The Glacial and Loess Record of Southern South America

  • Nat Rutter
  • Andrea Coronato
  • Karin Helmens
  • Jorge Rabassa
  • Marcelo Zárate
Part of the SpringerBriefs in Earth System Sciences book series (BRIEFSEARTHSYST)


The geomorphological, sedimentary and pedological evidence related to the various glacial periods which took place in the Patagonian and Fuegian Andes between the Late Miocene and the Late Pleistocene are herein presented and discussed. The occurrence of basaltic flows interbedded with till and other glaciogenic deposits provides radiometric dating and paleomagnetic information for several Patagonian regions which may be applied to the related glacial episodes. The modern glacial chronology of the Patagonian terrestrial glacial record is basically supported by 40Ar/39Ar dating on volcanic rocks associated with glacial deposits, and cosmogenic isotope dating techniques on erratic boulders and glacial erosion surfaces. These sequences, chronologically calibrated, compared with 47 Marine 18O Isotope Stages (MIS) and constrained by global magnetostratigraphy, enable the interpretation of climatic changes over about seven million years in the Southern Hemisphere. In addition, the loess and loess-like record of southern South American extends back at least to the Late Miocene. These deposits cover the Chaco-Pampean region of central eastern Argentina, between 28–38° S, which formed a large continental sedimentary basin during the Neogene. The oldest glacial evidence is composed of till and glaciofluvial deposits interbedded with 5–7 Ma old basalts found in at least two areas, 38° and 46° S. It has been interpreted that the Pliocene–Pleistocene glaciations were of local ice cap and piedmont glacier type. These ancient glacial deposits have been also affected by Andean tectonics and deformation. At least parts of the Southern Andes were already covered by a local mountain ice sheet during the Late Pliocene. This statement is supported by the finding of glacial boulders in between basaltic flows at 41° S, lava flows overlying glacial and glaciofluvial units at 39° S, and glacial deposits interbedded with flows and till overlying basalt flows between latitude 46°–52° S. Whether the development of glaciers was promoted by climate deterioration, by tectonic forces, or both kinds of processes is still unknown. Thus, already during the Pliocene, local icefields would have been very extensive, covering part of the westernmost, extra-Andean tablelands all along Patagonia. A minimum of seven glaciations were recognized at Cerro del Fraile locality (50° S) during the Early Pleistocene and interpreted as repeated piedmont glaciations, synchronous to active volcanism. The most extensive glaciation recognized in many parts of Patagonia is known as The Great Patagonian Glaciation (GPG) and bracketed between 1.15–1.05 Ma. However, until precise chronology is available for all localities in which GPG has been found, GPG should be considered as a multiple-event glaciation. In several transversal Patagonian valleys three glacial advances took place after GPG and before Last Glacial Maximum (LGM). The absolute chronologies of these post-GPG events have not been closely defined yet though, based upon paleomagnetic data, all till deposits along the Atlantic coast of Tierra del Fuego would belong to the Brunhes epoch. The Last Glaciation is very well known in all Patagonian glacial valleys and coastal channels and fjords. The estimated ages of these deposits begin close to 60 ka, but full glacial times (LGM) have been dated between 25–20 ka. Correlation of all these glacial events with the Pampean loess units is possible, but more detailed studies and absolute dating is needed.


Late Pleistocene Late Miocene Last Glacial Maximum Glacial Cycle Glacial Deposit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ackert RP, Singer B, Guillou H, Kurz M (1998) Cosmogenic 3He production rates over the last 125,000 years: calibration against 40Ar/39Ar and unspiked K-Ar ages of lava flows. Geological Society of America 1998 annual meeting symposium 24, Abstracts, TorontoGoogle Scholar
  2. Ardolino A, Franchi M, Remersal M, Salani F (1999) El volcanismo en la patagonia extraandina. In: Haller M (ed) Geología Argentina. Anales SEGEMAR N° 29, Buenos Aires, pp 579–612Google Scholar
  3. Bidegain JC (1998) New evidence of the Brunhes-Matuyama polarity boundary in the Hernández-Gorina quarries, North West of the city of La Plata, Buenos Aires Province, Argentina. Quat S Am Antarct Peninsula 11:207–228Google Scholar
  4. Blunier T, Brook E (2001) Timing of millenial-scale climate change in Antarctica and Greenland during the last glacial period. Science 291:109–112CrossRefGoogle Scholar
  5. Bockheim J, Coronato A, Ponce JF, Ercolano B, Rabassa J (2009) Relict sand wedges in southern Patagonia and their stratigraphic and paleoenvironmental significance. Quatern Sci Rev 28(13–14):1188–1199CrossRefGoogle Scholar
  6. Caldenius C (1932) Las glaciaciones cuaternarias en Patagonia and Tierra del Fuego. Anales, Dirección General de Geología y Minería. Buenos Aires 95, p 150Google Scholar
  7. Cione A, Tonni EP (1995) Chronostratigraphy and “land-mammal ages” in the Cenozoic of southern South America: principles, practices, and the “Uquian” problem. J Paleontol 69:135–159Google Scholar
  8. Clapperton C (1993) Quaternary geology and geomorphology of South America. Elsevier, Amsterdam, p 779Google Scholar
  9. Coronato AMJ, Rabassa J (2007) Late Quaternary glaciations in South America. In: Scott E (ed) Encyclopedia of Quaternary Science, vol 2. Elsevier, Amsterdam, pp 1101–1108CrossRefGoogle Scholar
  10. Coronato AMJ, Martínez O, Rabassa J (2004a) Glaciations in Argentine Patagonia, southern South America. In: Ehlers J, Gibbard JP (eds) Quaternary glaciations: extent and chronology. Part III, South America, Asia, Africa, Australia, Antarctica. Developments in Quaternary Science, vol 2c. Elsevier, Amsterdam, pp 49–67Google Scholar
  11. Coronato AMJ, Meglioli A, Rabassa J (2004b) Glaciations in the Magellan Straits and Tierra del Fuego, southernmost South America. In: Ehlers J, Gibbard JP (eds) Quaternary glaciations: extent and chronology. Part III: South America, Asia, Africa, Australia, Antarctica, Developments in Quaternary Science, vol 2c. Elsevier, Amsterdam, pp 45–48Google Scholar
  12. Coronato AMJ, Ponce JF, Seppälä M, Rabassa J (2008) Englazamiento del valle del Río Fuego durante el Pleistoceno tardío, Tierra del Fuego, Argentina. Actas del XVII Congreso Geológico Argentino, pp 1194–1195Google Scholar
  13. Coronato AMJ, Rabassa J (2011) Pleistocene glaciations in Southern Patagonia and Tierra del Fuego. In: Ehlers J et al. (eds) Quaternary glaciations: extent and chronology. A closer look. Developments in Quaternary Science, Chap. 51, vol 15. Elsevier, AmsterdamGoogle Scholar
  14. Espizúa L (1993) Quaternary glaciations in the Río Mendoza valley, Argentine Andes. Quatern Res 40:150–162CrossRefGoogle Scholar
  15. Espizúa L (2004) Pleistocene glaciations in the Mendoza Andes, Argentina. In: Ehlers J, Gibbard P (eds) Quaternary glaciations-extent and chronology, Part III: South America, Asia, Africa, Australasia, Antarctica. Developments in Quaternary Science, vol 2c. Elsevier, Amsterdam, pp. 69–73Google Scholar
  16. Espizúa L, Bigazzi G (1998) Fission-track dating of the Punta de Vacas Glaciation in the Río Mendoza valley, Argentina. Quatern Sci Rev 17:755–760CrossRefGoogle Scholar
  17. Fauqué L, Hermanns R, Hewitt K, Rosas M, Wilson C, Baumann V, Lagorio S, Di Tomasso I (2009) Mega-deslizamientos de la pared sur del Cerro Aconcagua y su relación con depósitos asignados a la glaciación pleistocena. Revista de la Asociación Geológica Argentina 65(4):691–712Google Scholar
  18. Feruglio E (1944) Estudios geológicos y glaciológicos en la región del Lago Argentino (Patagonia). Bol Acad Nac Ciencias Córdoba 37:1–208Google Scholar
  19. Feruglio E (1950) Descripción geológica de la Patagonia. T. 3, Cuaternario. Y.P.F., Buenos AiresGoogle Scholar
  20. Fleck RJ, Mercer JH, Nairn AEM, Peterson DN (1972) Chronology of Late Pliocene and Early Pleistocene glacial and magnetic events in southern Argentina. Earth Planet Sci Lett 16:15–22CrossRefGoogle Scholar
  21. Flint RF, Fidalgo F (1964) Glacial geology of the east flank of the Argentine andes between latitude 39°10′S and latitude 41°21′S. Geol Soc Am Bull 75:335–352CrossRefGoogle Scholar
  22. Flint RF, Fidalgo F (1969) Glacial drift in the eastern Argentine andes between latitude 41°10′S and latitude 43°21′S. Geol Soc Am Bull 80:1043–1052CrossRefGoogle Scholar
  23. González Díaz EF, Nullo F (1980) Cordillera Neuquina. In: Leanza A (ed) Geología Regional Argentina, vol 2. Academia Nacional de Ciencias de Córdoba, Argentina, pp 1099–1148Google Scholar
  24. Gracia, R (1958) Informe geológico de las cartas Paso Flores y Traful. Secretaría de Ejército, Dirección General de Ingenieros, Buenos Aires, unpublished reportGoogle Scholar
  25. Guillou H, Singer B (1997) Combined unspiked K-Ar and 40Ar/39Ar dating of Late Quaternary lavas. EOS, Transactions of the American Geophysical Union, Abstracts, Fall Meeting 78, 46, 771Google Scholar
  26. Hein A, Hulton N, Dunai T, Schnabel C, Kaplan M, Naylor M, Xu S (2009) Middle Pleistocene glaciations in Patagonia dated by cosmogenic-nuclide measurements on gravels. Earth Planetary Sci Lett 286:184–197CrossRefGoogle Scholar
  27. Kaplan MR, Ackert RP Jr, Singer BS, Douglass DC, Kurz MD (2004) Cosmogenic nuclide chronology of millenial-scale glacial advances during O-isotope stage 2 in Patagonia. Geol Soc Am Bull 116:308–321CrossRefGoogle Scholar
  28. Kemp R, Zárate M (2000) Pliocene sedimentary cycles in the southern Pampas Argentina. Sedimentology 47:481–488CrossRefGoogle Scholar
  29. Kemp R, Toms P, Sayago JM, Derbyshire E, King M, Wagoner L (2003) Micromorphology and OSL dating of the basal part of the loess-paleosol sequence at La Mesada in Tucumán province, Northwest Argentina. Quaternary Int 106–107:111–117CrossRefGoogle Scholar
  30. Kemp R, King M, Toms P, Derbyshire E, Sayago JM, Collantes M (2004a) Pedosedimentary development of part of a Late Quaternary loess-paleosol sequence in northwest Argentina. J Quat Sci 19:1–10CrossRefGoogle Scholar
  31. Kemp RA, Toms PS, King M, Kröhling DM (2004b) The pedosedimentary evolution and chronology of Tortugas, a Late Quaternary type-site of the northern Pampa, Argentina. Quatern Int 114:101–112CrossRefGoogle Scholar
  32. Kemp R, Zárate M, Toms P, King M, Sanabria J, Arguello G (2006) Late Quaternary paleosols, stratigraphy and landscape evolution in the northern Pampas, Argentina. Quatern Res 66:119–132CrossRefGoogle Scholar
  33. Lagabrielle Y, Suárez M, Rossello E, Hérail G, Martinod J, Régnier M, De La Cruz R (2004) Neogene to Quaternary tectonic evolution of the Patagonian Andes at the latitude of the Chile triple junction. Tectonophysics 385:211–241CrossRefGoogle Scholar
  34. Lagabrielle Y, Suárez M, Malavieille J, Morata D, Espinoza F, Maury RC, Scalabrino B, Barbero L, de la Cruz R, Rossello E, Bellon H (2007) Pliocene extensional tectonics in the eastern central Patagonian Cordillera: geochronological constraints and new field evidence. Terra Nova 19:1–12. doi: 10.1111/j.1365-3121.2007.00766.x CrossRefGoogle Scholar
  35. Lagabrielle Y, Scalabrino B, Suárez M, Ritz JF (2010) Mio-Pliocene glaciations of central Patagonia: new evidence and tectonic implications. Andean Geol 37(2):276–299Google Scholar
  36. Laugenie C (1984) Le dernier cycle glaciaire quaternaire et la construction des nappes fluviatiles d’avant pays dans les Andes Chiliennes. Bulletin Association Française d’études de Quaternaire 1–3:139–145CrossRefGoogle Scholar
  37. Lowell T, Heusser CJ, Andersen B, Moreno P, Hauser A, Heusser L, Schlüchter C, Marchant D, Denton G (1995) Interhemispheric correlation of Late Pleistocene glacial events. Science 269:1541–1549CrossRefGoogle Scholar
  38. Marshall L, Hoffstetter R, Pascual R (1983) Mammals and stratigraphy: geochronology of the continental mammal-bearing tertiary of South America. Palaeovertebrata, Mémoire Extraordinaire, pp 1–93Google Scholar
  39. McCulloch R, Fogwill C, Sudgen D, Bentley M, Kubik P (2005a) Chronology of the last glaciation in central Straits of Magellan and Bahía Inútil, southernmost South America. Geografiska Annaler, 87 A, 2, pp 289–312Google Scholar
  40. McCulloch R, Bentley M, Tipping R, Clapperton C (2005b) Evidence for late-glacial ice dammed lakes in the central Straits of Magellan and Bahía Inútil, southernmost South America. Geografiska Annaler, 87 A, 2, pp 335–362Google Scholar
  41. McKay R, Browne G, Carter L, Dundar G, Krissek L, Naish T, Powell R, Reed J, Talarica F, Wilch T (2009) The stratigraphic signature of the late Cenozoic Antarctic ice sheets in the Ross Embayment. Geol Soc Am Bull 121:1537–1561CrossRefGoogle Scholar
  42. Meglioli A (1992) Glacial geology of southernmost Patagonia, the Strait of Magellan and Northern Tierra del Fuego. Unpublished Ph.D. Dissertation, Lehigh University, Bethlehem, Pennsylvania, USAGoogle Scholar
  43. Mercer JH (1976) Glacial history of southernmost South America. Quatern Res 6:125–166CrossRefGoogle Scholar
  44. Mercer J, Sutter J (1981) Late Miocene-earliest Pliocene glaciation in southern Argentina: implications for global ice-sheet history. Palaeogeogr Palaeoclimatol Palaeoecol 38:185–206CrossRefGoogle Scholar
  45. Mercer JH, Fleck RJ, Mankinen EA, Sander W (1975) Southern patagonia: glacial events between 4 and 1 MY ago. In: Suggate RP, Cresswell MM (eds) Quaternary studies. Royal Society of New Zealand Bulletin 13, pp 223–230Google Scholar
  46. Montalvo CI, Melchor R, Visconti G, Cerdeño E (2007) Vertebrate taphonomy in loess-palaeosol deposits: a case study from the Late Miocene of central Argentina. Geobios 41:133–143CrossRefGoogle Scholar
  47. Mörner N, Sylwan C (1989) Magnetostratigraphy of the Patagonian moraine sequence at Lago Buenos Aires. J S Am Earth Sci 2:385–390CrossRefGoogle Scholar
  48. Nabel PE, Cione A, Tonni E (2000) Environmental changes in the Pampean area of Argentina at the Matuyama-Brunhes boundary (C1r–C1n) chrons boundary. Palaeogeogr Palaeoclimatol Palaeoecol 162, pp 403–412Google Scholar
  49. Orgeira MJ (1987) Estudio paleomagnético de sedimentos asignados al Cenozoico tardío aflorantes en la costa Atlántica bonaerense. Revista de la Asociación Geológica Argentina 42:362–376Google Scholar
  50. Orgeira MJ (1990) Paleomagnetism of Late Cenozoic fossiliferous sediments from Barranca de los Lobos (Buenos Aires Province, Argentina). The magnetic age of South American land mammal ages. Phys Earth Planet Inter 64:121–132CrossRefGoogle Scholar
  51. Pascual R, Ortega Hinojosa J, Gondar D, Tonni EP (1965) Las edades del Cenozoico mamalífero de la Argentina, con especial atención a aquellas del territorio bonaerense. Anales Comisión de Investigaciones Científicas de la Provincia de Buenos Aires 6, La Plata, pp 165–193Google Scholar
  52. Porter SC (1981) Pleistocene glaciation in the southern lake district of Chile. Quatern Res 16:263–292CrossRefGoogle Scholar
  53. Rabassa J (1999) Cuaternario de la cordillera Patagónica y Tierra del Fuego. In: Haller M (ed) Geología Argentina, vol 29. Anales SEGEMAR N°, Buenos Aires, pp 710–714Google Scholar
  54. Rabassa J (2008) Late Cenozoic glaciations in Patagonia and Tierra del Fuego. In: Rabassa J (ed) Late Cenozoic of Patagonia and Tierra del Fuego, Developments in Quaternary Sciences, vol 11. Elsevier, Amsterdam, pp 151–204CrossRefGoogle Scholar
  55. Rabassa J, Clapperton CM (1990) Quaternary glaciations in the southern Andes. Quatern Sci Rev 9:153–174CrossRefGoogle Scholar
  56. Rabassa J, Coronato AMJ, Bujalesky G, Roig C, Salemme M, Meglioli A, Heusser CJ, Gordillo S, Roig Juñent F, Borromei A, Quattrocchio M (2000) Quaternary of Tierra del Fuego, southernmost South America: an up-dated review. Quatern Int 68–71:217–240CrossRefGoogle Scholar
  57. Rabassa J, Coronato AMJ, Salemme M (2005) Chronology of the Late Cenozoic Patagonian glaciations and their correlation with biostratigraphic units of the Pampean region (Argentina). J S Am Earth Sci 20:81–103CrossRefGoogle Scholar
  58. Rabassa J, Coronato AMJ, Ponce JF, Schlieder G, Martínez OA (2011) Depósitos glacigénicos (Cenozoico tardío-Cuaternario) y geoformas asociadas. Relatorio del XVIII Congreso Geológico Argentino, Neuquén, pp 295–314Google Scholar
  59. Ramos V (1999a) Los depósitos sinorogénicos terciarios de la región andina. In: Haller M (ed) Geología Argentina, vol 29. Anales SEGEMAR Nº, Buenos Aires, pp 651–682Google Scholar
  60. Ramos V (1999b) Las provincias geológicas del territorio argentino. In: Haller M (ed) Geología Argentina, vol 29. Anales SEGEMAR Nº, Buenos Aires, pp 41–96Google Scholar
  61. Ruocco M (1989) A 3 Ma paleomagnetic record of coastal continental deposits in Argentina. Palaeoecol, Palaeogeogr, Palaeoclimatol 72:105–113CrossRefGoogle Scholar
  62. Schellenberger A, Veit H (2006) Pedostratigraphy and pedological and geochemical characterization of Las Carreras Loess. Quatern Sci Rev 25:811–831CrossRefGoogle Scholar
  63. Schellenberger A, Heller F, Veit H (2003) Magnetostratigraphy and magnetic susceptibility of Las Carreras loess-paleosol sequence in Valle de Tafí, Tucumán NW-Argentina. Quaternary Int 106(107):159–167CrossRefGoogle Scholar
  64. Schellmann G (1998) Jungkanozoische landschaftsgesschichte patagoniens (Argentinien). Andine vorlandvergletscherungen, talentwicklung und marine terrasen. Essener Geogr Arbeiten 29:1–218Google Scholar
  65. Schellmann G (1999) Landscape evolution and glacial history of southern Patagonia (Argentina) since the Late Miocene—some general aspects. Zentralbatt Geologie und Palaontologie, Teil I 7/8:1013–1026Google Scholar
  66. Schlieder G (1989) Glacial geology of the Northern Patagonian Andes between lakes Aluminé and Lácar. Unpublished Ph.D dissertation, Lehigh University, Bethlehem, Pennsylvania, USAGoogle Scholar
  67. Schultz PH, Zárate MA, Hames W, Camilión C, King J (1998) A 3.3 Ma impact in Argentina and possible consequences. Science 282:2061–2063CrossRefGoogle Scholar
  68. Schultz PH, Zárate MA, Hames W, Koeberl C, Bunch T, Storzer D, Renne P, Wittke J (2004) The Quaternary impact record from the Pampas, Argentina. Earth Planet Sci Lett 219:221–238CrossRefGoogle Scholar
  69. Schultz PH, Zárate MA, Hames W, Harris S, Bunch TW, Koeberl RP, Wittke J (2006) The record of Miocene impacts in the Argentine pampas. Meteorit Planet Sci 41:749–771CrossRefGoogle Scholar
  70. Singer B, Ackert RP, Kurz M, Guillou H, Ton-That T (1998) Chronology of Pleistocene glaciations in Patagonia: a 3He, 40Ar/39Ar and K-Ar study of lavas and moraines at Lago Buenos Aires, 46°S, Argentina. Geological Society of America 1998 Annual meeting, symposium 24, Abstracts 30, 299, TorontoGoogle Scholar
  71. Singer B, Ackert RP, Guillou H (2004a) 40Ar/39Ar ages and K/Ar chronology of Pleistocene glaciations in Patagonia. Geol Soc Am Bull 116:434–450CrossRefGoogle Scholar
  72. Singer B, Brown LL, Rabassa J, Guillou H (2004b) 40Ar/39Ar ages of Late Pliocene and Early Pleistocene geomagnetic and glacial events in southern Argentina. In: Timescales of the internal geomagnetic field. Am Geophys Union Monogr Ser 145:175–190CrossRefGoogle Scholar
  73. Sylwan C (1989) Paleomagnetism, paleoclimate and chronology of Late Cenozoic deposits in southern Argentina. Meddelanden Stockholms Universitets Geologiska Instituut, 277, p 110Google Scholar
  74. Teruggi ME (1957) The nature and origin of Argentine loess. J Sediment Petrol 27:322–332Google Scholar
  75. Tonni EP, Nabel P, Cione AL, Etchichury M, Tófalo R, Scillato Yané G, San Cristóbal J, Carlini A, Vargas D (1999) The Ensenada and Buenos Aires formations (Pleistocene) in a quarry near La Plata, Argentina. J S Am Earth Sci 12:273–291CrossRefGoogle Scholar
  76. Ton-That T (1997) 40Ar/39Ar dating of basaltic lava flows and the geology of the Lago Buenos Aires region, Santa Cruz province, Argentina. Unpublished Diploma Thesis, Université de Genève, Switzerland, p 51Google Scholar
  77. Ton-That T, Singer B, Mörner NA, Rabassa J (1999) Datación por el método 40Ar/39Ar de lavas basálticas y geología del Cenozoico superior en la región del Lago Buenos Aires, provincia de Santa Cruz, Argentina. Revista de la Asociación Geológica Argentina 54(4):333–352Google Scholar
  78. Valencio DA, Orgeira MJ (1983) La magnetoestratigrafía del Ensenadense y Bonaerense de la ciudad de Buenos Aires: Parte II. Revista de la Asociación Geológica Argentina 38(1):24–33Google Scholar
  79. Visconti G (2007). Sedimentología de la Formación Cerro Azul (Mioceno superior) de la provincia de La Pampa, Argentina. Unpublished Doctoral Thesis, Universidad de Buenos Aires, Buenos Aires, ArgentinaGoogle Scholar
  80. Walther A, Rabassa J, Coronato AMJ, Tassone A, Vilas JF (2007) Paleomagnetic study of glacigenic sediments from Tierra del Fuego. Geosur, Abstract, vol 174Google Scholar
  81. Wenzens G (2000) Pliocene piedmont glaciation in the Río Shehuen valley, southwest Patagonia, Argentina. Arct Antarct Alp Res 32:46–54CrossRefGoogle Scholar
  82. Wenzens G (2006) Terminal moraines, outwash plains, and lake terraces in the vicinity of Lago Cardiel (49º S; Patagonia, Argentina)—evidence for Miocene foreland glaciations. Arct Antarct Alp Res 38:276–291CrossRefGoogle Scholar
  83. Zárate MA (2003) The loess record of southern South America. Quatern Sci Rev 22:1987–2006CrossRefGoogle Scholar
  84. Zárate MA, Kemp RA, Blasi AM (2002) Identification and differentiation of Pleistocene paleosols in the northern pampas of Buenos Aires, Argentina. J S Am Earth Sci 15:303–313CrossRefGoogle Scholar
  85. Zinck JA, Sayago JM (1999) Loess-paleosol sequence of La Mesada in Tucumán province, northwest Argentina—characterization and palaeoenvironmental interpretation. J S Am Earth Sci 12:293–310CrossRefGoogle Scholar
  86. Zinck JA, Sayago JM (2001) Climatic periodicity during the Late Pleistocene from a loess-paleosol sequence in northwest Argentina. Quatern Int 78:11–16CrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • Nat Rutter
    • 1
  • Andrea Coronato
    • 2
  • Karin Helmens
    • 3
  • Jorge Rabassa
    • 4
  • Marcelo Zárate
    • 5
  1. 1.Department of Earth and Atmospheric SciencesUniversity of AlbertaEdmontonCanada
  2. 2.Laboratorio de Geomorfología y CuaternarioCADIC-CONICETUshuaiaArgentina
  3. 3.Department of Physical Geography and Quaternary GeologyStockholm UniversityStockholmSweden
  4. 4.Laboratorio de Geomorfología y CuaternarioCADIC-CONICETUshuaiaArgentina
  5. 5.INCITAP (CONICET-UNLPAM)Santa RosaArgentina

Personalised recommendations