formula (D) (see Lemma 9.A.7). The smallest normal logic containing (D) (equivalently ⌜ ◊ ⊤ ⌝ ) is denoted by ‘KD’ or simply by ‘D’. We have, D S5 M.

  8. 8.

    For an explanation of the Lemmon code KX 1X n or CX 1X n see page 19.

  9. 9.

    It was proved in Błaszczuk and Dziobiak (1975) that if L ∈ NS5 , then L ⊆ S5.

  10. 10.

    The name ‘CD45(1)’ is used in the sense of Segerberg (1971), vol. II. Notice that CD45 = KD45.

  11. 11.

    We have also a proof of the following fact without the use of Lemma 9.A.9. Firstly, by Lemma 9.A.8(ii), (5c) ∈ CD4; so CN 1 5 c 5(1) ⊆ CD45(1). Secondly, 5 (1) belongs to C5 c 5(1), so by US we have: ‘ □ ⊤ → ( ◊ □ p → □ ◊ □ p)’. Moreover, by { 5(1)}, RM, (K) and PL, we obtain: ‘ □ □ ⊤ → ( □◊□ p → □ □ p)’. So, by PL, we receive: ‘( □ □ ⊤ ∧ □ ⊤ ) → ( ◊ □ p → □ □ p)’. Hence, by (5c) and PL, we get ‘( □ □ ⊤ ∧ □ ⊤ ) → ( □ p → □ □ p)’. Hence, by (N 1), PL and RM, we have that (4) ∈ CN 1 5 c 5(1). Thus, CD45(1) ⊆ CN 1 5 c 5(1), since by Lemma 9.A.8(i), (D) ∈ C5 c .

  12. 12.

    In Bull and Segerberg (1984) and Chellas and Segerberg (1996) the symbol ‘ ◊ ’ is only an abbreviation of ‘ ¬ □  ¬’. In the present paper ‘ ◊ ’ is a primary symbol, thus, we have to admit an axiom of the form (rep). Theses of this form are equivalent to the usage of ‘ ◊ ’ as the abbreviation of ‘ ¬ □  ¬’.

  13. 13.

    Notice that (b) implies (a).

References

  • Bull, R.A., and K. Segerberg. 1984. Basic modal logic. In Handbook of philosophical logic, vol. II, ed. D.M. Gabbay and F. Guenthner, 1–88. Dordrecht: Reidel.

    Google Scholar 

  • Błaszczuk, J.J., and W. Dziobiak. 1975. Modal systems related to S4 n of Sobociński. Bulletin of the Section of Logic 4: 103–108.

    Google Scholar 

  • Błaszczuk, J.J., and W. Dziobiak. 1977. Modal logics connected with systems S4 n of Sobociński. Studia Logica 36: 151–175.

    Article  Google Scholar 

  • Chellas, B.F. 1980. Modal logic: An introduction. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Chellas, B.F., and K. Segerberg. 1996. Modal logics in the vicinty of S1. Notre Dame Journal of Formal Logic 37(1): 1–24.

    Article  Google Scholar 

  • Ciuciura, J. 2005. On the da Costa, Dubikajtis and Kotas’ system of the discursive logic, D 2  ∗ . Logic and Logical Philosophy 14(2): 235–252.

    Google Scholar 

  • da Costa, N.C.A., and F.A. Doria. 1995. On Jaśkowski’s discussive logics. Studia Logica 54(1): 33–60.

    Article  Google Scholar 

  • Furmanowski, T. 1975. Remarks on discussive propositional calculus. Studia Logica 34: 39–43.

    Article  Google Scholar 

  • Jaśkowski, S. 1948. Rachunek zdań dla systemw dedukcyjnych sprzecznych. Studia Societatis Scientiarum Torunensis Sect. A, I(5): 57–77.

    Google Scholar 

  • Jaśkowski, S. 1949. O koniunkcji dyskusyjnej w rachunku zdań dla systemw dedukcyjnych sprzecznych. Studia Societatis Scientiarum Torunensis Sect. A, I(8): 171–172.

    Google Scholar 

  • Jaśkowski, S. 1969. Propositional calculus for contradictory deductive systems. Studia Logica 24: 143–157; the first English version of Jaśkowski (1948).

    Google Scholar 

  • Jaśkowski, S. 1999. A propositional calculus for inconsistent deductive systems. Logic and Logical Philosophy 7: 35–56; the second English version of Jaśkowski (1948).

    Google Scholar 

  • Jaśkowski, S. 1999a. On the discussive conjunction in the propositional calculus for inconsistent deductive systems. Logic and Logical Philosophy 7: 57–59; the English version of Jaśkowski (1949).

    Google Scholar 

  • Lemmon, E.J. (in collaboration with D. Scott). 1977. “Lemmon notes”: An introduction to modal logic. No. 11 in the American philosophical quarterly monograph series, ed. K. Segerberg. Oxford: Basil Blackwell.

    Google Scholar 

  • Nasieniewski, M. 2002. A comparison of two approaches to parainconsistency: Flemish and Polish. Logic and Logical Philosophy 9: 47–74.

    Google Scholar 

  • Nasieniewski, M., and A. Pietruszczak. 2008. The weakest regular modal logic defining Jaśkowski’s logic D2. Bulletin of the Section of Logic 37(3–4): 197–210.

    Google Scholar 

  • Nasieniewski, M., and A. Pietruszczak. 2009. New axiomatisztions of the weakest regular modal logic defining Jaśkowski’s logic D2. Bulletin of the Section of Logic 38(1–2): 45–50.

    Google Scholar 

  • Perzanowski, J. 1975. On M-fragments and L-fragments of normal modal propositional logics. Reports on Mathematical Logic 5: 63–72.

    Google Scholar 

  • Segerberg, K. 1971. An essay in classical modal logic, vol. I, II. Uppsala: Uppsala University.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Nasieniewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht.

About this chapter

Cite this chapter

Nasieniewski, M., Pietruszczak, A. (2013). On Modal Logics Defining Jaśkowski’s D2-Consequence. In: Tanaka, K., Berto, F., Mares, E., Paoli, F. (eds) Paraconsistency: Logic and Applications. Logic, Epistemology, and the Unity of Science, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4438-7_9

Download citation

Publish with us

Policies and ethics