Skip to main content

Uptake of Elements from a Biological Point of View

  • Chapter
  • First Online:
Book cover Essentials of Medical Geology

Abstract

The utilization of an element in biology is intimately dependent on its uptake into the living organism. A lot is known of the qualitative aspects of uptake; for example, common sense tells us that what originates in the geological background has to be transported through the soils and presented to plants in a convenient form for uptake. These processes are affected by physicochemical factors due to Nature itself and the increasing pressures from human activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrews NC (1999) Disorders of iron metabolism. N Engl J Med 341:1986–1995

    Article  Google Scholar 

  • Bielli P, Calabrese L (2002) Structure to function relationships in ceruloplasmin: a “Moonlighting” protein. Cell Mol Life Sci 59:1413–1427

    Article  Google Scholar 

  • Burkhead JL, Reynolds KA, Abdel-Ghany SE, Cohu CM, Pilon M (2009) Copper homeostasis. New Phytol 182:799–816

    Article  Google Scholar 

  • Camakaris J, Petris MJ, Bailey L, Shen PY, Lockhart P, Glover TW, Barcroft C, Patton J, Mercer JF (1995) Gene amplification of the Menkes (MNK: ATP7A) P-type ATPase gene of CHO cells is associated with copper resistance and enhanced copper eflux. Hum Mol Genet 4:2117–2123

    Article  Google Scholar 

  • Cannone-Hergeaux F, Gruenheid S, Ponka P, Gros P (1999) Cellular and subcellular localization of the Nramp2 iron transporter in the intestinal brush border and regulation by dietary iron. Blood 93:4406–4417

    Google Scholar 

  • Carpenter CE, Mahorey AW (1992) Contributions of heme and non-heme iron to human nutrition. CRC Crit Rev Food Sci Nutr 31:333–367

    Article  Google Scholar 

  • Cobine P, George GN, Jones CE, Wickramasinghe WA, Solinoz M, Dameron CT (2002) Copper transfer from the Cu(I)chaperone, CopZ, to the repressor, Zn(II)CopY: metal coordination environments and protein interactions. Biochemistry 41:5822–5829

    Article  Google Scholar 

  • Cohen CK, Fox TC, Garvin DF, Kochian LV (1998) The role of iron-deficiency stress responses in stimulating heavy-metal transport in plants. Plant Physiol 116:1063–1072

    Article  Google Scholar 

  • Collawn JF, Lai A, Domingo D, Fitch M, Hatton S, Trowbridge IS (1993) YTRF is the conserved internalisation signal of the transferrin receptor, and a second YTRF signal at position 31–34 enhances endocytosis. J Biol Chem 268:21686–21692

    Google Scholar 

  • Conrad ME, Umbreit JN (2000) Iron absorption and transport – an update. Am J Hematol 64:287–298

    Article  Google Scholar 

  • Conrad ME, Umbreit JN, Moore EG (1999) Iron absorption and transport. Am J Med Sci 318:213–229

    Article  Google Scholar 

  • Costa E, Rocha S, Rocha-Pereira P, Reis F, Castro E, Teixeira F, Miranda V, do Sameiro Faria M, Loureiro A, Quintanilha A, Belo L, Santos-Silva A (2008) DMT1 (NRAMP2/DCT1) genetic variability and resistance to recombinant human erythropoietin therapy in chronic kidney disease patients under haemodialysis. Acta Haematol 120:11–13

    Article  Google Scholar 

  • Cousins RJ, McMahon RJ (2000) Integrative aspects of zinc transporters. J Nutr 130:1384S–1387S

    Google Scholar 

  • Cox DW, Moore SD (2002) Copper transporting P-type ATPases and human disease. J Bioenerg Biomembr 34:333–338

    Article  Google Scholar 

  • Dancis A, Yuan DS, Haile D, Askwith C, Eide D, Moehle C, Kaplan J, Klausner RD (1994) Molecular characterization of a copper transport protein in S. cerevisiae: an unexpected role for copper in iron transport. Cell 76:393–402

    Article  Google Scholar 

  • Davidsson L, Lönnerdal B, Sandström B, Kunz C, Keen CL (1989) Identification of transferrin as the major plasma carrier protein for manganese introduced orally or intravenously or after in vitro addition in the Rat. J Nutr 119:1461–1464

    Google Scholar 

  • Denke SM, Farburg BL (1989) Regulation of cellular glutathione. Am J Physiol 257:L163–L173

    Google Scholar 

  • Donovan A, Brownile A, Zhou Y, Shepard J, Pratt SJ, Moynihan J, Paw BH, Drejer A, Barut B, Zapata A, Law TC, Brugnarall C, Lux SE, Pinkus GS, Pinkus JL, Kingsley PD, Pails J, Fleming MD, Andrews NC, Zon LI (2000) Positional cloning of Zebrafish ferroportin identifies a conserved vertebrate iron exporter. Nature 403:776–781

    Article  Google Scholar 

  • Dufner-Beattie J, Langmade SJ, Wang F, Eide D, Andrews GK (2003) Structure, function, and regulation of a subfamily of mouse zinc transporter genes. J Biol Chem 278:50142–50150

    Article  Google Scholar 

  • Eide DJ (1998) The molecular biology of metal Ion transport in Saccharomyces cerevisiae. Annu Rev Nutr 18:441–469

    Article  Google Scholar 

  • Eide D, Broderius M, Fett J, Guerinot ML (1996) A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci U S A 93:5624–5628

    Article  Google Scholar 

  • Eisenstein RS (2000) Iron regulatory proteins and the molecular control of mammalian iron metabolism. Annu Rev Nutr 20:627–662

    Article  Google Scholar 

  • Finch C (1994) Regulators of iron balance in humans. Blood 84:1697–1702

    Google Scholar 

  • Fleming MD, Trenor CC, Su MA, Foernzler D, Beier DR, Dietrich WF, Andrews NC (1997) Microcytic anemia mice have a mutation in Nramp2, a candidate iron transporter gene. Nat Genet 16:383–386

    Google Scholar 

  • Fleming RE, Miqas MC, Zhou XY, Jiang J, Britton RS, Brunt EM, Tomatsu S, Waheed A, Bacon BR, Sly WS (1999) Mechanism of increased iron absorption in murine model of hereditary hemochromatosis: increased duodenal expression of the iron transporter DMT1. Proc Natl Acad Sci U S A 96:3143–3148

    Article  Google Scholar 

  • Franklin RB, Ma J, Zou J, Guan Z, Kykoyi BI, Feng P, Costello LC (2003) Human ZIP1 is a major zinc uptake transporter for the accumulation of zinc in prostate cells. J Inorg Biochem 96:435–442

    Article  Google Scholar 

  • Fuentealba IC, Aburto EM (2003) Animal models of copper-associated liver disease. Comp Hepatol 2:5–16

    Article  Google Scholar 

  • Gaither LA, Eide DJ (2000) Functional characterization of the human hZIP2 zinc transporter. J Biol Chem 275:5560–5564

    Article  Google Scholar 

  • Gaither LA, Eide DJ (2001) Eukaryotic zinc transporters and their regulation. Biometals 14:251–270

    Article  Google Scholar 

  • Ganz T, Nemeth E (2008) The Hepcidin-Ferroportin system as a therapeutic target in anemias and iron overload disorders. Hematol Am Soc Hematol Educ Progr 2011:538–542

    Article  Google Scholar 

  • Ganz T, Nemeth E (2011) Hepcidin and disorders of iron metabolism. Annu Rev Med 62:347–360

    Google Scholar 

  • Ganz T, Nemeth E (2012) Hepcidin and iron homeostasis. Biochim Biophys Acta. doi:10.1016/j.bbamcr.2012.01.014

  • Garrick MD, Nunez MT, Olivares M, Harris ED (2003) Parallels and contrasts between iron and copper metabolism. Biometals 16:1–8

    Article  Google Scholar 

  • Gruenheid S, Cannone-Hergeaux F, Gauthier S, Hackam DJ, Grinstein S, Gros P (1999) The iron transport protein NRAMP2 is an integral membrane glycoprotein that colocalizes with transferrin in recycling endosomes. J Exp Med 189:831–841

    Article  Google Scholar 

  • Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL, Hediger MA (1997) Cloning and characterization of a mammalian proton-coupled metal-Ion transporter. Nature 388:482–488

    Article  Google Scholar 

  • Hamlett NV, Landale EC, Davis BH, Summers AO (1992) Roles of the Tn21, merT, merP, and merC gene products in mercury resistance and mercury binding. J Bacteriol 174:6377–6485

    Google Scholar 

  • Hantke K (2001) Bacterial zinc transporters and regulators. Biometals 14:239–249

    Article  Google Scholar 

  • Harris ED (2000) Cellular copper transport and metabolism. Annu Rev Nutr 20:291–310

    Article  Google Scholar 

  • Harris ZL, Klomb LW, Gitlin JD (1998) Aceruloplasminemia: an inherited neurodegenerative disease with impairment of iron homeostasis. Am J Clin Nutr 96:10812–10817

    Google Scholar 

  • Hilton M, Spenser DC, Ross P, Ramsey A, McArdle HJ (1995) Characterisation of the copper uptake mechanism and isolation of ceruloplasmin receptor/copper transporter in human placental vesicles. Biochim Biophys Acta 1245:153–160

    Article  Google Scholar 

  • Holmberg CG, Laurell CB (1948) Investigations in serum copper II isolation of the copper-containing protein and a description of some of its properties. Acta Chem Scand 2:550–556

    Article  Google Scholar 

  • Iacopetta BJ, Rothenberger S, Kuhn LC (1988) A role for the cytoplasmic domain in transferrin receptor sorting and coated pit formation during endocytosis. Cell 54:485–489

    Article  Google Scholar 

  • Kambe T, Yamaguchi-Iwai Y, Sasaki R, Nagao M (2004) Overview of mammalian zinc transporters. Cell Mol Life Sci 61:49–68

    Article  Google Scholar 

  • Kawabata H, Yang R, Hirama T, Vuong PT, Kawano S, Gombart AF, Koeffler HP (1999) Molecular cloning of transferrin receptor 2. A new member of the transferrin receptor-like family. J Biol Chem 274:20826–20832

    Article  Google Scholar 

  • Knight SAB, Labbé S, Kwon LF, Kosman DJ, Thiele DJ (1996) A widespread transposable element marks expression of a yeast copper transport gene. Genes Dev 10:1917–1929

    Article  Google Scholar 

  • Kodama H (1993) Recent developments in Menkes’ disease. J Inherit Metab Dis 16:791–799

    Article  Google Scholar 

  • Kohgo Y, Torimoto Y, Kato J (2002) Transferrin receptor in tissue and serum: updated clinical significance of soluble receptor. Int J Hematol 76:213–218

    Article  Google Scholar 

  • Korshunova YO, Eide D, Clark WG, Guerinot ML, Pakrasi HB (1999) The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Mol Biol 40:37–44

    Article  Google Scholar 

  • Kuo YM, Gitschier J, Packman S (1997) Developmental expression of the mouse mottled and toxic milk genes suggests distinct functions for the Menkes and Wilson disease copper transporters. Hum Mol Genet 6:1043–1049

    Article  Google Scholar 

  • Lasat MM, Pence NS, Garvin DF, Ebbs SD, Kochian LV (2000) Molecular physiology of zinc transport in the Zn hyperaccumulator Thlapsi caerulescens. J Exp Biol 51:71–79

    Google Scholar 

  • Lee PL, Gelbart T, West C, Halloran C, Beutler E (1998) The human Nramp2 gene characterization of the gene structure, alternative splicing, promoter region and polymorphisms. Blood Cells Mol Dis 24:199–215

    Article  Google Scholar 

  • Lieu PT, Heiskala M, Peterson PA, Yang Y (2001) The roles of iron in health and disease. Mol Aspects Med 22:1–87

    Article  Google Scholar 

  • Lin SJ, Pufahl RA, Dancis A, O’Halloran TV, Culotta VC (1997) A role for the Saccharomyces cerevisiae ATX1 gene in copper trafficking and iron transport. J Biol Chem 272:9215–9220

    Article  Google Scholar 

  • Lioumi M, Ferguson CA, Sharpte PT, Freeman T, Marenholz I, Mischke D, Heizmann C, Ragoussis J (1999) Isolation and characterization of human and mouse ZIRTL, a member of the IRT1 family of transporters, mapping within the epidermal differentiation complex. Genomics 62:272–280

    Article  Google Scholar 

  • Majuri R, Grasbeck R (1987) A rosette receptor assay with haem-microbeads. Demonstration of a haem receptor on K562 cells. Eur J Haematol 38:21–25

    Article  Google Scholar 

  • Mantzoros CS, Prasad AS, Beck FWJ, Grabowski S, Kaplan J, Adair C, Brewer GJ (1998) Zinc may regulate serum leptin concentrations in humans. J Am Coll Nutr 17:270–275

    Google Scholar 

  • Marquès L, Oomen JFJ (2011) On the way to unravel zinc hyperaccumulation in plants: a mini review. Metallomics 3:1265–1270

    Article  Google Scholar 

  • Martins LJ, Jensen TL, Simons JR, Keller GL, Winge DR (1998) Metalloregulation of FRE1 and FRE2 homologs in Saccharomyces cerevisiae. J Biol Chem 273:23716–23721

    Article  Google Scholar 

  • Masuoka J, Saltman P (1994) Zinc(II) and copper(II) binding to serum albumin. J Biol Chem 269:25557–25561

    Google Scholar 

  • Matsuura W, Yamazaki T, Yamaguchi-Iwai Y, Masuda S, Nagao M, Andrews GK, Kambe T (2009) SLC39A9 (ZIP9) regulates zinc homeostasis in the secretory pathway: characterization of the ZIP subfamily I protein in vertebrate cells. Biosci Biotechnol Biochem 73:1142–1148

    Article  Google Scholar 

  • McClelland A, Kuehn LC, Ruddle FH (1984) The human transferrin receptor gene: genomic organization, and the complete primary structure of the receptor deduced from a cDNA sequence. Cell 39:267–274

    Article  Google Scholar 

  • McKie AT, Marciani P, Rolfs A, Brennan K, Wehr K, Barrow D, Miret S, Bomford A, Peters TJ, Farzaneh F, Hediger MA, Hentze MW, Simpson RJ (2000) A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol Cell 5:299–309

    Article  Google Scholar 

  • Meguro Y, Kodama H, Abe T, Kobayashi S, Kodama Y, Nishimura M (1991) Changes of copper level and cytochrome c oxidase activity in the macular mouse with age. Brain Dev 13:184–186

    Article  Google Scholar 

  • Mercer JFB (2001) The molecular basis of copper-transport diseases. Trends Mol Med 7:64–69

    Article  Google Scholar 

  • Moos T, Trinder D, Morgan EH (2000) Cellular distribution of ferric iron, ferritin, transferrin and divalent metal transporter 1 DMT1 in substantia nigra and basal ganglia of normal and beta 2-microglobulin deficient mouse brain. Cell Mol Biol 46:549–561

    Google Scholar 

  • Nies DH, Silver S (1995) Ion efflux systems involved in bacterial metal resistance. J Ind Microbiol 14:186–199

    Article  Google Scholar 

  • O’Halloran TV, Culotta CV (2000) Metallochaperones: an intracellular shuttle service for metal ions. J Biol Chem 275:25057–25060

    Article  Google Scholar 

  • Palmiter RD, Cole TB, Findley SD (1996) ZnT-2, a mammalian protein that confers resistance to zinc by facilitating vesicular sequestration. EMBO J 15:1784–1791

    Google Scholar 

  • Pietrangelo A, Rocchi E, Casalgrandi G, Rigo G, Ferrari A, Perini M, Ventura E, Cairo G (1992) Regulation of transferring, transferrin receptor, and ferritin genes in human duodenum. Gastroenterology 102:802–809

    Google Scholar 

  • Prohaska JR (2008) Role of copper transporters in copper homeostasis. Am J Clin Nutr 88:826S–829S

    Google Scholar 

  • Raskin I (1995) Plant genetic engineering may help with environmental cleanup. Proc Natl Acad Sci U S A 93:3164–3166

    Article  Google Scholar 

  • Robinson NJ, Winge DR (2010) Copper metallochaperones. Annu Rev Biochem 79:537–562

    Article  Google Scholar 

  • Rolfs A, Hediger MA (1999) Metal ion transporters in mammals: structure, function and pathological implications. J Physiol 518:1–12

    Article  Google Scholar 

  • Rothenberg BE, Voland JR (1996) Beta2 knockout mice develop parenchymal iron overload: a putative role for class I genes of the major histocompatibility complex in iron metabolism. Proc Natl Acad Sci U S A 93:1529–1534

    Article  Google Scholar 

  • Rutledge EA, Enns CA (1996) Cleavage of the transferrin receptor is influenced by the composition of the O-linked carbohydrate at position 104. J Cell Physiol 168:284–293

    Article  Google Scholar 

  • Sacher A, Cohen A, Nelson N (2001) Properties of the mammalian and yeast metal-ion transporters DCT1 and Smf1p expressed in Xenopus laevis oocytes. J Exp Biol 204:1053–1061

    Google Scholar 

  • Solioz M, Odermatt A, Krapf R (1994) Copper pumping ATPases: common concepts in bacteria and man. FEBS Lett 346:44–47

    Article  Google Scholar 

  • Suhy D, O’Halloran TV (1995) Metal responsive gene regulation and the zinc metalloregulatory model. In: Siegel H (ed) Metal ions in biological systems, vol 32. Marcel Dekker, New York, pp 557–558

    Google Scholar 

  • Suzuki M, Gitlin JD (1999) Intracellular localisation of the Menkes’ and Wilson’s disease proteins and their role in intracellular copper transport. Pediatr Int 41:436–442

    Article  Google Scholar 

  • Tacchini L, Bianchi L, Bernelli-Zazzera A, Cairo G (1999) Transferrin receptor induction by hypoxia: HIF-1-mediated transcriptional activation and cell-specific post-transcriptional regulation. J Biol Chem 274:24142–24146

    Article  Google Scholar 

  • Takeda A, Devenyi A, Connor JR (1998) Evidence for non-transferrin-mediated uptake and release of iron and manganese in glial cell cultures from hypotransferrinemic mice. J Neurosci Res 51:454–462

    Article  Google Scholar 

  • Tandy S, Williams M, Leggett A, Lopez-Jimenez M, Dedes M, Ramesh B, Srai SK, Sharp P (2000) Nramp2 expression is associated with pH-dependent iron uptake by the brain: effects of altered iron status. J Biol Chem 275:1023–1029

    Article  Google Scholar 

  • Tapiero H, Townsend DM, Tew KD (2003) Trace elements in human physiology and pathology: copper. Biomed Pharmacother 57:386–398

    Article  Google Scholar 

  • Testa U, Petrini M, Quaranta MT, Pelosi-Testa E, Mastroberardino G, Camagna A, Boccoli G, Sargiacomo M, Isacchi G, Cozzi A, Arosio P, Peschle C (1989) Iron up-modulates the expression of TfRs during monocyte–macrophage maturation. J Biol Chem 264:13181–13197

    Google Scholar 

  • Theil E (2011) Iron homeostasis and nutritional iron deficiency. J Nutr 141:724S–728S

    Article  Google Scholar 

  • Tong KK, McArdle HJ (1995) Copper uptake by cultured trophoblast cells isolated from human term placenta. Biochim Biophys Acta 1269:233–236

    Article  Google Scholar 

  • Tsuji Y, Moran E, Torti SV, Torti FM (1999) Transcriptional regulation of the mouse ferritin H gene: involvement of p300/CBP adaptor proteins in FER-1 enhancer activity. J Biol Chem 274:7501–7507

    Article  Google Scholar 

  • Umbreit JN, Conrad ME, Moore EG, Latour LF (1998) Iron absorption and cellular transport: the mobilferrin/paraferritin paradigm. Semin Hematol 35:13–26

    Google Scholar 

  • Valentine RA, Jackson KA, Christie GR, Mathers JC, Taylor PM, Ford D (2007) ZnT5 variant B is a bidirectional zinc transporter and mediates zinc uptake in human intestinal caco-2 cells. J Biol Chem 282:14389–14939

    Article  Google Scholar 

  • van den Berghe PVE, Klomp WJ (2010) New developments in the regulation of intestinal copper absorption. Nutr Rev 67:658–672

    Article  Google Scholar 

  • Vulpe CD, Kuo Y-M, Murphy TL, Cowley L, Askwith C, Libina N, Gischier J, Anderson GJ (1999) Hephaestin, a ceruloplasmin homolog implicated in intestinal iron transport, is defective in the sla mouse. Nat Genet 21:195–199

    Article  Google Scholar 

  • Wang X, Zhou B (2010) Dietary zinc absorption: a play of zips and ZnTs in the Gut. IUBMB Life 62:176–182

    Article  Google Scholar 

  • Wood RJ, Han O (1998) Recently identified molecular aspects of intestinal iron absorption. J Nutr 128:17648–17654

    Google Scholar 

  • Yanagimoto C, Harada M, Kunemura H, Abe M, Koga H, Sakata M, Kawaguchi T, Terada K, Hanada S, Taniguchi E, Ninomiya H, Ueno T, Sugiyama T, Sata M (2011) Copper incorporation into ceruloplasmin is regulated by niemann-pick C1 protein. Hepatol Res 41:484–491

    Article  Google Scholar 

  • Zhang P, Allen JC (1995) A novel dialysis procedure measuring free Zn2+ in bovine milk and plasma. J Nutr 125:1904–1910

    Google Scholar 

  • Zhao H, Eide D (1996) The yeast ZRT1 gene encodes the zinc transporter of a high affinity uptake system induced by zinc limitation. Proc Natl Acad Sci U S A 93:2454–2458

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulf Lindh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lindh, U. (2013). Uptake of Elements from a Biological Point of View. In: Selinus, O. (eds) Essentials of Medical Geology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4375-5_6

Download citation

Publish with us

Policies and ethics