Skip to main content

Speciation of Trace Elements

  • Chapter
  • First Online:
Essentials of Medical Geology

Abstract

The determination of trace elements has assumed a place of prominence in the life sciences. Elements present at even minimal concentrations in biological and environmental matrices can have a significant influence on vital functions, depending on the amount present. The study of, for example, pathophysiological processes in the human body requires the determination of elements at concentrations measured in μgL−1, ngg−1, and even pgg−1. The higher concomitant amounts of organic and inorganic components make it difficult to determine the presence of trace elements. Moreover, it is a complex process that progresses from an initial trace element analysis to the final statement of biological implications, one that requires close collaboration between the analytical chemist and life scientist. Furthermore, it should be kept in mind that the concept of zero tolerance for potentially toxic elements has been replaced by the more scientific notions of safe ranges of exposure and range of safe intake.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguerre S, Lespes G, Desauziers V, Potin-Gautier M (2002) Speciation of organotin in environmental samples by SPME–GC: comparison of four specific detectors: FPD, PFPD, MIP-AES and ICP–MS. J Anal At Spectrom 16:263–269

    Article  Google Scholar 

  • Allen HE, Hansen DJ (1986) The importance of trace metal speciation to water quality criteria. Water Environ Res 68:42–54

    Article  Google Scholar 

  • Arnaud J, Andre D, Bouillet MC, Kia D, Favier A (1992) Problems associated with the use of exclusion diffusion chromatography for identification of zinc ligands in human milk. J Trace Elem Electrolyte Health Dis 6:81–90

    Google Scholar 

  • Barnes RM (1983) Frontiers in inductively coupled plasma spectroscopy. Chem Anal Wars 28:179–198

    Google Scholar 

  • Barnes RM (1991) Inductively coupled and other plasma sources: determination and speciation of trace elements in biomedical applications. In: Subramanian KS, Iyengar GV, Okamoto K (eds) Biological trace element research—multidisciplinary perspectives. American Chemical Society, Washington, DC, pp 158–180

    Chapter  Google Scholar 

  • Brätter P, Forth W, Fresenius W, Holtmeier HJ, Hoyer S, Kruse-Jarres J, Liesen H, Mohn L, Negretti de Brätter V, Reichlmayr-Lais AM, Sitzer G, Tölg G (1992) Mineralstoffe und Spurenelemente, Leitfaden für die ärztliche Praxis. Verlag Bertelsmann Stiftung, Gütersloh

    Google Scholar 

  • Burguera JL, Quintana IA, Salager JL, Burguera M, Rondón C, Carrero P, Anton de Salager R, Petit de Peña Y (1999) The use of emulsions for the determination of methylmercury and inorganic mercury in fish-eggs oil by cold vapor generation in a flow injection system with atomic absorption spectrometric detection. Analyst 124:593–599

    Article  Google Scholar 

  • Caroli S (1996) Chemical speciation: a decade of progress. In: Caroli S (ed) Element speciation in bioinorganic chemistry. Wiley, New York, pp 1–18

    Google Scholar 

  • Caroli S, Alimonti A, Coni E, Petrucci F, Senofonte O, Violante N (1994) The assessment of reference values for elements in human biological tissues and fluids: a systematic review. CRC Crit Rev Anal Chem 24:363–398

    Article  Google Scholar 

  • Caroli S, Cescon P, Walton D (eds) (2000) Environmental contamination in Antarctica: a challenge to analytical chemistry. Elsevier Science, Amsterdam

    Google Scholar 

  • Chassaigne H, Lobinski R (1998) Speciation of metal complexes with biomolecules by reversed-phase HPLC with ion-spray and inductively coupled plasma mass spectrometric detection. Fresenius J Anal Chem 361:267–273

    Article  Google Scholar 

  • Cole RB (ed) (1997) Electrospray ionization mass spectrometry—fundamentals, instrumentation and applications. Wiley, New York

    Google Scholar 

  • Crews HM, Clarke PA, Lewis DJ, Owen LM, Srutt PR, Izquierdo A (1996) Gastrointestinal extracts of cooked cod by high performance liquid chromatography–inductively coupled plasma mass spectrometry and electrospray mass spectrometry. J Anal At Spectrom 11:1177–1182

    Article  Google Scholar 

  • Dawson JB (1986) Analytical atomic spectroscopy in biology and medicine. Z Anal Chem 324:463–471

    Article  Google Scholar 

  • Diederich J, Michalke B (2010) Enhanced extract preparation for manganese and iron speciation in brain and liver tissue. Anal Bioanal Chem 399:1799–1806

    Article  Google Scholar 

  • Dunemann L, Begerow J (eds) (1995) Kopplungstechniken zur Elementspeziesanalytik. VCH, Weinheim

    Google Scholar 

  • Florence TM (1989) Electrochemical techniques for trace element speciation in waters. In: Batley GE (ed) Trace element speciation: analytical methods and problems. CRC Press, Boca Raton, pp 77–116

    Google Scholar 

  • Fricke MW, Creed PA, Parks AN, Shoemaker JA, Schwegel CA, Creed JT (2004) Extraction and detection of a new arsine sulfide containing arsenosugar in molluscs by IC-ICP-MS and IC-ESI-MS/MS. J Anal At Spectrom 19:1454–1459

    Article  Google Scholar 

  • Goessler W, Schlagenhaufen C, Kuehnelt D, Greschonig H, Irgolic K (1997) Can humans metabolize arsenic compounds to arsenobetaine? Appl Organomet Chem 11(4):327–335

    Article  Google Scholar 

  • Harms J, Schwedt G (1994) Applications of capillary electrophoresis in element speciation analysis of plant and food extracts. Fresenius J Anal Chem 350:93–100

    Article  Google Scholar 

  • Harrington CF, Le Pla RC, Jones GDD, Thomas AL, Farmer PB (2010) Determination of cisplatin 1,2-intrastrand guanine-guanine DNA adducts in human leukocytes by high-performance liquid chromatography coupled to inductively coupled plasma mass spectrometry. Chem Res Toxiocol 33:1313–1321

    Article  Google Scholar 

  • Keller H (1991) Klinische-chemische Labordiagnostik für die Praxis. Analyse, Befund, Interpretation. Georg Thieme Verlag, Stuttgart

    Google Scholar 

  • Kersten M, Förstner U (1989) Speciation of trace elements in sediments. In: Batley GE (ed) Trace element speciation: analytical methods and problems. CRC Press, Boca Raton, pp 245–318

    Google Scholar 

  • Krushevska AP, Zhou Y, Ravikumar V, Kim Y-J, Hinrichs J (2006) Chromium based polyatomic interferences on rhodium in ICP-MS. J Anal At Spectrom 21:847–855

    Article  Google Scholar 

  • Kuhn R, Hofstetter-Kuhn S (1993) Capillary electrophoresis: principles and practice. Springer, Berlin

    Book  Google Scholar 

  • Letsiou S, Nischwitz V, Traar P, Francesconi KA, Pergantis SA (2007) Determination of selenosugars in crude human urine using high-performance liquid chromatography/ atmospheric pressure chemical ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 21:343–351

    Google Scholar 

  • Lintschinger J, Schramel O, Kettrup A (1998) The analysis of antimony species by using ESI–MS and HPLC–ICP–MS. Fresenius J Anal Chem 361:96–102

    Article  Google Scholar 

  • Lustig S, Michalke B, Beck W, Schramel P (1998) Platinum speciation with hyphenated techniques: application of RP–HPLC–ICP–MS and CE–ICP–MS to aqueous extracts from a platinum treated soil. Fresenius J Anal Chem 360:18–25

    Article  Google Scholar 

  • Lustig S, Lampaert D, De Cremer K, De Kimpe J, Cornelis R, Schramel P (1999) Capability of flatbed electrophoresis (IEF and native PAGE) combined with sector field ICP–MS and autoradiography for the speciation of Cr, Ca, Ga, In, Pt and V in incubated serum samples. J Anal At Spectrom 14:1357–1362

    Article  Google Scholar 

  • McSheehy S, Szpunar J, Lobinski R et al (2002) Characterization of arsenic species in kidney of the clam Tridacna derasa by multidimensional liquid chromatography–ICPMS and electrospray time-of-flight tandem mass spectrometry. Anal Chem 74(10):2370–2378

    Article  Google Scholar 

  • Michalke B (1999a) Quality control and reference materials in speciation. Fresenius J Anal Chem 363:439–445

    Article  Google Scholar 

  • Michalke B (1999b) Potential and limitations of capillary electrophoresis–ICP–mass spectrometry. J Anal At Spectrosc 14:1297–1302

    Article  Google Scholar 

  • Michalke B, Berthele A (2011) Contribution to selenium speciation in cerebrospinal fluid samples. J Anal At Spectrom 26:165–170

    Article  Google Scholar 

  • Michalke B, Nischwitz N (2010) Review on metal speciation analysis in cerebrospinal fluid—current methods and results. Anal Chim Acta 682(1–2):23–36

    Article  Google Scholar 

  • Michalke B, Schramel P (1997) Selenium speciation in human milk with special respect to quality control. Biol Trace Elem Res 59:45–56

    Article  Google Scholar 

  • Michalke B, Witte H, Schramel P (2000) Iodine speciation in human serum by reversed phase liquid chromatography–ICP–mass spectrometry. Biol Trace Elem Res 78:81–92

    Article  Google Scholar 

  • Michalke B, Witte H, Schramel P (2001) Developments of a rugged method for selenium speciation. J Anal At Spectrom 16:593–597

    Article  Google Scholar 

  • Michalke B, Witte H, Schramel P (2002) Effect of different extraction procedures on the yield and pattern of Se species in bacterial samples. Anal Bioanal Chem 372:444–447

    Article  Google Scholar 

  • Mikes O (1988) High-performance liquid chromatography of biopolymers and biooligomers. Elsevier, Amsterdam

    Google Scholar 

  • Minderhoud A (1983) Atomic spectrometry for trace determinations in the environment with a view to government regulations. Spectrochim Acta 38B:1525–1532

    Google Scholar 

  • Montaser A, Golightly DW (1992) Inductively coupled plasmas in analytical atomic spectrometry, 2nd edn. VCH Publishers, New York

    Google Scholar 

  • Morrison GMP (1989) Trace element speciation and its relationship to bioavailability and toxicity in natural waters. In: Batley GE (ed) Trace element speciation: analytical methods and problems. CRC Press, Boca Raton, pp 25–42

    Google Scholar 

  • Mota AM, Simaes Gonçalves ML (1996) Direct methods of speciation of heavy metals in natural waters. In: Caroli S (ed) Element speciation in bioinorganic chemistry. Wiley, New York, pp 21–96

    Google Scholar 

  • Nischwitz V, Pergantis SA (2005) Liquid chromatography online with selected reaction monitoring electrospray mass spectrometry for the determination of organoarsenic species in crude extracts of marine reference materials. Anal Chem 77:5551–5563

    Article  Google Scholar 

  • Nischwitz V, Michalke B, Kettrup A (2003) Investigations on species-preserving extraction from liver samples. Anal Bioanal Chem 375:145–156

    Google Scholar 

  • Nischwitz V, Kanaki K, Pergantis SA (2006) Mass spectrometric identification of novel arsinothioyl-sugars in marine bivalves and algae. J Anal At Spectrom 21:33–40

    Article  Google Scholar 

  • Olesik JW (2000) Capillary electrophoresis for elemental speciation studies. In: Caruso JA, Sutton KL, Ackley KL (eds) Element speciation: new approaches for trace element analysis. Elsevier, Amsterdam, pp 151–211

    Google Scholar 

  • Patching SG, Gardiner PHE (1999) Recent developments in selenium metabolism and chemical speciation: a review. J Trace Elem Med Biol 13(4):193–214

    Article  Google Scholar 

  • Pellegrino C, Massanisso P, Morabito R (2000) Comparison of twelve selected extraction methods for the determination of butyl- and phenyltin compounds in mussel samples. Trends Anal Chem 19(2-3):97–106

    Article  Google Scholar 

  • Pickering WF (1981) Selective chemical extraction of soil components and bound metal species. CRC Crit Rev Anal Chem 12:233–238

    Article  Google Scholar 

  • Potin-Gautier M, Gilon N, Astruc M, de Gregori I, Pinochet H (1997) Comparison of selenium extraction procedures for its speciation in biological materials. Int J Environ Anal Chem 67:15–25

    Article  Google Scholar 

  • Prange A, Schaumlöffel D (1999) Determination of element species at trace levels using capillary electrophoresis–inductively coupled plasma sector–field mass spectrometry. J Anal At Spectrom 14:1329–1332

    Article  Google Scholar 

  • Quevauviller P, Maier EA, Griepink B (1996) Quality control of results of speciation analysis. In: Caroli S (ed) Element speciation in bioinorganic chemistry. Wiley, New York, pp 195–222

    Google Scholar 

  • Quijano MA, Moreno P, Gutierrez AM, Perez-Conde C, Camara C (2000) Selenium speciation in animal tissues after enzymatic digestion by HPLC coupled to ICP–MS. J Mass Spectrom 35:878–884

    Article  Google Scholar 

  • Rodriguez-Pereiro I, Wasik A, Lobinski R (1997) Trace environmental speciation analysis for organometallic compounds by isothermal multicapillary gas chromatography—microwave induced plasma atomic emission spectrometry (MC GC MIP AES). Anal Chem 42:799–808

    Google Scholar 

  • Szpunar J (2000a) Trace element speciation analysis of biomaterials by high performance liquid chromatography with inductively coupled plasma mass spectrometric detection (HPLC–ICP MS). Trends Anal Chem 19(2–3):127–137

    Article  Google Scholar 

  • Szpunar J (2000b) Bio-inorganic speciation analysis by hyphenated techniques. Analyst 125:963–988

    Article  Google Scholar 

  • Templeton DM, Ariese F, Cornelis R, Danielsson L-G, Muntau H, van Leeuwen HP, Lobinski R (2000) Guidelines for terms related to chemical speciation and fractionation of elements. Definitions, structural aspects and methodological approaches. Pure Appl Chem 72(8):1453–1470

    Article  Google Scholar 

  • Th.Göen, DFG-Lose Blätter Sammlung Validierte Methoden zum Huambiomonitoring: Arsen gesamt im Urin (2012), Wiley-VCH

    Google Scholar 

  • Thiers RE, Vallee BL (1957) Distribution of metals in subcellular fractions of rat liver. J Biol Chem 226:911–920

    Google Scholar 

  • Tittes W, Jakubowski H, Stüwer D (1994) Reduction of some spectral interferences in ICP–MS, finnigan MAT elemental mass spectrometry technical and application note 3. Finnigan MAT GmbH, Bremen

    Google Scholar 

  • Urasa IT (1996) Developments of new methods of speciation analysis. In: Caroli S (ed) Element speciation in bioinorganic chemistry. Wiley, New York, pp 121–154

    Google Scholar 

  • Ure AM, Quevauviller P, Muntau H, Griepink B (1993) Speciation of heavy metals in soils and sediments: an account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the commission of the European communities. Int J Environ Anal Chem 51:135–151

    Article  Google Scholar 

  • Wolf C, Rösick U, Brätter P (2002) Sampling and processing of biopsy samples for speciation studies of cytosolic metalloproteins. Anal Bioanal Chem 372:491–494

    Article  Google Scholar 

  • Wolf RE, Morrison JM, Goldhaber MB (2007) Simultaneous determination of Cr(III) and Cr(VI) using reversed-phase ion-pairing liquid chromatography with dynamic reaction cell inductively coupled plasma mass spectrometry. J Anal At Spectrom 22:1051–1060

    Article  Google Scholar 

  • Xu M, Yang LM, Wang QQ (2008) Quantification of selenium-tagged proteins in human plasma using species-unspecific isotope dilution ICP-DRC-qMS coupled on-line with anion exchange chromatography. J Anal At Spectrom 23:1545–1549

    Article  Google Scholar 

  • Zeien H, Bruemmer GW (1989) Chemische Extraktionen zur Bestimmung von Schwermetallbimdungsformen in Böden. Mitt Dtsch Bodenk Gesellsch 59:505–510

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Michalke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Michalke, B., Caroli, S. (2013). Speciation of Trace Elements. In: Selinus, O. (eds) Essentials of Medical Geology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4375-5_27

Download citation

Publish with us

Policies and ethics