Skip to main content

Natural Distribution and Abundance of Elements

  • Chapter
  • First Online:
Essentials of Medical Geology

Abstract

A widely recognized biological characteristic of a healthy and sustainable environment is diversity—as with biology, so with geology. Regions characterized by the presence of different bedrock units, and different surficial materials in areas affected by recent (geologically speaking) glaciation, develop varied landscapes that support differing ecosystems. Examples of varied landscapes range from Alpine and Cordilleran mountains, through gentler landscapes of rolling hills, to the glacial plains of Northern Europe and North America, or similarly from the high Himalayas, through verdant foothills, across fertile plains to the desert of Sind. In the parts of the world characterized by stable geological platforms, where mountain building has not taken place for many hundreds of millions of years and there have been long periods of landscape development, peneplains are the eventual outcome. Their topography is gentle without mountains. High relief areas are largely limited to inselbergs or ravines and river valleys where, due to crustal uplift, modern rivers and streams are cutting down into and eroding the old land surfaces. Examples are the Brasilian Shield, central Australia and parts of central Africa, though in the latter young volcanoes lead to local mountainous terrain. These are the physical expressions of the underlying geology, but there is another changing characteristic that cannot be seen directly—the chemistry of the underlying rocks and sediments and the soils that lie upon them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Further Reading

  • Ali SA (2011) Natural products as therapeutic agents for schistosomiasis. Res J Med Plant 5:1–20

    Article  Google Scholar 

  • Allen HE (ed) (2002a) Bioavailability of metals in terrestrial ecosystems: importance of partitioning for bioavailability to invertebrates, microbes and plants. Society of Environmental Toxicological and Chemistry (SETAC), Pensacola

    Google Scholar 

  • Allen HE (2002b) Chapter 1: Speciation of metals in soil. In: Allen HE (ed) Bioavailability of metals in terrestrial ecosystems: importance of partitioning for bioavailability to invertebrates, microbes and plants. Society for Environmental Toxicology and Chemistry (SETAC), Pensacola, pp 1–5

    Google Scholar 

  • Brooks RR (1972) Geobotany and biogeochemistry in mineral exploration. Harper & Row, New York

    Google Scholar 

  • Brooks RR (ed) (1998) Plants that hyperaccumulate heavy metals: their role in phytoremediation, microbiology, archaeology, mineral exploration, and phytomining. CAB International, Oxford

    Google Scholar 

  • Campbell PGC (1995) Interactions between trace metals and aquatic organisms: a critique of the free-ion activity model. In: Tessier A, Turner DR (eds) Metal speciation and bioavailability in aquatic systems. Wiley, New York, pp 45–102

    Google Scholar 

  • Chork CY (1977) Seasonal sampling and analytical variations in stream sediment surveys. J Geochem Explor 7:31–47

    Article  Google Scholar 

  • Clarke FW, Washington HS (1924) The data of geochemistry. U S Geol Surv Bull 770:841

    Google Scholar 

  • Darnley AG, Björklund A, Bølviken B, Gustavsson N, Koval PV, Plant JA, Steenfelt A, Tauchid M, Xie X, with contributions by Garrett RG, Hall GEM (1995) A global geochemical database for environmental and resource management. Earth Science Series no. 19. UNESCO, Paris

    Google Scholar 

  • de Caritat P, Cooper M (2011) National geochemical survey of Australia: the geochemical atlas of Australia. Geoscience Australia, Canberra, p 557, Record 2011/20 (2 vols)

    Google Scholar 

  • Dunn CE (1990) Lithogeochemical study of the Cretaceous in central Saskatchewan—perliminary report. Sask Geol Surv Misc Rep 90–4:193–197

    Google Scholar 

  • Dunn CE (2007) Biogeochemistry in mineral exploration. In: Hale M (Series ed) Handbook of exploration and environmental geochemistry, vol 9. Elsevier, Amsterdam

    Google Scholar 

  • EGA (2008) EuroGeoSurveys Geochemistry Working Group. EuroGeoSurveys geochemical mapping of agricultural and grazing land in Europe (GEMAS)—Field manual. Report, 2008.038, Norges Geologiske Undersøkelse, Trondheim, p 46

    Google Scholar 

  • Fairbrother A, McLaughlin MJ (2002) Metalloregions. Fact sheet on environmental risk assessment 12. International Council on Mining and Metals (ICMM), London

    Google Scholar 

  • Faust SD, Aly OM (1981) Chemistry of natural waters. Ann Arbor Science, Ann Arbor

    Google Scholar 

  • Filzmoser P, Hron K, Reimann C (2009) Univariate statistical analysis of environmental (compositional) data: problems and possibilities. Sci Tot Environ 407:6100–6108

    Article  Google Scholar 

  • Fordyce FM, Zhang G, Green K, Liu X (2000) Soil, grain and water chemistry in relation to selenium-responsive diseases in Enshi district, China. Appl Geochem 15:117–132

    Article  Google Scholar 

  • Fredén C (ed) (1994) Geology. In: Wastenson L (ed) National atlas of Sweden Series. SNA Publishing, Stockholm

    Google Scholar 

  • Friske PWB, Ford KL, Kettles IM, McCurdy MW, McNeil RJ, Harvey BA (2010) North American soil geochemical landscapes project: Canadian field protocols for collecting mineral soils and measuring soil gas radon and natural radioactivity. Open File 6282, Geological Survey of Canada, Ottawa

    Google Scholar 

  • Friske PWB, Ford KL, McNeil RJ (2012) Soil geochemical, mineralogical, radon and gamma ray spectrometric data from the 2007 North American soil geochemical landscapes project in New Brunswick, Nova Scotia and Prince Edward Island. Open File 6433, Geological Survey of Canada, Ottawa

    Google Scholar 

  • Fyfe WS (1998) Towards 2050; the past is not the key to the future; challenges for environmental geology. Environ Geol 33:92–95

    Article  Google Scholar 

  • Garrett RG (1983) Sampling methodology. In: Howarth RJ (ed) Handbook of exploration geochemistry, vol 2, statistics and data analysis in geochemical prospecting. Elsevier, Amsterdam, pp 83–110

    Google Scholar 

  • Garrett RG (2009) A water-leach procedure for estimating bioaccessibility of elements in soils from transects across the United States and Canada. Appl Geochem 24:1438–1453

    Article  Google Scholar 

  • Garrett RG, Amor SD (1994) Temporal variations in stream sediment data from Jamaica. In: Bloom L (ed) Prospecting in tropical and arid terrains. Prospectors and Developers Association of Canada, Toronto, pp 117–137 (Section 2)

    Google Scholar 

  • Gawalko EJ, Garrett RG, Nowicki TW (2001) Trace elements in western Canadian hard red spring wheat (Triticum aestivem L.): levels and quality assurance. J Assoc Anal Intl 84:1953–1963

    Google Scholar 

  • Goldschmidt VM (1937) The principles of distribution of chemical elements in minerals and rocks. J Chem Soc (Lond) 1937(Pt. 1):655–673

    Article  Google Scholar 

  • Gustavsson N, Bolviken B, Smith DB, Severson RC (2001) Geochemical landscapes of the conterminous United States—New map presentations for 22 elements. U S Geol Surv Bull 1645:38

    Google Scholar 

  • Issaks EH, Srivastava RM (1989) An introduction to applied geostatistics. Oxford University Press, New York

    Google Scholar 

  • Johnson CC, Ge X, Green KA, Liu X (2000) Selenium distribution in the local environment of selected villages of the Keshan disease belt, Zhangjiakou district, Hebei province, People’s Republic of China. Appl Geochem 15:385–401

    Article  Google Scholar 

  • Kabata-Pendias A (2001) Trace elements in soils and plants, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  • Lee T, Yao C-L (1970) Abundance of chemical elements in the earth’s crust and its major tectonic units. Intl Geol Rev 12(7):778–786

    Article  Google Scholar 

  • Lis J, Pasieczna A (1995) Geochemical atlas of Poland. Polish Geological Institute, Warsaw

    Google Scholar 

  • MacPherson A, Barclay MNI, Scott R, Yates RWS (1997) Loss of Canadian wheat imports lowers selenium intake and status of the Scottish population. In: Fischer PWF, Abbé MRL, Cockell KA, Gibson RS (eds) Trace elements in man and animals-9. National Research Council Press, Ottawa, pp 203–205

    Google Scholar 

  • Marshall IB, Smith CAS, Selby CJ (1996) A national framework for monitoring and reporting environmental sustainability in Canada. Environ Monit Assess 39:25–38

    Article  Google Scholar 

  • McKelvey VE (1960) Relation of reserve of the metals to their crustal abundance. Am J Sci 258–A:234–241

    Google Scholar 

  • McLennan SM (1992) Continental crust. In: Nierenberg WA (ed) Encyclopedia of earth sciences, vol 1. Kluwer, Dortrecht, pp 581–592

    Google Scholar 

  • Menzies NW, Donn MJ, Kopittke PM (2007) Evaluation of extractants for estimation of phytoavailable trace elements in soils. Env Poll 145:121–130

    Article  Google Scholar 

  • Ontario Ministry of Environment and Energy (1999) Ontario typical range of chemical parameters in soil, vegetation, moss bags and snow, version 1.0a. Queen’s Printer for Ontario, Toronto

    Google Scholar 

  • Plant J, Smith D, Smith B, Williams L (2001) Environmental geochemistry on a global scale. Appl Geochem 16:1291–1308

    Article  Google Scholar 

  • Reimann C, de Caritat P (1998) Chemical elements in the environment: fact sheets for the geochemist and environmental scientist. Springer, Berlin

    Book  Google Scholar 

  • Reimann C, Garrett RG (2005) Geochemical background—concept and reality. Sci Tot Env 350:12–27

    Article  Google Scholar 

  • Reimann C, Melezhik V (2001) Metallogenic provinces, geochemical provinces and regional geology—what causes large-scale patterns in low density geochemical maps of the C-horizon of podzols in arctic Europe. Appl Geochem 16:963–983

    Article  Google Scholar 

  • Reimann C, Äyräs M, Chekushin VA, Bogatyrev IV, Rognvald B, de Caritat P, Dutter R, Finne TE, Halleraker JH, Jæger Ø, Kashulina G, Niskavaara H, Lehto O, Pavlov VA, Räisänen ML, Strand T, Volden T (1998) Environmental geochemical atlas of the central Barents region. Geological Survey of Norway, Trondheim

    Google Scholar 

  • Reimann C, Siewers U, Tarvainen T, Bityukova L, Erikson J, Gilucis A, Gregorauskiene V, Lukashev VK, Matinian NN, Pasieczna A (2003) Agricultural soils in northern Europe: a geochemical atlas. Bundesanstalt für Geowissenschaften und Rohstoffe: Sonderhefte Reihe D, Hefte SD5, Hannover

    Google Scholar 

  • Reimann C, Filzmoser P, Garrett RG (2005) Background and threshold: critical comparison of methods of determination. Sci Tot Env 346:1–16

    Article  Google Scholar 

  • Reimann C, Matschullat J, Burke M, Salminen R (2009) Arsenic distribution in the environment: the effects of scale. Appl Geochem 24:1147–1167

    Article  Google Scholar 

  • Reimann C, Matschullat J, Burke M, Salminen R (2010) Antimony in the environment: lessons from geochemical mapping. Appl Geochem 25:175–198

    Article  Google Scholar 

  • Reimann C, de Caritat P, GEMAS Project Team, NGSA Project Team (2012a) New soil composition data for Europe and Australia: demonstrating comparability, identifying continental-scale processes and learning lessons for global geochemical mapping. Sci Tot Env 416:239–252

    Article  Google Scholar 

  • Reimann C, Flem B, Fabian K, Borke M, Ladenberger A, Négrel P, Demetriades A, Hoogewerff J, The GEMAS Project Team (2012b). Lead and lead isotopes in agricultural soils of Europe—the continental perspective. Appl Geochem 27:532–542

    Google Scholar 

  • Rencz AN, Garrett RG, Kettles IM, Grunsky EC, McNeil RJ (2011) Using soil geochemical data to estimate the range of background element concentrations for ecological and human health risk assessments. Current Research 2011–9, Geological Survey of Canada: Ottawa

    Google Scholar 

  • Revkin A (1992) Global warming: understanding the forecast. Abbeville, New York

    Google Scholar 

  • Ridgway J, Dunkley PN (1988) Temporal variations in the trace element content of stream sediments: examples from Zimbabwe. Appl Geochem 3:609–621

    Article  Google Scholar 

  • Ridgway J, Midobatu C (1991) Temporal variations in the trace element content of stream sediments: an example from a tropical rain forest regime, Solomon islands. Appl Geochem 6:185–193

    Article  Google Scholar 

  • Rose AW, Hawkes HE, Webb JS (1979) Geochemistry in mineral exploration, 2nd edn. Academic, London

    Google Scholar 

  • Rudnick RL, Gao S (2003). Composition of the continental crust. In: Rudnick RL (ed) The crust. Treatise on geochemistry, vol 3 (Holland HD, Turekian KK (Series eds)). Elsevier-Pergamon, Oxford, pp 1–64

    Google Scholar 

  • Salminen R, Gregorauskiene V (2000) Considerations regarding the definition of a geochemical baseline of elements in the surficial materials in areas differing in basic geology. Appl Geochem 15:647–653

    Article  Google Scholar 

  • Salminen R, Tarvainen T, Demetriades A, Duris M, Fordyce FM, Gregorauskiene V, Kahelin H, Kivisilla J, Klaver G, Klein H, Larson JO, Lis J, Locutura J, Marsina K, Mjartanova H, Mouvet C, O’Connor P, Odor L, Ottonello G, Paukola T, Plant JA, Reimann C, Schermann O, Siewers U, Steenfelt A, Van der Sluys J, Williams L (1998) FOREGS geochemical mapping: field manual. Geol Surv Finland Guide 47:42

    Google Scholar 

  • Salminen R, Chekuskin V, Tenhola M, Bogatyrev I, Glavatskikh SP, Fedotova E, Gregorauskiene V, Kashulina G, Niskavaara H, Polischuok KA, Rissanen L, Selenok L, Tomilina O, Zhdanova L (2004) Geochemical atlas of the eastern Barents region. Elsevier, Amsterdam (reprinted from Jour Geochem Explor vol 83)

    Google Scholar 

  • Salminen T (Chief ed), Batista MJ, Bidovec M, Demetriades A, De Vivo B, De Vos W, Duris M, Gilusis A, Gregorauskiene V, Halamic J, Heitzmann P, Lima A, Jordan G, Klaver G, Klein P, Lis J, Locatura J, Marsina K, Mazreku A, O’Connor PJ, Olsson SA, Otteen R-T, Petersell V, Plant JA, Reeder S, Salpeteur I, Sandstrom H, Siwers U, Steenfelt A, Tarvainen T (2005) Geochemical atlas of Europe, part 1—Background information, methodology, and maps. Geological Survey of Finland, Espoo

    Google Scholar 

  • Sauvé S (2002) Chapter 2: Speciation of metals in soil. In: Allen HE (ed) Bioavailability of metals in terrestrial ecosystems: importance of partitioning for bioavailability to invertebrates, microbes and plants. Society for Environmental Toxicology and Chemistry (SETAC), Pensacola, pp 7–58

    Google Scholar 

  • Shacklette HT, Boerngen JG (1984) Element concentrations in soils and other surficial materials of the conterminous United States. U S Geol Surv Bull 1270:105

    Google Scholar 

  • Simpson PR, Breward N, Flight DMA, Lister TR, Cook JM, Smith B, Hall GEM (1996) High resolution regional hydrogeochemical baseline mapping of stream waters in Wales, the Welsh borders and West Midlands region. Appl Geochem 11:621–632

    Article  Google Scholar 

  • Steenfelt A, Kunzendorf H (1979) Geochemical methods in uranium exploration in northern east Greenland. In: Watterson JR, Theobald PK (eds) Geochemical exploration 1978, Spec. vol 7. Association of Exploration Geochemists, Toronto, pp 429–442

    Google Scholar 

  • Taylor SR (1964) Abundance of chemical elements in the continental crust, a new table. Geochim Cosmochim Acta 28(8):1273–1285

    Article  Google Scholar 

  • Tipping E (1994) WHAM—a chemical equilibrium model and computer code for water, sediments, and soils incorporating a discrete site/electrostatic model of ion-binding by humic substances. Comput Geosci 21:973–1023

    Google Scholar 

  • Turekian KK, Wedepohl KH (1961) Distribution of the elements in some major units of the Earth’s crust. Bull Geol Soc Am 72(1):175–192

    Article  Google Scholar 

  • U.S. Environmental Protection Agency (1996). Method 3050b—Acid digestion of sediments, sludges, and soils. http://www.epa.gov/wastes/hazard/testmethods/sw846/pdfs/3050b.pdf. Accessed 10 Apr 2012

  • Vine JD, Tourtelot EB (1970) Geochemistry of black shale deposits; a summary report. Econ Geol 65(3):253–272

    Article  Google Scholar 

  • Vistelius AB (1960) The skew frequency distributions and the fundamental law of the geochemical processes. J Geol 68:1–22

    Article  Google Scholar 

  • Wang Z, Gao Y (2001) Biogeochemical cycling of selenium in Chinese environments. Appl Geochem 16:1345–1351

    Article  Google Scholar 

  • Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59:1217–1232

    Article  Google Scholar 

  • Xie X, Cheng H (2001) Global geochemical mapping and its implication in the Asia-Pacific region. Appl Geochem 16:1309–1321

    Article  Google Scholar 

  • Zalasiewicz I, Williams M, Steffan W, Crutzen P (2010) The New world of the anthropocene. Environ Sci Technol 44:2228–2231

    Article  Google Scholar 

  • Zoback ML (2001) Grand challenges in earth and environmental sciences—science, stewardship, and service in the 21st century. Geol Soc Am Today 11:41–47

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert G. Garrett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Garrett, R.G. (2013). Natural Distribution and Abundance of Elements. In: Selinus, O. (eds) Essentials of Medical Geology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4375-5_3

Download citation

Publish with us

Policies and ethics